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We design from first principles a new type of two-dimensional metal-organic frameworks (MOFs)
using phenalenyl-based ligands to exhibit a half-filled flat band of the kagome lattice, which is one of
the lattice family that shows Lieb-Mielke-Tasaki’s flat-band ferromagnetism. Among various MOFs,
we find that trans-Au-THTAP(trihydroxytriaminophenalenyl) has such an ideal band structure,
where the Fermi energy is adjusted right at the flat band due to unpaired electrons of radical
phenalenyl. The spin-orbit coupling opens a band gap giving a non-zero Chern number to the
nearly flat band, as confirmed by the presence of the edge states in first-principles calculations and
by fitting to the tight-binding model. This is a novel and realistic example of a system in which a
nearly flat band is both ferromagnetic and topologically non-trivial.

PACS numbers: 71.15.-m, 73.43.Cd, 73.61.Ph, 75.70.Ak

Introduction. — The exploration and discovery of new
strongly-correlated or topologically non-trivial materials
drive much of modern condensed-matter physics, yet an
experimental design of such materials is still challenging.
One class of materials that could greatly extend possibil-
ities of material designing is, in our view, metal-organic
frameworks (MOFs). These are crystalline materials
composed of metal ions and bridging organic molecules,
which have been the subject of numerous investigations
in inorganic and materials chemistry [1]. Owing to their
typically trivial and localized electronic states, MOFs
have not attracted much attentions from condensed-
matter physicists. However, recent experimental suc-
cess in fabricating atomically layered two-dimensional
(2D) MOFs with kagome lattice structures, initiated by
the Nishihara group [2–5], is bridging the gap between
condensed-matter physics and chemistry. The Dincă
group also succeeded in creating 2DMOFs [6, 7]. (Similar
2D MOFs have been fabricated by other groups [8–11].)
Some of these new 2D MOFs have been theoretically pro-
posed to become organic Z2 topological insulators [12–17]
or half-metallic ferromagnets [18–21].

The kagome lattice has a virtue of its electronic struc-
ture exhibiting a flat band at the highest (or lowest) en-
ergy. It has been proven that the tight-binding Hubbard
model on the kagome lattice has a non-trivial ground
state (far different from the atomic limit) showing itiner-
ant ferromagnetism at arbitrary on-site Coulomb repul-
sion U > 0 when the flat band is half-filled [22]. While
several classes of lattices are known to show the flat-
band ferromagnetism, as proposed by Lieb, Mielke and
Tasaki [23–26], the kagome lattice has an advantage that
it is a realistic structure from a synthetic point of view,
and does not require fine tuning for hopping parameters

to accommodate a flat band [27]. When spin-orbit cou-
pling (SOC) is introduced, the energy gap opens between
neighboring bands, and the flat band becomes topologi-
cally non-trivial with a nonzero Chern number [28]. Al-
though experimental results on a topological insulator in
the bosonic system of the kagome lattice are known [29],
the fermionic electron system is more useful for possible
applications in electronics and spintronics. It has been
discussed that if the nearly flat band with a non-zero
Chern number is fractionally filled and is well separated
from other bands, the system could be a fractional Chern
insulator [28, 30, 31].

So far, it has been difficult to realize a partially filled
flat band in a 2D kagome lattice (i.e., one where the
Fermi energy is adjusted to the flat band). Whereas some
quasi-one-dimensional (quasi-1D) inorganic systems [32–
34] and a quasi-1D organic doped molecular system [35]
have been proposed as possible candidates for nearly flat-
band ferromagnetism, there is no experimental realiza-
tion in 2D crystalline systems, as originally proposed by
Lieb, Mielke, and Tasaki. Theoretically, Liu et al. [36]
proposed that an In-based 2D organic nanosheet could
possess a topologically non-trivial flat band near the
Fermi energy; however, this material still needs addi-
tional hole doping to be ferromagnetic. Moreover, it may
be difficult to experimentally realize such a 2D structure
because the highly covalent bond between indium and
carbon would not lead to the formation of crystalline ma-
terials.

In this Rapid Communication, we propose new 2D
MOFs with kagome structures from first principles,
where we can show that the flat band of a kagome lattice
is indeed expected to be half-filled with the appropri-
ate choice of organic ligand. The essential idea is to use
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an organic neutral radical called phenalenyl as a building
block. In the absence of such an organic radical, hole dop-
ing would be necessary as described previously [36, 37].
Based on first-principles electronic structure calculations,
we discuss that the proposed phenalenyl-based 2D MOF
becomes ferromagnetic with the flat band having a non-
zero Chern number if SOC is taken into account.

New 2D Metal-Organic Frameworks. — We em-
ploy phenalenyl-based ligands [see Z = C• in Fig. 1(a),
where • represents an unpaired electron]. Owing to
their triangular shape, these exhibit the appropriate
symmetry to create kagome structures. These ligands
are envisaged to be connected with a transition metal
(M = Ni,Cu,Pt,Au), where X and Y (= O, S,NH) coor-
dinate [see Fig. 1(b)]. If M is a spin-1/2 metal (Cu2+ or
Au2+ in this case), there is one unpaired electron per or-
bital on each kagome site [38]. An important advantage
of a phenalenyl-based ligand is that we can automatically
adjust the Fermi energy from the brown dashed line in
Fig. 1(c) to the desired position. This can result in half-
filling of the flat band of the kagome lattice by transfer-
ring two unpaired electrons per unit cell to M due to the
neutral stable radical resonance structure of phenalenyl
[see the arrow in Fig. 1(c)]. In the absence of this radi-
cal (such as when Z = N), electron or hole doping would
be necessary, as described previously [16, 36, 37]. The
structure of trans-Au3(THTAP)2 (trans-Au-THTAP,
THTAP = trihydroxytriaminophenalenyl) [39] with
M = Au, X = NH, Y = O is shown in Fig. 1(d). Its
whole real-space structure and its unit cell (solid line)
are illustrated in Fig. 1(e), with Au atoms occupying
each vertex of the kagome lattice.

Electronic Structures From First Principles. — The
above expectations to realize a half-filled flat band
were confirmed from a first-principles electronic struc-
ture analysis. To this end, we used the first-principles
electronic state calculation code called openmx [40],
based on density functional theory (DFT). With a re-
peated slab construction [41], we first calculated possi-
ble phenalenyl-based MOFs with M = Cu, Au as spin-
1/2 ions. In order to conserve a parity symmetry and
break other symmetries to lift the degeneracy, we pre-
ferred X 6= Y and a trans-structure [14] [42]. Then,
we found that compounds with M = Cu tend to have
a bended band, so we focused on M = Au. Finally, we
found that all three remaining candidates (with M = Au
and (X, Y) = (O, S), (S, NH), (NH, O)) have a nearly
flat band exactly lying on the Fermi energy [43]. Among
these, trans-Au-THTAP [(X,Y)=(NH, O)] has the opti-
mal band structure in the sense that its band structure is
accurately matched to that obtained from a tight-binding
model on the kagome lattice around the Fermi energy.

trans-Au-THTAP. — After geometric optimization,
trans-Au-THTAP was revealed to favor a planar struc-
ture [44] with an optimized lattice constant of 16.91 Å.
The band structure calculated without SOC is shown in

FIG. 1. (Color online) (a) Molecular structure of the
phenalenyl-based ligand (Z = C•

,N; X′
,Y′ = OH,SH,NH2).

(b) Structure of the unit cell (solid line) of the proposed MOFs
(M = Ni,Cu,Pt,Au; X,Y = O,S,NH). (c) Band structure
of the single-orbital tight-binding model for the kagome lat-
tice with a nearest-neighbor hopping parameter t. The brown
dashed line shows the Fermi energy when there is one elec-
tron per each orbital, while the arrow indicates that the flat
band becomes half-filled when two unpaired electrons are
transferred from radical phenalenyl. (d) Structure of trans-
Au-THTAP, where M = Au, X = NH, Y = O, Z = C•, and L
stands for a neighboring ligand. (e) Top view of trans-Au-
THTAP. The solid line indicates a unit cell.

Fig. 2(a). The black solid lines display the spin-up bands,
while the blue dashed lines display the spin-down bands.
The system shows a metallic nature and the nearly flat
band near the Fermi energy [E = 0 in Fig. 2(a)] aris-
ing from the kagome lattice is approximately half-filled
and indeed spin-polarized. This gives a ferromagnetic be-
havior with a total spin moment of 1.00 µB/unit cell. We
have to note that this spin moment exactly coincides with
the expected value for flat-band ferromagnetism [22]. Re-
markably, the analysis of the partial density of states
(PDOS) for each element clearly shows that the kagome
bands near the Fermi energy mostly come from C and N
atoms and less from Au d-orbitals [see Fig. 2(b)]. This
real-space property is further confirmed by the analysis
of spin density [45] and could be explained by the itin-
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FIG. 2. (Color online) (a) Band structure of trans-Au-THTAP calculated without SOC. The black solid (blue dashed) lines show
the spin-up (spin-down) bands. (b) PDOS of the spin-down bands for each element in trans-Au-THTAP calculated without
SOC. (c) Zoom-in of (a) around the Fermi energy. (d) Zoom-in of the band structure calculated with SOC. (e) Comparison
between the band structures calculated with SOC by DFT (solid lines) and by TB (circles) with the calculated Chern numbers
(Ch). In each panel, the Fermi energy is taken to be zero.

erant mechanism of ferromagnetism rather than by the
interacting localized moments on Au. Moreover, by car-
rying out a fully relativistic self-consistent calculation on
this system, we find that SOC opens a gap of 7.8 meV
between the nearly flat band and the lower dispersive
band at Γ [compare Fig. 2(c) without SOC to (d) with
SOC]. This system has turned out to be still metallic, due
to a slight warping of the nearly flat band. The spin-
up and spin-down bands are no longer separable when
we calculate with SOC, but the z-component of the spin
(σz) is approximately a conserved quantum number be-
cause the calculated magnetic order is always along the
z-direction in the case of including SOC. This gives a
total spin moment of 0.99 µB/unit cell, a total orbital
moment of 0.02 µB/unit cell along the z-direction, and
an exchange splitting of 159.5 meV.

Topological Properties From a Tight-Binding Model.
— In order to show the topological non-triviality of the
gap between the nearly flat band and the dispersive band
of trans-Au-THTAP, we first considered a single-orbital
tight-binding (TB) model on the kagome lattice, where
each single orbital is assumed to be localized around Au.
Actually, the wave functions forming the kagome bands
are not completely localized on Au and spreading over
the π-conjugated system, but we can still assume a single-
orbital TB model as long as the lattice symmetry is pre-

served and the parameters of the TB model are somehow
renormalized by the effect of spreading. We added a Zee-
man term (exchange splitting) to the Hamiltonian con-
sidered in [12–14, 28, 46] to include the effect of ferromag-
netism [16]. We considered a complex nearest-neighbor
(NN) hopping and a real next-nearest neighbor (NNN)
hopping in a Hamiltonian, H = E0 + H0 + HSO + HZ,
where

H0 = −t1
∑

〈ij〉σ

c†iσcjσ − t2
∑

〈〈ij〉〉σ

c†iσcjσ , (1)

HSO = iλ1

∑

〈ij〉αβ

νijσ
z
αβc

†
iαcjβ , (2)

HZ = b
∑

i

(−1− σz
αβ)c

†
iαciβ . (3)

Here E0 is the energy offset and c†iσ and ciσ are the cre-
ation and annihilation operators of the σ-spin electron on
the ith site of the kagome lattice, respectively. 〈ij〉 and
〈〈ij〉〉 denote the NN and NNN bonds, respectively, while
t1 and t2 are the corresponding real-valued hopping pa-
rameters. λ1 is the NN intrinsic spin-orbit coupling and
b is the Zeeman splitting, while σαβ is the Pauli matrix
for the spin component. νij is 1 for the counterclockwise
hopping and −1 for the clockwise hopping when viewed
from above. For simplicity, we have omitted the NNN
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FIG. 3. (Color online) Band structure for a ribbon of trans-
Au-THTAP. The black solid lines represent the bulk states,
and the red (blue) dashed lines represent topological edge
states along the bottom (top) edge.

imaginary hopping parameter λ2, which is expected to
be much smaller than the others [13].

This TB Hamiltonian conserves the z-component of
the spin, so we can divide the one-particle Hilbert space
H into H↑⊕H↓ by the eigenvalue of σz . We only consider
the space H↓ because there are only spin-down bands
near the Fermi energy. In other words, we have projected
out the spin-up states by taking the limit b → ∞ first.
We can then accurately fit the kagome bands in the DFT
calculation with SOC (solid line) to that obtained from
the TB model (circles) around the Fermi energy as shown
in Fig. 2(e) with the parameters E0 = −87.4meV, t1 =
45.1meV, t2 = 1.0meV, λ1 = 1.2meV. Based on the TB
model, we can calculate a topological Chern number (Ch)
for each band [47, 48]. From the results displayed in
Fig. 2(e), we can conclude that the nearly flat band is
indeed topologically non-trivial with a Chern number of
−1 within this TB framework.

Edge States. — Because the topological property of
the SOC gap is model-dependent, the choice of the SOC
term in the TB model can be somewhat arbitrary. A clear
way to show the topological non-triviality of the system
is to detect the topological edge states by a DFT calcu-
lation. To do so, we again used openmx with a repeated
ribbon construction [49]. The calculated band structure
is shown in Fig. 3, where the red and blue dashed lines
clearly show the chiral edge states for each boundary and
cannot be gapped away. Since we took a different bound-
ary condition for each edge (one with Au aligning along
the boundary and the other without Au), they are asym-
metric against kx = 0. These edge modes are similar to
the ones in Ref. 14 except for the spin-polarization due to
its ferromagnetism. The emergence of these non-trivial
states localized along the boundaries [50] again confirms

the topological nature of the nearly flat band. These two
results from TB and DFT show that there exists an ex-
otic phase — a topologically non-trivial nearly flat band
with full spin polarization.

Phonon Calculations. — To verify the stability of the
proposed geometric structure, we also performed phonon
calculations. We used the first-principles electronic state
calculation code called Quantum ESPRESSO [51].
These studies show that a flat, free-standing sheet of
trans-Au-THTAP may buckle at low temperature [52],
giving rise to imaginary out-of-plane phonon modes [see
Fig. S5 in the Supplemental Material]. Experimentally,
however, sheets of the target material would likely be
tested on a flat surface, not free-standing. Thus, we ex-
pect that the out-of-plane modes may be suppressed un-
der experimental conditions, thereby retaining the non-
trivial properties. Proximity effects, such as Rashba-type
SOC, from various substrates on the electronic and mag-
netic structure of this material could itself make the sub-
ject of interesting future theoretical studies.

Conclusion. — We have proposed several new 2D
MOFs, and found that trans-Au-THTAP has a topolog-
ically non-trivial nearly flat band from the DFT calcu-
lations. This is a novel and realistic example of a sys-
tem in which a nearly flat band at the Fermi energy is
both ferromagnetic and topologically non-trivial. From
a synthetic standpoint, we have to note that Au indeed
prefers a square planar coordination environment in the
+2 formal oxidation state, as discussed in Ref. 53. We
also note that there would be electron correlation effects
for the flat-band ferromagnetic ground state that are not
properly captured within the DFT framework, which is
worthwhile to study in the future.

Although the proposed system does not have a quan-
tized Hall current due to its metallicity, a topologically
non-trivial phase realized in the proposed material (called
a Chern metallic phase in Ref. 54) is still worth investi-
gating. At this moment we have only confirmed the ex-
istence of the edge states with a constraint on the spin
structure. Future work will probe whether magnetic or-
der can exist along the boundaries and how it would af-
fect the topological edge states. Furthermore, it would
be interesting to explore whether one could enhance the
band gap given the known tunability of MOFs. This
would create a ferromagnetic insulator with a quantized
Hall conductance (quantum anomalous Hall effect [55])
or a fractional Chern insulator [28, 30, 31, 56–60] with
a large (band gap)/(band width) ratio. We note, in this
sense, that a no-go theorem has been proven mathemat-
ically for topologically non-trivial perfectly flat bands
within local tight-binding models [61].
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