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A new cumulant-based GW approximation for the retarded one-particle Green’s function is proposed, mo-

tivated by an exact relation between the improper Dyson self-energy and the cumulant generating function.

Qualitative aspects of this method are explored within a simple one-electron independent phonon model, where

it is seen that the method preserves the energy moment of the spectral weight while also reproducing the ex-

act Green’s function in the weak coupling limit. For the three-dimensional electron gas, this method predicts

multiple satellites at the bottom of the band, albeit with inaccurate peak spacing. However, its quasiparticle

properties and correlation energies are more accurate than both previous cumulant methods and standard G0W0.

Our results point to new features that may be exploited within the framework of cumulant-based methods and

suggest promising directions for future exploration and improvements of cumulant-based GW approaches.

I. INTRODUCTION

The development of methods that can accurately and af-

fordably describe both the total electronic energy and the elec-

tronic excitations of complex systems remains a long-standing

challenge in both condensed matter physics and chemistry.

Substantial progress has been made in recent decades on the

development of approximate approaches to calculate correla-

tion contributions that go beyond the Hartree-Fock level of

mean-field theory. While density functional theory (DFT), in-

cluding its extensions to hybrid functionals, has emerged as

an accurate and efficient means of calculating many proper-

ties of both solids and molecules, systematic improvement

of DFT is challenging [1]. In particular, while the Kohn-

Sham eigenvalues in the theory often give a surprisingly use-

ful band structure, there are fundamental differences with re-

spect to properly calculated excitation energies [1, 2]. More

broadly, considering the proliferation of a myriad of approxi-

mate exchange-correlation functionals, care must be taken in

applications to assess empirical evidence of the accuracy for

specific classes of materials.

Separate from DFT, direct many-body methods based on

wavefunctions have achieved impressive accuracy, exempli-

fied by coupled-cluster methods for finite systems [3] and

quantum Monte Carlo (QMC) methods for extended sys-

tems [4]. These approaches are very challenging numerically

due to unfavorable scaling with system size (or complexity),

but are often regarded as a "gold standard" when they can be

applied. They are also typically more difficult to apply to ex-

cited state properties with the same accuracy. Nonetheless,

recent progress is encouraging for more widespread applica-

tion to solids [5–7].

On the other hand, Green’s function-based perturbation

expansions by their very nature describe spectral features

and quasiparticle properties of extended systems in a size-

consistent manner [8]. In particular, the development of

the GW approximation for application to the one-particle

Green’s function [9] led to the first predictive calculations of

charged excitation energies in real materials [10–13]. The

extension to the Bethe-Salpeter equation for the two-particle

Green’s function has correspondingly supported calculation

of the neutral excitations, such as those probed in optical ab-

sorption [2]. The development of systematic corrections be-

yond GW, including approximations to the vertex corrections

and the use of self-consistency, remains a subject of ongo-

ing research [14–21]. Interestingly, the corresponding Green’s

function based method for the total electronic energy has not

been widely used, although several formulations have been

investigated [16, 22, 23].

The homogeneous electron gas model in three dimensions

(3D), capturing essential features of the electronic structure

of simple metals, has been widely used as a model system.

Results based on G0W0 (the non-self-consistent first iteration

of the GW approximation) show very reasonable quasipar-

ticle properties, but a satellite structure ("plasmaron peak")

about 1.5ωp below the quasiparticle peaks (ωp being the

plasma energy) [24]. This is a surprising result since stan-

dard coupled electron-boson models would suggest a series

of satellite peaks near integer multiples of ωp [25] below the

quasiparticle peaks. Calculations in which G was iterated to

self-consistency, conceptually part of Hedin’s original frame-

work [9], indicated further unphysical changes in the satellite

region [14, 15]. Interestingly, self-consistent GW gave rea-

sonable correlation energies, but it was suggested that vertex

corrections were needed in addition to restore physical spec-

tral properties [22].

The difficulty of describing satellite structures in the spec-

tral function strongly suggests a cumulant-based approach to

approximately include vertex corrections [26]. This idea has

been extensively explored with a time-ordered formulation of

G [20, 27–32], and has been successful in describing the

satellite structure in metals and semiconductors [33–37].

The approach restores the expected satellite progression and

modifies the quasiparticle properties quantitatively. In part,

the exponential form imposed by the cumulant ansatz leads

to the inclusion of higher-order exchange-like diagrams that

are only accessible in the standard GW formalism by way

of vertex corrections. However, these higher-order diagrams

do not correspond exactly to standard diagrams in the time-

ordered Dyson expansion. More generally, the cumulant ap-

proach has not yet reached the formal level of sophistication

that is afforded by the standard diagrammatic apparatus that
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surrounds the Dyson equation. In particular, aspects related to

self-consistency, conservation laws, and the one-to-one corre-

spondence of terms within the cumulant expansion to standard

Feynman-Dyson diagrammatics require further investigation.

The time-ordered cumulant approach is limited by the seri-

ous drawback that it precludes the possibility of positive spec-

tral weight both above and below the chemical potential. Re-

cently, Kas et al. showed that the retarded Green’s function

is a more natural quantity to employ with the cumulant for-

malism, as it allows for the description of both particles and

holes within one spectral weight profile [38]. Compared with

standard G0W0 [24], the retarded cumulant approach predicts

more physical satellite properties, similar energies, but some-

what less accurate wavevector-dependent occupation numbers

for the 3D electron gas. In this work, we take this retarded

Green’s function perspective as a starting point to investigate

and compare new cumulant-based GW schemes.

II. METHODOLOGY

The many-body perturbation expansion for the one-particle

Green’s function can be resummed via the Dyson equation,

Gk(ω) = G0
k(ω) +G0

k(ω)ΣI
k(ω)G0

k(ω),

= G0
k(ω)[1 + ΣI

k(ω)G0
k(ω)] (1a)

=
G0

k
(ω)

1 − Σ∗
k
(ω)G0

k
(ω)
, (1b)

where G0
k
(ω) is the non-interacting Green’s function, Σ∗

k
(ω)

is the proper self-energy, and ΣI
k
(ω) is the improper self-

energy [8]. In the non-self-consistent GW approximation

(henceforth referred to as G0W0), Σ∗
k
(ω) is truncated at first

order, and the random phase approximation (RPA) Wk(ω) is

used in place of the bare Coulomb interaction vk [8]:

Σ∗k(ω) =
i

~

1

(2π)4

∫

d3qdω′Gk(ω)Wk−q(ω − ω′) (2a)

Wk(ω) =
vk

1 − Πk(ω)vk

(2b)

Πk(ω) =
i

~

1

(2π)4

∫

d3qdω′Gq(ω)Gk+q(ω − ω′). (2c)

The retarded cumulant ansatz is a resummation of Eqs. (1).

It can be written as [38]

GR
k (t, T ) = G

0,R

k
(t, T )eCR

k
(t,T ), (3)

where Ck(t, T ) is the time-local cumulant function and the ‘R’

superscripts denote retarded quantities.

When considered with Eq. 1a, the cumulant ansatz for the

retarded one-particle Green’s function leads to a simple closed

and exact relation between the improper Dyson self-energy

and the cumulant generating function:

Ck(t, t′) = ln

(

1 +
[

GR,0

k
(t, t′)

]−1
"

dt1dt2×

∫

GR,0

k
(t, t1)ΣR,I

k
(t1, t2)GR,0

k
(t2, t

′)

)

. (4)

For simplicity, the expressions are written for the electron gas

model. While it is clear that Eq. 4 trivially reduces to the stan-

dard Dyson equation, it should be noted that such a simple

direct and exact relationship between the retarded cumulant

and improper retarded Dyson self-energy has, to the best

of our knowledge, not been noted before. Such a relation

is only possible when retarded quantities and the improper

as opposed to the proper self-energy are used. This relation

implies new cumulant-like approximations distinct from ear-

lier formulations. For example, the lowest order expansion of

the logarithm in conjunction with a retarded, improper self-

energy calculated using the normal first-order GW diagrams

yields

Ck(t, t′) =
[

GR,0

k
(t, t′)

]−1
×"

dt1dt2GR,0

k
(t, t1)ΣR,I

GW,k
(t1, t2)GR,0

k
(t2, t

′).(5)

This equation for the cumulant (henceforth referred to as

G0W0 with improper retarded cumulant, or G0W0 IRC) is su-

perficially nearly identical to the cumulant approach of Kas

et al. (G0W0 proper retarded cumulant, or G0W0 PRC) [38],

except that the improper self-energy is used in place of the

proper self-energy. To calculate the Green’s function within

one of these two cumulant schemes, then, a proper or im-

proper retarded self-energy is first computed as in the G0W0

scheme. Then the self-energy is inserted into the following

Fourier- transformed version of Eq. (5) to find the cumulant:

Ck(t) ≡ Ck(t0, t0 + t)

=

∫

dω
1

π

|ImΣR
k
(ω + ǫk)|

ω2
(e−iωt + iωt − 1). (6)

Finally, the spectral weight for the Green’s function is ob-

tained by taking a Fourier transform of Eq. (3) [38].

Unlike standard G0W0 and G0W0 PRC, the cumulant ap-

proach outlined above no longer sums diagrams in order of

the number of interactions, and is thus not perturbative in the

interaction coupling. Instead, the first cumulant in Eq. 5 con-

tains diagrams of all orders of the interaction. We emphasize

that this fact renders the approach neither more or less accu-

rate than the more standard G0W0 and G0W0 PRC approxima-

tions. Regardless, the simplicity of the cumulant formalism

as outlined above does lead to important properties such as

positive and normalized spectral weight [38].

III. RESULTS

To gain a first understanding of the implications of the

G0W0 IRC approximation, we apply it to the study of a system
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of independent phonons coupled to a single electronic state:

H =
∑

k

ωkb
†

k
bk + c†c















ǫc +
∑

k

λk(b
†

k
+ bk)















, (7)

where bk, b
†

k
are the annihilation and creation operators for

the phonon states, c, c† are those of the electronic state, and

ǫc, λk are the excited state electronic energy and the phonon

coupling, respectively. We utilize an Einstein spectral density,

J(ω) = gδ(ω − ωc). This is crudely reminiscent of the plas-

mon spectral density in the 3D electron gas. This model has

been used previously previously in the analysis of interaction

effects for core-holes [39] and to develop models for valence

band spectral functions [22].

For this model Hamiltonian in which the interaction propa-

gator W has been replaced by its phonon propagator analogue

D, the G0D0 PRC approach gives the exact result for the spec-

tral weight [25]. In this regard our goal is not to compare with

the standard cumulant approach, which will of course in this

model yield “better” results, but to gain an intuition for the ex-

pected spectral features produced by the IRC method as well

as to see which features of the approach are likely to be well

described.

The dynamical part of the proper Dyson self-energy

within this model is

Σ∗(ω) =
i

2π

∫ ∞

−∞

dω′gω2
cG0(ω − ω′; ǫc)D0(ω′;ωc)

=
i

2π

∫ ∞

−∞

dω′gω2
c

1

ω − ω′ − ǫc + iδ
×

(

1

ω′ − ωc + iδ
−

1

ω′ + ωc − iδ

)

=
gω2

c

ω − ωc − ǫc + iδ
, (8a)

|Im Σ∗(ω)| = πgω2
cδ(ω − (ωc + ǫc)). (8b)

The frequency integration was done by closing the contour

in the lower imaginary half-plane. The exact and approx-

imate spectral functions are then evaluated as outlined in

the previous section; the improper self-energy is described

by

|Im ΣI (ω)| = πg(1 + g)ω2
cδ(ω − ωc(1 + g) − ǫc), (9)

and the exact and approximate results are

APRC(ω) = e−g

∞
∑

l=0

gl

l!
δ(ω − ǫc + gω0 − ω0l), (10)

AG0 D0
(ω) =

1

1 + g
δ(ω − ǫc + gω0) +

g

1 + g
δ(ω − ǫc − ω0),(11)

AIRC(ω) = e−g/(1+g)

∞
∑

l=0

1

l!

(

g

1 + g

)l

×

δ(ω − ǫc + gω0 − ω0(1 + g)), (12)
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FIG. 1. A comparison of three distinct GW schemes. (a,c) The spec-

tral weight for the 3D electron gas with rs = 4.0. (b,d) The absolute

value of the imaginary part of the proper self-energy, solved using

Dyson’s equation, corresponding to the spectral weights in (a) and

(c).

respectively. The exact solution describes a sequence of peaks

separated by multiples of ω0 in energy. The basic G0D0

(Dyson) approximation predicts just two peaks, a quasiparti-

cle peak and a satellite peak separated by ω0(1+ g), while the

G0D0 IRC formulation predicts an infinite series of peaks sep-

arated by ω0(1 + g). The G0D0 IRC spectrum inherits the un-

physical spacing from the G0D0 improper self-energy, which

becomes correct only in the weak coupling (g≪ 1) limit. It is

easy to check that all three methods give normalized spectral

weights with an identical first moment

〈
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cc†















ǫc +
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λk(b
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k
+ bk)
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∣

∣

〉

=

∫

ωA(ω)dω

= ǫc, (13)

where |〉 represents the direct product of the ground electronic

state and all ground phonon states. The G0D0 IRC spectrum,

although inaccurate in its peak spacing, still encodes the cor-

rect first energy moment. Thus, the IRC approach appears,
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FIG. 2. Band structure for various GW schemes at rs = 4. Note

that the G0W0 IRC contains multiple satellites, similar to the G0W0

PRC case, but with a spacing that mimics the incorrect position of

the G0W0 plasmaron peak.

within this simple toy model, to embody a compromise be-

tween the standard cumulant and self-energy GW approaches.

Furthermore, it appears not to corrupt some important aspects

of the problem, such as the existence of multiple satellites and

the value of the “correlation” energy.

The electron gas problem provides a more stringent and in-

formative grounds of comparison for the different approxima-

tion schemes because no known method, including the G0W0

PRC scheme, is exact. Although the electron gas Hamiltonian

differs significantly from the form of Eq. 7, many of the ob-

servations made earlier about the three approximations to the

Green’s function should still apply. In Fig. 1a,c, we present

the spectral weight

Ak(ω) = −
1

π
ImGR

k (ω) (14)

n
(k

)

G0W0 IRC
QMC
G0W0

G0W0 PRC

0.7

0.8

0.9

1

k/kF

0.0

0.1

0.2

0.6 0.8 1.0 1.2 1.4

FIG. 3. The k−dependent occupation number n(k) for all three ap-

proximation schemes at rs = 4.0, plotted against the “exact” QMC

result [40, 41].

for the 3D electron gas at density rs = 4.0 both at the Fermi

energy and at the bottom of the band. The spectral weight

for the Dyson GW self-energy is plotted for the same cases

in Fig. 1b,d. The full band structure is reported for all three

calculation schemes in Fig. 2.

Both cumulant schemes improve the qualitative description

of the satellite region at low k: whereas the G0W0 scheme

predicts just one satellite at an energy 1.5ωp below the quasi-

particle (QP) peak, both cumulant schemes predict a series of

evenly-spaced satellites with decreasing weights. The G0W0

PRC scheme predicts that these satellite peaks are separated

by approximately the plasmon energy ωp, whereas the G0W0

IRC scheme inherits the (presumably unphysical) ∼1.5ωp

spacing from the G0W0 calculation, exactly as it did in the

electron-phonon model explored earlier. At and above the

Fermi wavevector kF , the G0W0 IRC results are much more

similar to the G0W0 results as compared to those from the

G0W0 PRC. Overall, the G0W0 IRC scheme interpolates be-

tween the rounded spectral behavior of G0W0 at larger k and

the multiple satellite peak behavior of G0W0 PRC at lower k.

In addition to the spacing of satellite peaks, another unphys-

ical feature of the IRC approach is the appearance of spurious

sharp quasiparticle resonances which are most apparent in the

unoccupied portion of the spectral function. These features

can be easily removed in a manner that hardly affects Ak(ω)

for k ≤ kF , n(k), or ǫcorr/N (the latter two of which are dis-

cussed nex). The origin of these features and the means for

their removal are discussed in the Appendix.

While the results for the 3D electron gas in the high fre-

quency satellite wing suggest that the G0W0 PRC is most ac-

curate in this spectral region, these results shed little light on

other properties, to which we now turn. We present in Fig. 3

the wavevector-dependent occupation number

nk =

∫ µ

−∞

Ak(ω)dω. (15)

The G0W0 IRC scheme performs similarly to G0W0, erring on

the opposite side of the “exact” quantum Monte Carlo (QMC)

data [40, 41]. Notably, the G0W0 IRC occupation numbers

match the QMC results almost exactly for k < 0.9kF and k >

1.1kF; although the scheme suffers from unphysical satellite

peak spacing at small k, it inherits rather accurate occupation

numbers from G0W0. The G0W0 PRC occupation numbers are

not as accurate, and yield a QP renormalization factor which

is too small.

The accuracy of the occupation numbers in the G0W0 IRC

approximation can be explained using the self-energy spectra

in Fig. 1b,d. The most significant dependence of the momenta

are on the weight of the main QP peak, which is determined by

the slope of the real part of the self-energy. Since the real and

imaginary parts of the self-energy are related by a Kramers-

Kronig transform, the slope of the real part of the self-energy

depends most strongly on the weight and positions of the

peaks in the self-energy spectrum closest to ω ≃ ǫk. Since

the G0W0 IRC self-energy spectrum peaks are more similar

to the G0W0 ones, one would expect the G0W0 IRC momen-

tum distribution near k = kF to more closely resemble that of

G0W0. In particular, the increased QP renormalization factor
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rs G0W0 G0W0 PRC G0W0 IRC QMC

1 −0.0742 −0.0688 −0.0642 −0.0600

2 −0.0542 −0.0516 −0.0467 −0.0448

3 −0.0436 −0.0411 −0.0368 −0.0369

4 −0.0375 −0.0350 −0.0310 −0.0318

5 −0.0329 −0.0304 −0.0267 −0.0281

TABLE I. Correlation energies of the 3D electron gas per parti-

cle ǫcorr/N in Hartrees for various GW schemes and rs values [42].

QMC values are obtained from Vosco et al’s parameterization [43]

of Ceperley and Alder’s fixed-node diffusion Monte Carlo data [44].

ǫ c
o

rr
/N

rs

G0W0

G0W0 PRC
G0W0 IRC
QMC

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

1 2 3 4 5

FIG. 4. Correlation energies of the 3D electron gas per particle

ǫcorr/N for various GW schemes and rs values compared with the

“exact” QMC result. Exact values are reported in Table I.

with respect to the G0W0 approximation is explained by the

slightly smaller peaks in the G0W0 IRC self-energy spectrum

at k = kF .

Finally, total energies may be calculated from Ak(ω) using

the Galitskii-Migdal formula

ǫ =
∑

k

∫ µ

−∞

(ω + ǫk)Ak(ω)dω, (16)

where ǫk = k2/2 is the free-electron energy dispersion. The

correlation energy per particle is calculated using ǫcorr =

(ǫ − ǫHF)/N, where ǫHF is the Hartree-Fock energy. For the

cumulant schemes, µ is determined by enforcing the total par-

ticle number. These energies are reported in Table I and plot-

ted in Fig. 4. For reference, the results from fixed-node diffu-

sion Monte Carlo calculations of Ceperley and Alder [44] are

shown based on the parameterization by Vosko and cowork-

ers [43]. The G0W0 IRC scheme yields significantly more

accurate correlation energies as compared to earlier schemes

over this important range of rs values.

IV. CONCLUSION

In this work, we motivate the use of the improper re-

tarded self energy in the cumulant generating function us-

ing Dyson’s equation. Non-self-consistent calculations of

the spectral weight show that the improper retarded cumu-

lant (IRC) scheme predicts a series of multiple satellite bands

with a larger-than-expected spacing at the bottom of the band.

However, compared to the G0W0 PRC scheme, which pre-

dicts a series of satellite bands with a more physical ωp spac-

ing, the IRC scheme yields noticeably improved occupation

numbers and correlation energies. This is promising in the

ongoing research directed to unified, efficient approaches for

both total electronic energy and excitation energies. Further

work should be done to investigate other aspects related to

the retarded cumulant-based GW approaches discussed here,

including self-consistency and the influence of higher-order

cumulants.

Note added – Following the submission of this work, sev-

eral related studies have appeared [45–47]. The spectral

weights reported in these works for the electron gas model

in the G0W0 PRC approximation are identical to the ones

presented here.
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APPENDIX: SPURIOUS SHARP QUASIPARTICLE

RESONANCES AT k > kF

The standard description of the cumulant function requires

the evaluation of

Ck(t) =
1

π

∫

dω
|ImΣ(ω + ǫk)|

ω2
(e−iωt + iωt − 1), (17)

which for the IRC demands that the integrand is constructed

with ImΣI,R(ω+ ǫk). It should be noted, however, that the geo-

metric sequence that is the improper self-energy is ill-defined

when evaluated precisely on the energy shell since G0
k
(ǫk) is

divergent there. This divergence implies ImΣI,R(ǫk) = 0, re-

sulting in a sharp quasiparticle-like feature in Ak(ω) superim-

posed on a smooth continuum. This feature is most apparent

for k > kF , as can be seen in Fig. 5a. Note that the smooth

continuum behavior is much like that of the standard G0W0

spectral function.

This feature may be removed in a variety of ways that pre-

serve all of the conclusions reached in the main text. For

example, if the cumulant function Ck(t) is defined such that

the evaluation of ImΣk(ω + ǫ
G0W0

k
) is used as opposed to

ImΣk(ω + ǫk), then no spurious resonance appears. In addi-

tion, Ak(ω) for k ≤ kF , n(k), and ǫcorr/N are essentially un-

changed. The same outcome occurs if the frequency of G0
k
(ω)

within ΣI,R

k
(ω) is given an imaginary part equal to Σ∗

k
(ǫ

G0W0

k
),
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FIG. 5. Band structure for various GW schemes at rs = 4 and k =

3kF . The sharp quasiparticle resonance predicted by G0W0 IRC is

broadened by the bIRC and rIRC schemes.

rs G0W0 IRC G0W0 bIRC G0W0 rIRC QMC

1 −0.0642 −0.0643 −0.0600

2 −0.0467 −0.0467 −0.0448

3 −0.0368 −0.0363 −0.0369

4 −0.0310 −0.0304 −0.0308 −0.0318

5 −0.0267 −0.0260 −0.0281

TABLE II. Correlation energies of the 3D electron gas per particle

ǫcorr/N in Hartrees for the broadened IRC (bIRC) and the renormal-

ized IRC (rIRC) schemes.

the quasiparticle lifetime associated with a standard G0W0 cal-

culation.

These distinct regularization procedures do however alter

the shape of Ak(ω) for k > kF as shown in Fig. 5b. Table II

shows the robustness of the correlation energies for the differ-

ent schemes; we do not replot Ak(ω) for k ≤ kF or n(k) be-

cause they are essentially unaltered from Figs. 1,2,3. Overall,

we find that the most important features of the IRC approach

are basically unmodified under the removal of these spurious

resonances.
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