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We advocate that in critical spin chains, and possibly in a larger class of 1D critical models, a
gap in the momentum-space entanglement spectrum separates the universal part of the spectrum,
which is determined by the associated conformal field theory, from the non-universal part, which is
specific to the model. To this end, we provide affirmative evidence from multicritical spin chains
with low energy sectors described by the SU(2)2 or the SU(3)1 Wess-Zumino-Witten model.

Introduction.—Quantum entanglement has become a
key concept in contemporary condensed matter physics.
This is due in part to its ability to probe intrinsic topo-
logical order1–3. Consider a density matrix, ρ, repre-
sented by the projector onto a many-body ground state.
If the associated Hilbert space is partitioned into two
non-overlapping regions A and B, two possible ways to
characterize the entanglement between the regions A and
B are the entanglement entropy (EE) and the entan-
glement spectrum (ES), which is obtained from the re-
duced density matrix ρA = TrBρ. The EE is given by
SA = −Tr(ρAlnρA), and the ES is defined as the spec-
trum of the entanglement Hamiltonian HE = −lnρA

4.
By definition, EE and ES depend on the chosen basis to
partition (cut) the many-body Hilbert space. To resolve
bulk and edge features of topological order, some form of
spatial cut4–10 (along with a particle cut11,12) is the pre-
dominantly used choice. This works well in systems with
a bulk energy gap and hence an associated length scale.
Upon partitioning, the ES then mimics the physical en-
ergy spectrum of edge states along the cut7. In particu-
lar, a set of universal entanglement levels, i.e. eigenval-
ues of He, related to physical edge states can be identi-
fied as distinct from generic entanglement levels through
the entanglement gap (EG), which can be employed to
investigate topological adiabaticity (whether two states
are topologically connected) using just the ground state
wavefunction5. The spatial EG evolves in a way simi-
lar to the physical bulk gap of the topologically ordered
phase, even though bulk gap closures occur at points of
parameter space different from EG (physically, this is
because physical properties of a system are determined
by ρA = e−He , i.e. He at a fictitious finite temperature,
while the EG captures the low energy properties of He)

13.

In order to understand the universal properties of en-
tanglement in critical systems, a spatial cut is not al-
ways a preferable choice14–17. Due to the absence of an
energy gap, there will not be an appreciable concentra-
tion of entanglement localized along the cut. Further-
more, for geometries where a spatial cut induces mul-
tiple edges, such as a ring or torus, the entanglement

modes couple between the edges, and complicate the res-
olution of individual modes. Instead, a momentum basis
appears promising to detect universal critical entangle-
ment profiles. The momentum-space ES was first intro-
duced for spin-1/2 chains18. There, the notion of mo-
mentum relates to the Fourier transform of individual
spin flip operators, and the total spin flip momentum,
MA, of spin flips in momentum region A provides an ap-
proximate quantum number of ρA. The spin fluid phase
around the Heisenberg spin chain was found to exhibit
a large EG (the EG is infinite at the spin-half Haldane-
Shastry point19,20) and a counting of entanglement levels
below the EG which identify the low energy field the-
ory (a massless U(1) boson) of the Heisenberg point.
Interestingly, the same counting, along with an EG, is
also seen in the (conformal limit construction) ES of the
Laughlin state5. This similarity can be understood by
observing that the Haldane-Shastry model and Laugh-
lin state have the same polynomial structure18. The
momentum-space ES has been subsequently explored in
the XXZ spin-1/2 chain21, spin-ladders22,23, and dis-
ordered systems24,25. Momentum-space entanglement
has also been employed in the context of high-energy
physics such as interacting quantum field theories26 and
D-branes in string theory27,28. As an overarching prin-
ciple, the momentum EG, along with the universal en-
tanglement levels below it, require an interpretation dif-
ferent from the spatial cut. In a finite spin chain with
no length scale, except for the UV lattice cutoff 1/a and
IR chain length cutoff 1/L, the EG cannot be directly
related to a microscopic scale. As a central conjecture
emerging from previous work, the EG separates the non-
universal part of the ES above it from the universal part
below it, which is determined by the associated confor-
mal field theory (CFT). We refer to this assumption as
the universal bulk entanglement conjecture (UBEC).

In this Rapid Communication, we elevate this conjec-
ture to a general principle, as we confirm it for sev-
eral critical spin chains with different, intricate field
theories. In particular, we analyze the momentum-
space ES of several critical spin-1 chains, including the
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Takhtajan-Babujian (TB) point29,30 and the Uimin-Lai-
Sutherland (ULS) point31–33 associated with an SU(2)2
and an SU(3)1 Wess-Zumino-Witten (WZW) field the-
ory, respectively. Both are critical points in the bilinear-
biquadratic spin-1 model. (For a detailed complementary
study of the real-space ES see Ref.16.) Our work general-
izes the connection between the momentum-space ES of
critical spin-chains and ES of FQH states beyond Laugh-
lin states. We pursue our analysis in two steps. First, we
identify fine-tuned models related to SU(2)2 and SU(3)1
WZWs, which exhibit an infinite EG, relating to an ex-
tensive multiplicity of the eigenvalue zero in ρA. For
SU(3)1 WZW, this is the SU(3) symmetric generaliza-
tion of the Haldane-Shastry model19,20,34. For SU(2)2
WZW, this is the Pfaffian spin chain35,36. Second, we
turn to the TB and ULS point, where we find a finite
EG along with a precise matching of energy levels for
the universal entanglement content as compared to their
associated infinite-EG models.

SU(3)1 WZW theory.—Starting from the spin-1/2 fluid
phase where the universal behavior we advocate was first
observed for an SU(2)1 WZW theory, one way of gen-
eralization is the enlargement of the internal symmetry
group. The low energy sector of the ULS model is de-
scribed by SU(3)1 WZW theory with central charge c =
2. Equivalently, SU(3)1 WZW can be thought of as two
gapless free bosonic field theories, each with unit central
charge37. In terms of S = 1 spin operators, the Hamil-

tonian is given by HULS =
N∑
α=1

SαSα+1 +
N∑
α=1

(SαSα+1)2.

Periodic boundary conditions (PBCs) are implemented
by placing the sites on a unit circle embedded into the
complex plane, with site coordinates ηα = exp(i2πα/N),
α ∈ {1, . . . , N}. Due to its enlarged symmetry, the ULS
model can be recast (up to a constant) in terms of SU(3)
spin vectors16,

HULS =

N∑
α=1

Jα · Jα+1, (1)

where Jα = 1
2

∑
στ c
†
ασλστ cατ denotes the SU(3) spin

vector on site α, λστ is a vector consisting of the eight
Gell-Mann matrices, c†ασ is an electron creation operator
(with color σ) on site α, and τ, σ ∈ {r, g,b}. We contrast
model (1) with the SU(3) Haldane-Shastry model

H
SU(3)
HS =

2π2

N2

N∑
α6=β

Jα · Jβ
|ηα − ηβ |2

, (2)

where |ηα − ηβ | is the chord distance along the ring.
In order to perform a momentum cut for the finite

size ground state of (1) and (2), we first need to specify
the operators which span the Hilbert space of the spin
chain. In analogy to the spin flip operators, S+

α , S−α ,
which are formed by the adjoint representation of SU(2),
we have the color flip operators eστα = c†ασcατ for SU(3).
Assuming N = 0 mod 3, the ground states of (1) and (2)

will be SU(3) singlets due to a generalized interpretation
of the Marshall theorem38. We write

|ψ0〉 =
∑
{z;w}

ψ0[z;w]ebgz1 . . . e
bg
zN/3

ergw1
. . . ergwN/3

|0g〉 , (3)

where the sum extends over all possible ways of distribut-
ing the positions [z] ≡ z1, . . . zN/3 of the blue (and [w] ≡
w1, . . . wN/3 of the red) particles. |0g〉 =

∏N
α=1 c

†
αg |0〉

is a reference state consisting only of green particles, on
which we act with the color flip operators ebgα and ergα .
We define the momentum space operators ẽbgp and ẽrgq

ebgα =
1√
N

N∑
p=1

η̄ pα ẽ
bg
p , ergβ =

1√
N

N∑
q=1

η̄ qβ ẽ
rg
q , (4)

where p, q ∈ {1, . . . , N} are integer spaced momentum
indices. Substitution of (4) into (3) yields

|ψ0〉 =
∑
{p;q}

ψ̃0[p; q] ẽbgp1 . . . ẽ
bg
pN/3

ẽrgq1 . . . ẽ
rg
qN/3
|0g〉 , (5)

ψ̃0[p; q] =
∑
{z;w}

ψ0[z;w] z̄p11 . . . z̄
pN/3

N/3 w̄
q1
1 . . . w̄

qN/3

N/3 . (6)

Note that while there trivially is a hard-core constraint
for the color flip operators in real space, there is no
such condition in momentum space. This significantly
enlarges the number of basis states. For our purposes, it
is best to write the ground state in a momentum space
occupation number basis,

|ψ0〉 =
∑
{n;m}

φ̃0[n;m] |n1, . . . , nN ;m1, . . . ,mN 〉 , (7)

where np (mq) is the number of times momentum index
p (q) for color flips from green to blue (red) appears in
(5). The ket in (7) is hence given by

|n1 . . . ;m1, . . .〉 =

N∏
p=1

(ẽbgp )np√
np!

N∏
q=1

(ẽrgq )mq√
mq!

|0g〉 . (8)

We arrive at Eq. (7) after obtaining the real space ground
state via exact diagonalization. Due to the exponential
numerical cost of the many-particle Fourier transform,
the maximal size we are able to reach is N = 15.

We are now prepared to calculate the momentum ES
for (1) and (2)39. Assuming N odd, we partition momen-
tum into regimes

A = {p | p ≤ N + 1

2
} ⊗ {q | q ≤ N + 1

2
} (9)

and

B = {p | p > N + 1

2
} ⊗ {q | q > N + 1

2
}. (10)



3

-
-

-

-
-

-

--

-

-
-
-

--
-

-

-

--

--

--

--
-

-
-

-

--
--
-
-

-

--

-

--

-

--
-

-

--
-

---

-

-
-
-

-
-

-

-
-

-
-

-

-

-
-

-
-

-

-
-

-
-

-

-
-

-

--
-

-

-

-

-

-

-

20 25 30 35 40
MA

4

5

6

7

8

9

10
Ξ

(a) SU(3) Haldane-Shastry Model
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(b) Uimin-Lai-Sutherland Point

FIG. 1. (color online) (a) ES of Eq. (2) and (b) ES of the ULS point for (N,NA) = (15, 6), 3 red and 3 blue particles. At the
ULS point, generic entanglement levels (blue) are separated by a finite EG from the universal entanglement levels (red). The
eigenvalues, ξ, are plotted versus the total momentum of region A. Throughout this work, ρA is normalized such that Tr ρA = 1
for each NA. The universal entanglement in (a) and (b) matches the counting of SU(3)1 WZW theory, supporting the UBEC.

Region A and B are decomposed in terms of total momen-
tum, M = MA+MB, and particle number, N = NA+NB,
which are given by

NA/B =
∑

p∈A/B

np +
∑
q∈A/B

mq, (11)

and

MA/B =
∑

p∈A/B

npp+
∑
q∈A/B

mqq. (12)

The crystal momentum is given by M c
A/B =

MA/B modN , and is always an exact quantum number of
ρA/B. In general, however, even MA/B is a good approx-
imate quantum number. For an N = 12 ground state
of (1), more than 99% of the total amplitude resides in

the M = N2

3 sector and less than 1% in all other sectors.
It is a central observation that M (and MA/B) is a good
approximate quantum number as long as the internal spin
symmetry is unbroken or only weakly broken18,21.

The ground state of (2) retains MA/B as an exact quan-
tum number. Fig. 1a displays its (N,NA) = (15, 6),
NA,r = NA,b = 3 sector of HE with spectral levels de-
noted by ξ. We observe a large degeneracy of entan-
glement levels at infinity, corresponding to eigenvalues
zero of ρA. The counting 1, 2, 5 of the ES levels from
left to right matches the state counting of two gapless
U(1) bosons until we reach a finite size limit. All prop-
erties above are understood on analytic footing: For (2),
ψHS
0 [z;w] is given by40

ψHS
0 [z;w] =

N/3∏
i<j

(zi − zj)2(wi − wj)2

·
N/3∏
i,j=1

(zi − wj)
N/3∏
i=1

ziwi. (13)

Note that one can write the ground state in terms of color
flip operators for any pair of colors (up to a minus sign)41.

By virtue of a momentum-conserving orbital squeezing
relation between Fock states of non-zero weight, Eq. (13)
has all of its weight in the sector M = N2/3. To un-
derstand this, note that (13), in its polynomial form,
is equivalent to the spin-singlet bosonic Halperin-(221)
fractional quantum Hall (FQH) state42 with filling frac-
tion ν = 2

3 . Vice versa, the bosonic Halperin-(221) state

exhibits SU(3) symmetry43. As the Halperin-(221) state
obeys certain squeezing properties44,45, so does (13). In
terms of critical theories, (2) is special in the sense that
the finite size ground state does not contain corrections
as compared to the thermodynamic field theoretical con-
tent of entanglement.

Turning to the ES at the ULS point (1) in Fig. 1b,
we observe an EG present for all MA, which separates
the non-universal components at higher ξ from uni-
versal levels which match with the entanglement levels
of (2). As one increases the system size, the relative
importance of non-universal entanglement levels would
decrease while the universal entanglement weight46 be-
comes successively dominant and stays separated from
non-universal levels through the EG. It implies that the
UBEC also holds for critical spin chains described by
SU(3)1 WZW theory.

SU(2)k=2 WZW theory.—Another way to explore the
reach of the UBEC is the extension to higher level
k > 1 Wess-Zumino terms in the field theory descrip-
tion of critical spin chains. Higher k links to multi-
critical points which in general do not represent gapless
spin fluid phases, but rather phase transition points47.
For SU(2)2 WZW theory, several model instances have
been found for spin-1 chains such as the TB spin chain,

HTB =
N∑
α=1

SαSα+1 −
N∑
α=1

(SαSα+1)2. An analytic lat-

tice realisation of SU(2)2 WZW theory has been found
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(a) Pfaffian Spin Chain
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(b) Takhtajan-Babujian Point
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(c) J1 − J3 Model

FIG. 2. (color online) (a) ES of Eq. (14), (b) ES of the TB point, and (c) ES of the J1−J3 model for (N,NA) = (12, 6). In (b)
and (c), the universal (red) and non-universal (blue) entanglement levels are separated by a finite EG. For (a)-(c), the counting
of the universal levels matches the counting of SU(2)2 WZW theory, consistent with the UBEC.

for the Pfaffian spin chain35,48,

HPf =
2π2

N2

[
N∑
α6=β

SαSβ
|ηα − ηβ |2

(14)

− 1

20

N∑
α,β,γ
α6=β,γ

(SαSβ)(SαSγ) + (SαSγ)(SαSβ)

(η̄α − η̄β)(ηα − ηγ)

]
.

The low-energy theory is described by a massless bosonic
and Majorana field consistent with c = 1 + 0.536. Nu-
merical evidence for SU(2)2 critical behaviour has been
independently found for a truncated version of (14),

HJ1-J3 =

[
N∑
α=1

SαSα+1 (15)

+
J3
J1

[
(Sα−1Sα)(SαSα+1) + h.c.

]]
,

at J3/J1 ≈ 0.11, with a central charge c = 1.549.
The singlet ground state of any spin-1 chain of length

N (N even) reads

|ψS=1
0 〉 =

∑
{z}

ψ0(z1, . . . , zN ) S̃+
z1 . . . S̃

+
zN | − 1〉N , (16)

where the sum extends over all possible configurations of
N spin-flip operators (allowing for at most two spin flips
on the same site), |−1〉N = ⊗Ni=1|szi = −1〉 is the vacuum

with all spins in the sz = −1 state, and S̃+
α = 1

2 (Szα +

1)S+
α is a renormalized spin flip operator50. They are

the natural choice to unify a Pfaffian polynomial of spin
flip coordinates with the singlet property of the resulting
wave function, such that the ground state of (14) yields

ψPf
0 (z1, . . . , zN ) = Pf

(
1

zi − zj

) N∏
i<j

(zi − zj)
N∏
i=1

zi, (17)

where Pf(1/zi − zj) = A[(1/(z1 − z2) . . . 1/(zN−1 − zN )].
An alternative construction of (17) is given by the

symmetrization over two S=1/2 Haldane-Shastry chain
states50,51. We Fourier transform the spin-flip operators
as

S+
α =

1√
N

N∑
q=1

η̄qα S̃
+
q , S̃+

q =
1√
N

N∑
α=1

ηqα S
+
α . (18)

Substituting (18) into (16), we find

|ψS=1
0 〉 =

∑
{q}

ψ̃0(q1, . . . , qN ) S̃+
q1 . . . S̃

+
qN |−1〉N , (19)

ψ̃0(q1, . . . , qN ) =
∑
{z}

ψ0(z1, . . . , zN ) z̄ q11 . . . z̄ qNN . (20)

From the Fourier transformed ground state, we obtain
the momentum-space ES. We partition our system in two
regions, A and B, by dividing the momentum-space oc-
cupation basis as A = {q | q < N

2 } and B = {q | q > N
2 }.

Each region is decomposed in terms of number of par-

ticles N = NA + NB =
∑N
q=1 nq and total momentum

M = MA + MB =
∑N
q=1 nqq, where nq denotes the oc-

cupation number of a given momentum q. As previously
seen for the SU(3) case, M c = M mod N is an exact
quantum number, while M in general is not. By virtue
of being a squeezing state, however, (17) has all of its
weight in the sector M = N2/2. Similarly, it turns out
that M = N2/2 is the strongly preferred sector for the
TB model and the J1−J3 model as well, rendering MA a
good approximate quantum number. (For instance, the
N = 10 TB ground state has 94% of its total weight in
the M = 50 sector.)

Fig. 2a depicts the (N,NA) = (12, 6) ES of (17) in
comparison to the ES of the TB and J1-J3 ground state
in Fig. 2b and Fig. 2c, respectively. For all ES, we ob-
serve a matching of universal levels which corresponds to
counting 1, 1, 3, . . . of the low-lying entanglement levels
from left to right. This corresponds to the energy levels
of a boson and a Majorana fermion with anti-periodic
boundary conditions52. For NA = 7 (not shown), the ob-
served counting is 1, 2, 4, . . . , and as such also consistent
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with the previous finding53. In contrast, Fig. 2a shows
no non-universal entanglement weight beyond the univer-
sal levels, i.e., an extensive number of zero modes in ρA.
This is due to the monomial equivalence between (17) and
the bosonic Moore-Read state54. Fig. 2b and Fig. 2c ex-
hibit different non-universal entanglement weight, which
is again separated from the universal weight by an EG, in
agreement with the UBEC. Note that in analytically un-
resolved cases such as the model J3/J1 ≈ 0.11 in HJ1−J3 ,
the momentum entanglement fingerprint provides a par-
ticularly elegant tool to identify the critical theory.

The momentum-space ES also has some advantages
over (bipartite) real-space entanglement measures used
to identify CFTs. The real-space entanglement entropy
( c3 lnL in a CFT55) of (14), computed using the den-
sity matrix renormalization group algorithm, predicts
c = 1.46(2)36. While consistent with c = 3

2 , our method
confirms c exactly using only small system sizes. The
real-space ES reveals c through the distribution of en-
tanglement levels14 and can be identified as a boundary
CFT15. Still, as a tool for identifying c, it is limited by
finite size effects56.

Conclusions and Outlook.—At the example of critical
spin-1 chains, we have provided evidence that the univer-
sal bulk entanglement conjecture for critical spin chains
generically holds for SU(N)k Wess-Zumino-Witten theo-

ries. As a concrete example, one would expect to see an
EG in the momentum-space ES (upon Fourier transform-
ing the correct quantum operator) for SU(N)1 Heisen-
berg models, which were constructed in Refs.57,58, and
their generalization to higher k59,60. It would also be in-
teresting to investigate the anisotropic generalization of
the TB point with the momentum-space ES61. From a
broader perspective, our work highlights that entangle-
ment spectra do not only provide universal fingerprints
for topological phases, but also for critical systems.
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52 M. Milovanović and N. Read, Phys. Rev. B 53, 13559
(1996).

53 The finite effects in the ES counting as well as the perspec-
tive from root partition monomials in momentum space
show that the (N,NA) = (12, 6) sector corresponds to the
1 branch and the (N,NA) = (12, 7) sector to the Ψ branch.
The σ branch is resolved by the ES analysis related to the
ground state of (14) for N odd36.

54 G. Moore and N. Read, Nuclear Physics B 360, 362
(1991).

55 P. Calabrese and J. Cardy, Journal of Statistical Mechan-
ics: Theory and Experiment 2004, P06002 (2004).

56 More specifically, the continuum limit of the distribution
of entanglement levels is only approached for system sizes
of 1000 or more14 and the width of this boundary CFT
scales as lnL indicating this method is limited to large
system sizes15.

57 N. Andrei and H. Johannesson, Physics Letters A 104, 370
(1984).

58 H. Johannesson, Nucl. Phys. B270, 235 (1986).
59 F. C. Alcaraz and M. J. Martins, Journal of Physics A:

Mathematical and General 23, L1079 (1990).
60 M. J. Martins, Phys. Rev. Lett. 65, 2091 (1990).
61 H. Johannesson, Journal of Physics A: Mathematical and

General 21, L1157 (1988).
62 B. A. Bernevig and F. D. M. Haldane, Phys. Rev. Lett.

100, 246802 (2008).

http://dx.doi.org/10.1103/PhysRevB.85.195149
http://dx.doi.org/ 10.1103/PhysRevB.92.075128
http://dx.doi.org/10.1103/PhysRevB.73.235105
http://dx.doi.org/10.1103/PhysRevB.73.235105
http://dx.doi.org/10.1103/PhysRevB.75.024405
http://dx.doi.org/10.1103/PhysRevB.75.024405
http://dx.doi.org/10.1103/PhysRevLett.82.5096
http://dx.doi.org/10.1103/PhysRevLett.82.5096
http://dx.doi.org/10.1103/PhysRevB.84.205134
http://dx.doi.org/10.1103/PhysRevB.84.205134
http://dx.doi.org/10.1103/PhysRevB.84.045127
http://dx.doi.org/10.1103/PhysRevB.36.5291
http://dx.doi.org/10.1103/PhysRevB.36.5291
http://stacks.iop.org/1742-5468/2011/i=11/a=P11014
http://stacks.iop.org/1742-5468/2011/i=11/a=P11014
http://stacks.iop.org/1742-5468/2011/i=11/a=P11014
http://dx.doi.org/ 10.1103/PhysRevLett.108.127202
http://dx.doi.org/10.1103/PhysRevLett.102.207203
http://dx.doi.org/10.1103/PhysRevLett.102.207203
http://dx.doi.org/10.1103/PhysRevB.84.140404
http://dx.doi.org/10.1103/PhysRevB.84.140404
http://dx.doi.org/ 10.1103/PhysRevB.53.13559
http://dx.doi.org/ 10.1103/PhysRevB.53.13559
http://dx.doi.org/http://dx.doi.org/10.1016/0550-3213(91)90407-O
http://dx.doi.org/http://dx.doi.org/10.1016/0550-3213(91)90407-O
http://stacks.iop.org/1742-5468/2004/i=06/a=P06002
http://stacks.iop.org/1742-5468/2004/i=06/a=P06002
http://dx.doi.org/ http://dx.doi.org/10.1016/0375-9601(84)90819-3
http://dx.doi.org/ http://dx.doi.org/10.1016/0375-9601(84)90819-3
http://dx.doi.org/10.1016/0550-3213(86)90554-7
http://stacks.iop.org/0305-4470/23/i=21/a=002
http://stacks.iop.org/0305-4470/23/i=21/a=002
http://dx.doi.org/10.1103/PhysRevLett.65.2091
http://stacks.iop.org/0305-4470/21/i=23/a=010
http://stacks.iop.org/0305-4470/21/i=23/a=010
http://dx.doi.org/10.1103/PhysRevLett.100.246802
http://dx.doi.org/10.1103/PhysRevLett.100.246802

	Universal entanglement spectra in critical spin chains
	Abstract
	References


