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Indirect transitions of electrons in graphene and graphite are investigated by means of angle-
resolved photoemission spectroscopy (ARPES) with several different incident photon energies and
light polarizations. The theoretical calculations of the indirect transition for graphene and graphite
are compared with the experimental measurements for highly-oriented pyrolytic graphite and a
single-crystal of graphite. The dispersion relations for the transverse optical (TO) and the out-of-
plane longitudinal acoustic (ZA) phonon modes of graphite and the TO phonon mode of graphene
can be extracted from the inelastic ARPES intensity. We find that the TO phonon mode for k

points along the Γ–K and K–M–K′ directions in the Brillouin zone can be observed in the ARPES
spectra of graphite and graphene by using a photon energy ≈ 11.1 eV. The relevant mechanism in
the ARPES process for this case is the resonant indirect transition. On the other hand, the ZA
phonon mode of graphite can be observed by using a photon energy ≈ 6.3 eV through a nonresonant
indirect transition, while the ZA phonon mode of graphene within the same mechanism should not
be observed.

PACS numbers: 79.60.-i, 73.22.-f, 63.20.Kd, 71.15.Mb

I. INTRODUCTION

Angle-resolved photoemission spectroscopy (ARPES)
is one of the well-known methods to probe the electron-
phonon interaction in solids [1]. Renormalization of the
electronic energy due to the electron-phonon interaction
has been explored by the observation of the electron dis-
persion relation near the Dirac point (the K or K ′ points
of the hexagonal Brillouin zone) in graphene [2–4]. The
electron-phonon renormalization causes the appearance
of a kink structure in the electron dispersion relation.
The ARPES intensity is expressed in terms of the self-
energy, in which the real and imaginary parts of the self-
energy determine the kink structure and the linewidth in
the electronic energy dispersion, respectively [5, 6].
It is known that the ARPES spectra around the Γ point

and near the Fermi level (with binding energies around
Eb ≈ 0–3 eV) do not exist for the direct optical transition
because there is no corresponding energy state [2]. How-
ever, recent ARPES experiments show that measurement
of the ARPES intensity around the Γ point and near the
Fermi level could also provide valuable information on
the electron-phonon interaction [7, 8]. For example, Liu
et al. have observed the ARPES spectra at the Γ point
and near the Fermi level for graphene-based materials [7].
They pointed out that the observation of ARPES spec-
tra originates from the indirect transition of electrons,
which is mediated by phonons. In their experiment, the
observed ARPES spectra with binding energies around
154meV and 67meV have been ascribed to the energy
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and momentum of the phonon at the K (or K ′) point.
They suggest that the electron is scattered from the K
to the Γ point by emitting a phonon through an indirect
transition. However, the phonon dispersion from their
experiment could not be determined because they used
photon energies of more than 20 eV.
Tanaka et al. have reported ARPES spectra of highly-

oriented pyrolytic graphite (HOPG) around the Γ point
and near the Fermi level for various photon energies less
than 15 eV [8]. This experiment probes the energies
and momenta of the electrons and phonons involved in
the indirect transition, for different photon energies, so
that the phonon dispersion of HOPG can be obtained.
They found that, when the incident p-polarized photons
are incident on the sample surface, the ARPES inten-
sity increases like a step-function at the binding energies
around 154meV and 67meV for ~ω = 11.1 eV and for
~ω = 6.3 eV, respectively, and that the ARPES spec-
tra cannot be observed for incident photons in the range
~ω = 13–15 eV in their experiment. However, not all
the possible phonon dispersion relations of graphite could
be well-resolved since HOPG is not a single crystal of
graphite. Thus, the phonon modes involved in the indi-
rect transition were not assigned properly from previous
experimental measurements which were based on HOPG.
In this work, motivated by the observations of the indi-

rect transition ARPES spectra [7, 8], we investigate the
detailed mechanisms of indirect transitions in graphene
and graphite by the calculation of the electron-photon
interaction and the electron-phonon interaction based on
first principles calculations [9–12]. By considering the
indirect transition, we compare our theoretical calcula-
tion of the ARPES intensity with the latest data from
experimental measurements for HOPG and a single crys-
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tal of graphite in order to evaluate and assign the origin
of the observation of the phonon dispersion in graphene
and graphite through ARPES for various photon ener-
gies. We find that the dispersion relations of the trans-
verse optical (TO) and of the out-of-plane acoustic (ZA)
phonon modes of graphene and graphite which have even
symmetry with respect to a mirror plane (i.e., a plane
which includes the incident light and the ejected photoe-
mission electron) can be extracted from the experimen-
tal ARPES intensity. Although the longitudinal acoustic
(LA) phonon mode also has the even symmetry with re-
spect to the mirror plane, the LA phonon mode cannot
be observed due to the negligibly small electron-phonon
matrix element in the vicinity of the K point.
We also find that the ARPES spectra near the binding

energy of 154meV can be assigned by the ARPES inten-
sity calculation as the TO phonon mode for the applied
photon energy ~ω ≈ 11.1 eV, in which the relevant mech-
anism involves the resonant indirect transition. On the
other hand, for the lower photon energy ~ω ≈ 6.3 eV, the
ZA phonon mode is assigned to the ARPES spectra at
the binding energy of 67meV through the nonresonant
indirect transition with p-polarized light. In the case of
the photon energy ~ω = 13 − 15 eV, we will show that
the ARPES intensity cannot be observed because the di-
rections of the ejected electron and the detector are not
properly aligned with respect to each other to have a
significant ARPES intensity.
This paper is organized as follows. In Sec. II we de-

scribe the geometry of the ARPES measurements, the
experimental setup, and the theoretical formulation of
the indirect transition. We also discuss the symmetry
considerations for the ARPES spectra by group theory.
In Sec. III, theoretical results for the ARPES spectra are
compared with the experimental measurements. Finally,
the summary of this paper is given in Sec. IV.

II. METHODS

A. ARPES experiments

In Fig. 1, the experimental setup is shown schemati-
cally, in which the graphene surface is irradiated by pho-
tons having an incident angle ψ with respect to the z-axis,
normal to the surface. The emitted electrons with an
emission angle θ are analyzed with respect to the kinetic
energy and momentum [13]. When we look at the surface
in the direction of the z′ axis, we see that the light polar-
ization angle φ is defined in the x′y′-plane and measured
by the y′-axis, as shown in Fig. 1(b). Here, φ = 0◦ and
φ = 90◦ correspond to the p- and s-polarization direc-
tions, respectively [9, 14–16]. In this paper, we adopt a
particular geometry so that the analyzer is perpendicular
to the surface, i.e., θ = 0. The experiments were carried
out at two beamlines of the synchrotron radiation facil-
ities: (1) BL-7U facility of UVSOR at the Institute for
Molecular Science, Okazaki, Japan and (2) BL-9A facility

FIG. 1. (Color online)(a) Geometry of the photoemission pro-
cess [9]. The incident photon with energy ~ω is shown by an
arrow going to the graphene plane. We can define a mirror
plane which contains the directions of the incident light (z′

axis), the electrons ejected from the surface, and an axis (z-
axis) normal to the graphene surface. The angles between the
incident light, the ejected electron, and the z-axis is denoted
by ψ, θ. (b) Viewing the set-up from the z′ axis, the light po-
larization angle, φ, is in the x′y′-plane and is measured with
respect to the y′ axis. Here, φ = 0◦ and φ = 90◦ correspond
to the p- and s-polarizations, respectively.

of HiSOR at Hiroshima University, Higashi-Hiroshima,
Japan. The photon energy dependence of the HOPG
was taken at the BL-7U facility and the polarization-
dependence of the single-crystalline graphite was taken
at the BL-9A facility. In both beamlines, the combina-
tion of the APPLE-II-type variable-polarization undula-
tor, normal incidence monochromator, novel photoelec-
tron spectrometer with a multichannel detector, and a
precise multiaxis goniomer for the sample enables us to
measure the ARPES spectra with sufficient resolution for
observing the phonons (< 10meV). The sample was kept
at 30K during the measurement with a He-cryostat.

B. Formulation of ARPES intensity

Let us define the Hamiltonian; He for electrons, Hph

for phonons, Hopt for the electron-photon interaction
and Hep for the electron-phonon interaction. The total
Hamiltonian, H , is written as

H = He +Hp +Hopt +Hep, (1)

where the unperturbed Hamiltonian of electrons and
phonons is considered as H0 = He + Hp. We adopt
the adiabatic approximation, which implies that the total
wave function can be written as a product of an electron
eigenstate and phonon eigenstate [6].
The unperturbed electron and phonon dispersion

relation and their eigenstates for points along the
high symmetry axes are calculated using the Quantum

ESPRESSO package [12]. For the electron calculation,
we adopt the norm-conserving pseudopotential with the
Perdew-Zunger exchange-correlation scalar relativistic
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functional. The kinetic energy cut-off is taken as 60Ry
for each atom and the kinetic energy cut-off for the elec-
tron density potential is set to be 600Ry in order to verify
the convergence of all wave functions. The k-points for
self-consistent calculation are taken within the 42×42×1
and 20× 20× 4 mesh grids in the graphene and graphite
Brillouin zones, respectively. The lattice parameter of
graphene is considered to be 2.46 Å and the lattice con-
stant in the direction normal to the graphene plane is
taken as c/a = 20.0 and c/a = 2.7 for graphene and
graphite, respectively. As for the phonon calculation, we
adopt the Perdew-Burke-Ernzerhof generalized gradient
approximation for the exchange-correlation function [17].
The kinetic energy cut-off is set to be 100Ry for each
atom, while the kinetic energy cut-off for the density po-
tential is taken as 1200Ry. Following Ref. 18, the dynam-
ical matrix is calculated on 6×6×1 and 6×6×4 q-point
mesh grids in graphene and graphite, respectively, where
q is the phonon wavevector.

The calculated electron energy dispersions of graphite
and graphene are shown in Figs. 2(a) and (b), re-
spectively, whereas the calculated phonon dispersion of
graphite and graphene are shown in Figs. 3(a) and (b)
respectively. Since there are four atoms in the unit cell
of graphite, there will be twelve phonon modes. Most of
the phonon modes are nearly doubly degenerate and sim-
ilar to those for graphene [20, 21]. Thus, we put the same
labes of phonon modes for graphite and graphene, except
for the breathing mode (ZO′) of two layers in graphite.
In graphene, there are six phonon modes which consist of
four in-plane modes and two out-of-plane modes. At the
Γ point, there are three acoustic branches: (1) the trans-
verse acoustic, (2) the longitudinal acoustic, and (3) the
out-of-plane acoustic phonon modes, which are labeled
in Fig. 3(b) as TA, LA, and ZA, respectively. Unlike
the case of graphite, there is no ZO′ mode in graphene.
There are also three optical phonon modes in graphene
above 0.1 eV at the Γ point: (1) the transverse optical,
(2) the longitudinal optical, and (3) the out-of-plane op-
tical phonon mode, which are labeled as TO, LO, and
ZO, respectively. The symmetry labels of phonon modes
of graphene are also shown in Fig. 3(b) which will be
discussed in the next section.

The perturbation Hamiltonian in Eq. (1) is considered
as

H ′ = Hopt +Hep. (2)

The transition rate from an initial state |i〉 to a final state
|f〉 through a virtual state |m〉 is given by the second-
order time-dependent perturbation theory [10, 11],

W (kf ,ki) =
2π

~

∣

∣

∣

∣

S(kf ,ki)

∣

∣

∣

∣

2

δ(εi − εf ), (3)

where εi and εf represent the energy of an initial state
and a final state, respectively, and the matrix S(kf ,ki)

(a)                 graphite         

(b)                 graphene        

FIG. 2. (Color online) Electronic energy dispersion rela-
tions of (a) graphite and (b) graphene are calculated by first-
principles calculations and plotted along the high symmetry
directions Γ–K–M–Γ up to 15 eV. In panel (a), the two
possibilities of indirect transitions (A → B → D and A →
C → D) are shown by the red dash-dotted arrows, in which
an electron from the initial state A can reach the final state
D mediated by electron-phonon interaction. The separation
between the states A and B (or C and D) is determined by
the incident photon energy used in ARPES (in this picture
it is ∼ 7 eV). Note that in both panels (a) and (b) we show
some symmetry representations for the energy bands which
might be involved in the indirect transitions in (a) graphite
and (b) graphene.

is given by

S(kf ,ki) =
∑

m

〈f |H ′|m〉〈m|H ′|i〉
εi − εm

. (4)

There are two scattering processes following Eq. (4)
that may contribute to the indirect transition, i.e.,
A → B → D and A → C → D, which are depicted as
red dash-dotted arrows in Fig. 2(a). In the A → B → D
process: (1) a photon excites an electron from the initial
state |Aki〉 to a state |Bkm〉 and then (2) the photoex-
cited electron from the state |Bkm〉 is scattered to the
final state |Dkf 〉 by emitting a phonon. Since the tem-
perature of the sample is considered to be 60K, the prob-
ability absorption of a phonon in the A → B → D process
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graphite (a)
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(b) graphene 

FIG. 3. (Color online) The phonon energy dispersion rela-
tions for (a) graphite and (b) graphene, obtained from first-
principles calculations and density functional perturbation
theory [12]. Since there is C2v symmetry along the Γ–K–
M and Γ–M directions, each phonon mode is labeled by the
irreducible representation of the C2v point group along the Γ–
K–M direction [19]. The TA, LA TO and LO phonon modes
along the Γ–K–M correspond to B1, A1, A1 and B1 symme-
tries, respectively. The ZA and ZO phonon modes along the
Γ–K–M correspond to B2 and A2 symmetries.

is negligible. In the A → C → D process: (1) a phonon
scatters an electron from the initial state |Aki〉 to a state
|Ckm〉 and then (2) a photon excites the scattered elec-
tron from the state |Ckm〉 to the final state |Dkf 〉. All
these processes are expressed by the following equation:

S(kf ,ki) =
〈Dkf , |Hep|Bkm〉〈Bkm|Hopt|Aki〉

Ei(ki) + ~ω − EB(ki)

+
〈Dkf |Hopt|Ckm〉〈Ckm|Hep|Aki〉

Ei(ki)− ~ωα
q − EC(kf )

, (5)

where the energy and momentum conservation require-
ment gives the energy denominators of Eq. (5) and kf =
ki + q. In Eq. (5), ~ω denotes the photon energy and
~ωα

q refers to the energy of the αth phonon mode with
the wave vector q. After calculations, we find that the
A → B → D transition would be more dominant than the
A → C → D transition both for photon energies around
~ω ≈ 11 eV–15 eV and for lower photon energies around
~ω ≈ 6 eV. However, it should be noted that there
are different physical origins for why the A → B → D
transition is always dominant in the two different energy
ranges, as will be discussed in Sec. III.
We adopt the rigid-ion approximation for the electron-

phonon matrix element 〈f,kf |Hep|i,ki〉 [6, 22], whose
detailed derivation is given in Appendix A. In the case
of the electron-photon transition from an initial state
|i,k〉 to a final state |f,k〉, the electron-photon matrix
element is given in the dipole approximation [23], while
〈f,k|Hopt|i,k〉 ∝ A ·D(k), where A is the vector poten-
tial and D(k) = 〈f,k|∇|i,k〉 is the dipole vector. The
electron-photon interaction for different photon energies
based on the plane wave expansion is discussed in the
previous study [9], and we follow the same method in
the present work to calculate the electron-photon matrix
element.

T=60 K

FIG. 4. (Color online) The indirect scattering of an electron.
An electron around the K or K′ point scatters around the Γ
point by the indirect transition. The shaded region line along
Γ–K is what we observed for Ekin and k.

To obtain the ARPES intensity I(E, ~ω), we need to
integrate over all the initial states and all the final states.
The summation on the initial states and the final states
can be performed independently when we adopt the ex-
perimental conditions that are chosen for each ARPES
experiment [24]. The ARPES intensity I(E, ~ω) is given
by

I(E, ~ω) ∝
∑

i,f

∫

dkidkf |S(kf ,ki)|2δ(εi − εf )

× δ(E − εf + φwf)(N
α
q + 1)focc

F , (6)

where φwf = 4.5 eV is the work function of graphene [25],
focc
F denotes the Fermi-Dirac distribution function for the
occupied state and Nα

q is the quantum number of the
phonon mode α with wave vector q. The first delta func-
tion in Eq. (6) expresses conservation of total energy,
while the second delta function ensures that the pho-
toelectrons have higher energies than the work function
φwf . In addition, there are several symmetry selection
rules for the ARPES spectra in graphite and graphene,
especially for the indirect transition. These selection
rules are discussed in the next section.

C. Symmetry selection rules for ARPES

The geometry of the indirect scattering of electrons is
schematically illustrated in Fig. 4. The electrons around
the K or K ′ point can scatter to the region near the
Γ point by an indirect transition. The shaded region
along Γ–K direction displays the locations where the pho-
toemitted electrons are measured in the ARPES exper-
iment. The measurement of the ARPES intensity along
the Γ–K line provides information about the phonon dis-



5

TABLE I. Character table of the C2v(2mm) point group.

E C2 σv(xz) σ′

v(yz) bases

A1 1 1 1 1 z, ∇z

A2 1 1 −1 −1 Rz

B1 1 −1 1 −1 x,Ry , ∇x

B2 1 −1 −1 1 y,Rx, ∇y

TABLE II. Direct product table of the C2v representation for
the indirect transition A→ B → D. Here Γi indicates the ini-
tial states, Γi = {A2, B2}, while Γo = {A1, B1, B2} refers to
the optical transition and Γq assigns the phonon eigenvector
symmetry along Γ–K–M . For the final states Γf = {A1, B2},
the corresponding column shows the symmetry of the allowed
final state.

Γi Γo(Pol.) Γm Γm Γq(Ph.) Γf

B2 A1(p) B2 B2 A1(TO,LA) B2

B2 B2(p) A1 A1 A1(TO,LA) A1

B2 A1(p) B2 B2 B2(ZA) A1

B2 B2(p) A1 A1 B2(ZA) B2

A2 B1(s) B2 B2 A1(TO,LA) B2

A2 B1(s) B2 B2 B2(ZA) A1

persion along Γ–K ′ and K–M–K ′ [7], which is explained
in Appendix B.
In graphene and graphite, the three high-symmetry

points Γ, K(or K ′), and M correspond to the D6h,
D3h and D2h point group symmetries, respectively. The
electronic states along the K ′–Γ–K and K ′–M–K lines
belong to the C2v point group, while any other gen-
eral k points belong to the C1h point group [26, 27,
34]. The C2v group has four irreducible representations
{A1, A2, B1, B2} as shown in Table I. According to the
x, y, z coordinates in Fig. 4, the character Table of C2v is
listed in Table I. Moreover, in the C2v symmetry, there
are two mirror plane operations σv(xz) and σ′

v(yz) in
the Brillouin zone. The plane σv(xz) is aligned with the
M–Γ–M line, while the plane σ′

v(yz) is aligned with the
K–Γ–K ′ line. Since we observe ARPES spectra in the
present study, along the K–Γ lines, σ′

v(yz) is relevant to
the ARPES spectra as shown below. As we explained,
the symmetry labels of each of the phonon modes of
graphene along the Γ–K–M lines are shown in Fig. 3(b).
The selection rules for the optical and lattice vibrations

impose nonzero matrix elements 〈m|o|i〉 and 〈f |q|m〉 in
Eq. (5), which satisfy [28]:

Γm ⊗ Γo ⊗ Γi = A1 and Γf ⊗ Γq ⊗ Γm = A1 (7)

where Γi, Γm, Γf , Γo, Γq are, respectively, the irreducible
representations for the initial state, intermediate state,
and final state of the electron wave functions, the dipole
vector and the phonon mode.
Further, in the ARPES experiment, we need also to

consider the conservation of parity for the matrix ele-
ments of the product 〈f |H ′|m〉〈m|H ′|i〉, in Eq. (4), under

reflection from the mirror plane σ′
v(yz) [13]. This condi-

tion imposes an additional restriction to get a non-zero
ARPES intensity, i.e., the integral of 〈f |H ′|m〉〈m|H ′|i〉
must be an even function for the σ′

v(yz) symmetry op-
eration. Furthermore, it is known that the final state,
〈f | must have even symmetry with respect to the mirror
plane σ′

v(yz) in the ARPES experiment [1, 13, 15, 29].
If we consider the π band as the initial state, Γi, this

state has to haveB2 and A2 symmetry, as shown in Fig. 2,

Γi = A2 or B2.

Since the final state, Γf has to have even symmetry with
respect to the mirror plane, σ′

v(yz) , the final state be-
longs to the A1 or B2 irreducible representation,

Γf = A1 or B2.

Since most of the phonon branches of graphite are
nearly doubly degenerate and almost similar to those in
graphene, in the following symmetry discussion, we will
use the symmetry of the phonons in graphene for sim-
plicity [21]. Graphene has six phonon modes, as shown
in Fig. 3(b). The four in-plane phonon modes TA, LA,
TO and LO along Γ–K–M transform as B1, A1, A1 and
B1, respectively. The-out-of-plane phonon modes ZA and
ZO along Γ–K–M transform as B2 and A2, respectively
[21, 30, 31]. Moreover, the parity under the σ′

v(yz) re-
flection along the Γ–K line is odd for TA, LO, ZO and is
even for ZA and LA, TO [32]. Thus, only the ZA, LA and
TO phonon modes can be observed in the ARPES spec-
tra. It is important to note that the p-polarized light lies
in the yz-plane, shown in Fig. 1, and it transforms as the
B2, A1 irreducible representations. The s-polarized light
is parallel to the x-axis and it transforms as the B1 irre-
ducible representation. In order to satisfy Eq. (4) there
are six possibilities in the ARPES processes for 〈m|o|i〉
and 〈f |q|m〉, which are summarized in Table II.

III. RESULTS AND DISCUSSION

To investigate the observation of the ARPES spectra
at the Γ point and near the Fermi level energy, we cal-
culate here the indirect transition ARPES intensity as
a function of the binding energy, for the k vectors very
close to the Γ point, at k = 2π/a× 10−4, along Γ–K for
several photon energies of graphene and graphite. Here,
we consider the p-polarized light with an incident angle
ψ = 40◦ that is the same as the experimental setup. The,
calculated results can then be compared with the exper-
imental ARPES spectra.
Figure 5(a) shows the experimental ARPES intensity

as a function of the binding energy for highly-oriented
pyrolytic graphite (HOPG), whereas Figs. 5(b) and (c)
show the calculated ARPES intensity for graphite and
graphene, respectively. Looking at Figs. 5(a) and (b),
the calculated ARPES intensity basically reproduces the
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FIG. 5. (Color online) (a) The experimental ARPES inten-
sities for HOPG compared with the calculated ARPES in-
tensities for (b) graphite and (c) graphene near the Γ point
for several incident photon energies. The incident photon is p-
polarized light and the incident angle is ψ = 40◦. In (a), step-
like features are found at the binding energy Eb ≈ 154meV
(red bar) and Eb ≈ 67meV (blue bar), which are assigned
to the TO and ZA modes, respectively. In (b), the step-like
features from the calculations for the TO and ZA modes are
found to be at Eb ≈ 160meV and Eb ≈ 67meV, respectively.
In (c), from our calculation, we find only the TO mode, but
no ZA mode.

experimental data. We can see that there are step-
like features in the ARPES intensity at the binding en-
ergies Eb ≈ 154meV and Eb ≈ 67meV for the ex-
perimental measurements and at Eb ≈ 160meV and
Eb ≈ 67meV for the corresponding theoretical calcula-
tions for graphite. The small discrepancy between the ex-
periment and theory for the positions of the step-like fea-
tures might originate from the Kohn anomaly [5], which
is neglected in our calculations for simplicity. We assign
the step-like features at Eb ≈ 154meV (or 160meV) and
at Eb ≈ 67meV to the TO and ZA modes, respectively.
Furthermore, in Fig. 5(c), we can see the step-like fea-
tures only at Eb ≈ 160meV and there is no such feature
at Eb ≈ 67meV. In the present work, we only perform
the calculations for graphite and monolayer graphene.
However, for the TO mode, we expect that the ARPES
intensity in the case of few-layer graphene might show
similar results to that of graphite. As for the ZA mode,
few-layer graphene might show a transition from the fea-
ture of monolayer graphene to graphite. We will un-
derstand all these behaviors by discussing the detailed
scattering processes in the following subsections.

A. Resonant indirect transitions

For the photon energy range of 10–15 eV, it is possible
to obtain a resonance process, and thus the ARPES in-
tensity for the A→ B→ D transition [see again Fig. 2(a)]
is 10 times larger than that for the A→ C→D transition.
In this case, the first step of the A → B → D transition is

FIG. 6. (Color online) The x-, y-, and z- components of the
dipole vector, i.e., Dx (circles), Dy (full circles), Dz (aster-
isks), plotted as a function of the energy of the intermediate
state (Em) for (a) graphite with B2 symmetry as the ini-
tial state, (b) graphite with A2 symmetry as the initial state,
(c) graphene with B2 symmetry as the initial state, and (d)
graphene with A2 symmetry as the initial state. Symmetry
labels near the circles, dots, and asterisks correspond to the
symmetry of the intermediate states.

the direct optical transition, A → B, from the carbon π
band to the conduction bands around the K point. For
this purpose, in Fig. 6, we show the absolute value of the
dipole vector, D(k) = 〈mk|∇|ik〉, as a function of the
intermediate state energy for different conduction bands
in graphite [Figs. 6(a) and (b)] and graphene [Figs. 6(c)
and (d)]. For the initial states that satisfy Table II, we
plot the dipole vectors for |i〉 = B2 [Figs. 6(a) and (c)]
and for |i〉 = A2 [Figs. 6(b) and (d)]. The wave vector of
the initial state of the electron is considered at a point
with a distance of 2π/a × 10−4 from the K point along
the Γ–K line. The full circles, dots, and asterisks denote
the x-, y-, and z- components of the dipole vectors, i.e.,
Dx, Dy, and Dz, respectively. The symmetry of each
intermediate state is also labeled.

More detailed information about the dipole vectors
plotted in Figs. 6(a)-(d) can be obtained by comparing
them with the electronic band structures in Figs. 2(a)-
(b). The two lowest energy optical transitions around
Em ≈ 1 eV shown in Figs. 6(a) correspond to the
π → π∗ transitions of graphite. Next, the optical tran-
sition around Em ≈ 11 eV may originally correspond to
the π → B2 or the π → A2 transition, since either choice
is possible following Fig. 2(a). However, the π → A2 op-
tical transition can be excluded by the selection rule in
Table II. At Em ≈ 12 eV, the intermediate state can
be the A1, or to the σ∗

1 or σ∗
2 bands (see Fig. 2). The

nonzero value of the dipole vector corresponds to Dy for
the B2 → A1 transition, while the dipole vector becomes
D = 0 for A2 → A1. The σ∗

1 and σ∗
2 bands as the inter-
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mediate states have A1 and B1 symmetries. The dipole
vector for the B2 → B1 and A2 → B1 transitions are
D = 0 and Dy, respectively.

In Figs. 6(c) and (d), we show similar properties with
those in Figs. 6(a) and (b), but now for the case of
graphene. The direction of the dipole vector for the
π → π∗ transition at Em ≈ 0 eV along the Γ–K and
K–M directions is Dx, which is consistent with the re-
sults from Grüneis et al. [23]. The π → B2 transition
takes place at Em ≈ 11 eV and the dipole vector com-
ponents for this transition are Dz and Dx, as shown in
Figs. 6(c) and (d). In the case of the third and fourth
lowest conduction bands in graphene, the band with A1

symmetry (orange dots in Fig. 2 around the K point)
and σ∗

1 band with A1 symmetry are both involved in the
electron-photon excitation. The directions of the dipole
vector for the π → A1, and π → σ∗

1 transitions along the
Γ–K and K–M directions are denoted by Dy and Dx,
respectively.

To discuss the magnitude of the dipole vectors for a
given transition, we project the wave function (plane
wave) on the atomic wave functions [33, 34]. The cal-
culations show that the π → B2 transition has the
largest dipole vector among the available transitions in
Fig. 6 since the π and B2 bands have the same pz orbital
shape. The π → σ∗

1 transition has the smallest dipole
vector because the σ∗

1 band near theK point is formed by
px and py orbitals which do not overlap with pz. On the
other hand, the π → σ∗

2 and π → A1 transitions should
also be taken into account because the σ∗

2 and A1 bands
are formed by the s, px, and py orbitals. The dipole vec-
tors for the π → σ∗

2 and π → A1 transitions are however
weaker than that for the π → B2 transition.

The electron-phonon matrix element calculation re-
veals that, although the TO and LA phonon modes have
the same symmetry (A1), the matrix element for the
LA phonon mode near the K point is negligibly small.
The insignificant electron-phonon interaction for the LA
phonon mode near theK point physically originates from
the direction of atomic displacements of the LA mode.
In Figs. 7(a)-(f), we show the calculated electron-phonon
matrix elements as a function of the final state energy,
Ef , in graphite and graphene. The dots and asterisks cor-
respond to the coupling of the photoexcited electron with
the ZA and TO phonon modes, respectively. The differ-
ence between graphene and graphite is physically related
to the ZA phonon mode, which cannot (can) be observed
in the ARPES spectra for graphene (graphite), because
graphene does not have an interlayer electron-phonon in-
teraction [35]. Besides, the value of the electron-phonon
matrix element decreases with increasing Ef .

For the incident photon with ~ω ≈ 11.1 eV, photoex-
cited electrons in the B2 band are scattered into the fi-
nal states near the Γ point (see Fig. 2). In the case of
graphite, the final states can be π∗, σ∗

1 or σ∗
2 , as intensity

for the ~ω ≈ 11.1 eV arises from the coupling between the
photoexcited electron and the TO phonon. From these
facts, we can conclude that the ARPES intensity around

FIG. 7. (Color online) The electron-phonon matrix elements
for the scattering events from the intermediate states |m〉 with
particular symmetries (B2 and A1) into some final states with
different energies Ef . Panels (a)-(c) are for graphite, while
panels (d)-(f) are for graphene. The dots and asterisks refer
to the electron-phonon interaction for the ZA and TO phonon
modes, respectively. Note that |m〉 in panels (b)-(c) and (e)-
(f) have the same symmetries but originate from different
bands. In particular, (c) and (f) are related with |m〉 of the
σ∗

1 band.

154meV for ~ω ≈ 11.1 eV is due to the photoexcitation
of an electron from the π band to the B2 band which is
then the scattered by the TO phonon mode into a state
near the Γ point. It should be noted that the discrepancy
between the experimental and theoretical binding energy
might come from the effect of the electron-electron cor-
relation on the phonon dispersion [36], which is beyond
the scope of this work. For ~ω ≈ 13 eV, the interme-
diate state can be associated with the A1, σ

∗
1 and or σ∗

2

bands. In this case, both the ZA and TO phonon modes
can be coupled with the photoexcited electron. How-
ever, the electron-phonon interaction for the ZA phonon
mode is weaker than that for the TO phonon mode as
discussed above. Thus, the ARPES intensity observed
for ~ω ≈ 12.5 eV is assigned to the TO and ZA phonon
modes.

B. Nonresonant indirect transition

Now we consider the case when the incident photon en-
ergy is ~ω ≈ 6 eV. The excitation process is the nonreso-
nant indirect transition and the final state is the A1 band,
which is a nearly free-electron state. Let us again discuss
the possibilities of the A → B → D and A → C → D
transitions. If we assume that the virtual state comes
from the closest real states of the electrons, the optical
excitation in the second process (σ1, σ2 → A1) has a neg-
ligible intensity [37]. Furthermore, the optical transition
along the high symmetry points on the Γ–A line ( per-
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FIG. 8. (Color online) Electron-phonon matrix elements for
the ZA phonon mode of graphite for the transitions from an
intermediate state m〉 having B2 symmetry (the π∗ band near
the K point) into some different final states with energies Ef .

TABLE III. Phonon (|Ph〉) assignment for different photon
energies (~ω). Columns for |i〉, |m〉 and |f〉 show the orbital
shapes for initial, intermediate, and final states, respectively,
while |O〉 denotes the direction of the dipole vector.

~ω( eV) |i〉 |O〉 |m〉 |Ph〉 |f〉

6 pz Dz pz ZA s

11 pz Dz,Dy pz TO pz

13 pz Dy s, px, py TO s

pendicular to the Γ–K–M–Γ plane) for the second pro-
cess also has a negligible intensity. Thus, the dominant
mechanism should be the A→ B → D transition. As we
mentioned before, although we find that the A → B → D
transition would also be more preferable for ~ω ≈ 6 eV,
the physical argument for why this transition is dominant
for ~ω ≈ 6 eV is different from that for ~ω ≈ 11.1 eV.

We can see that for the A → B → D transition with
~ω ≈ 6 eV, the intermediate state is the B2 band and
the dominant dipole vector is Dz (see Fig. 6). Therefore,
only the ZA phonon mode can be involved in this process
(see Table II). The electron-phonon matrix element as
a function of the final state is plotted in Fig. 8. It can
be seen that there is a strong coupling between the π∗

band and the A1 band. The observation of the strong
electron-phonon coupling between the π∗ and A1 bands
was also reported with scanning tunneling spectroscopy
by Zhang et al. and Wehling et al. [38, 39]. We conclude
that the ZA phonon mode corresponds to the ARPES
signal at Eb = 67meV if photons with ~ω ≈ 6 eV and
p-polarization are incident on the graphite surface.

When we look at the ARPES intensity for ~ω ≈ 6 eV
and ~ω ≈ 12.5 eV in Fig. 5, there is a discrepancy be-
tween the experimental data of the ARPES intensity and
the calculated results. The experimental ARPES inten-
sity is higher than the calculated intensity for ~ω ≈ 6 eV,
while the experimental ARPES intensity is much smaller
than the calculated intensity for ~ω ≈ 12.5 eV. The ori-

I=0

FIG. 9. (Color online) (a) Experimental measurement and (b)
theoretical calculation of the ARPES intensity as a function of
the binding energy for a single crystal of graphite. The energy
of the incident photon is ~ω = 11 eV. The top and bottom
curves correspond to the ARPES intensity for s-polarized and
p-polarized light, respectively.

gin of these discrepancies might be explained by the angle
between the emission direction of the ejected photoelec-
tron and the detector [7]. The direction of the detector
is considered to be normal to the surface in the experi-
ment [7, 8] (see Fig. 4). In Table III, we show the shapes
of the orbitals for the initial state |i〉, the intermediate
state |m〉, the final state |f〉, the dipole vector direction,
|O〉, and the phonon polarization, |Ph〉, for photon ener-
gies ~ω = 6 eV, 11 eV and 13 eV. Every initial state is
in the π electron band, formed by the pz orbital.
For the ~ω ≈ 6 eV transition, the |m〉 state also has

the pz orbital character. The dipole vector becomes Dz

and the out-of-plane phonon mode ZA also couples to the
photoexcited electron. In this case, the final state, |f〉,
has an s orbital shape. Therefore, the ejected electron
from this excitation process can be observed in the direc-
tion normal to surface more strongly. For the ~ω ≈ 11 eV
excitation, the |m〉 state also has a pz shape and the
dipole vector also becomes Dz. However, in this case,
the electrons couple to the in-plane phonon mode TO
and |f〉 has a pz shape. As a result, the ejected electrons
from this process also can be well-observed in the direc-
tion normal to the surface. But we should note that the
intensity of the observed electrons can decrease due to
the coupling between the electron and the phonon mode.
For the ~ω ≈ 12.5 eV, the intermediate state has s, px, py
orbital shapes and the dipole vector is Dy and also the
electron is coupled with the in-plane TO phonon mode,
and in this case the final state has an s orbital shape.
The ejected electrons from this process thus have a large
dipole vector component parallel to the surface so that
the possibility of the observation of the electrons from
this process when the detector is normal to the surface
will dramatically decrease.

C. Effects of s- and p-polarizations

Finally, we discuss the polarization dependence of the
incident light for a single-crystal of graphite. In Figs. 9(a)
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and (b), we plot the experimental and calculation data
of graphite for s-polarized and for p-polarized light in the
case of ~ω = 11 eV. It can be seen that the ARPES in-
tensity for p-polarized light is stronger than s-polarized
light for both experimental measurement and theoreti-
cal calculation. The physical reason for this behavior
is that the z-component of the vector potential (Az) is
stronger than the x−component (Ax) for ~ω = 11 eV
and ψ = 40◦, although the dipole vector components Dz

and Dx have the same magnitude (see Fig. 6). Note that
there is a small jump at Eb = 0 observed experimentally,
originating from the phonon absorption in the indirect
transition [7], that we did not consider in the calcula-
tions.

IV. SUMMARY

The indirect transition for the ARPES spectra in
graphene and graphite have been investigated for dif-
ferent incident photon energies and light polarizations.
We have compared the theoretical calculation of the in-
direct transition for the ARPES intensity of graphene
and graphite with experimental measurements for HOPG
and graphite. Our symmetry analysis shows that the ZA,
TO, and LA phonon modes, which have even symmetry
with respect to the mirror plane, σ′

v(yz), can be involved
in the indirect interband transition. Although the LA
phonon mode has even symmetry with respect to the
mirror plane, its phonon energy cannot be observed be-
cause it has a negligible electron-phonon interaction near
the K point in the Brillouin zone. Thus, the ARPES
spectra with binding energy Eb = 154meV is assigned
to the TO phonon modes of graphene and graphite when
p-polarized photons with ~ω ≈ 11 eV are used. The rel-
evant mechanism for the observation of the TO phonon
mode is a resonant indirect transition. Meanwhile, for
the incident photons with ~ω ≈ 6 eV, the ZA mode be-
comes dominant, being observable through a nonresonant
indirect transition occurring in graphite for p-polarized
light. Therefore, the phonon branches which can be ob-
served by the ARPES measurement have been here as-
signed based on the detailed symmetry analysis and cal-
culations, which were not available in the previous exper-
iment [8]. Furthermore, the ARPES intensity of graphite
for p-polarized light is stronger than for s-polarized light
when the incident photon energy is ~ω ≈ 11 eV because
the vector potential of the p-polarized light is expected
to be stronger than that of s-polarized light.
By understanding the indirect transitions in the

ARPES spectra of graphite and graphene, we expect that
more detailed phonon dispersion relations might be ob-
served in our future experiments. Besides, we believe
that the validity of our methods should not be limited to
graphene-based materials. We propose that the electron-
phonon coupling for a large class of two-dimensional ma-
terials should also be observable by ARPES with indirect
transitions.
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Appendix A: Electron-phonon interaction

Let us define the equilibrium position of an atom σ =
A,B in the nth unit cell by Rn

σ

Rn
σ = Rn + dσ (A1)

where Rn and dσ are, respectively, positions of the unit
cell and the relative position of the σ th atom in the unit
cell.
The changes of the potential energy due to the lattice

displacement are given by

Hep =
∑

n,σ

[Vn(r−Rn
σ + Sα

n,σ(t))− Vn(r −Rn
σ)]

=
∑

n,σ

Sα
n,σ(t) · ∇Rn

σ
Vn(r−Rn

σ), (A2)

in which Sα
n,σ(t) denotes the displacement vector of the

atom and α = 1, . . . , 6 denotes the phonon mode, where

Sα
n,σ(t) = Aα

ρ (q)e
α
σ(q)e

iq.Rn

e±iωα(q)t (A3)

where Aα
ρ is the amplitude of the atomic vibration. The

± sign and ρ indices refer to whether a phonon is emitted
(”− ” and ρ = E) or absorbed (” + ” and ρ = A). Here,
eα(q) is the unit vector of the lattice displacement vector,
and ω(q) is the angular frequency of the phonon with a
wave vector q. The amplitude of the vibration, Aα

ρ , is
given by

Aα
ρ (q) =

√

2~Nα
ρ (q)

mωα(q)N
(A4)

whereNα
ρ denotes the number of the phonons for the α-th

phonon mode andN is the number of atoms in the sample
that contribute to the phonon, m = 1.9927× 10−26 kg is
the mass of a carbon atom. Nα

A and Nα
E are given by the
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Bose-Einstein distribution function as follows:

Nα
A(q) =

1

exp(~ω
α(q)

kBT
)− 1

,

Nα
E(q) = Nα

A(q) + 1. (A5)

Here, we adopt the rigid-ion approximation where the
potential V rigidly follows the motion of the ions [6, 22].
Thus, the electron-phonon interaction Hamiltonian can
be expressed by

Hep = −
N−1
∑

n=0

∑

σ=A,B

6
∑

α=1

Aα
ρ (q)S

α
n,σ(t) · ∇rVn(r−Rn,α

σ ),

(A6)

where we adopted the fact that ∇rVn = ∇RVn. Using
perturbation theory, the nonzero matrix elements for this
potential are given by

Mv,v′

ep (kf ,ki) = 〈kf |Hep|ki〉, (A7)

where v and v′ label the initial and final states.
To calculate the electron-phonon matrix elements, we

expand the wave function of the initial states and final
states in terms of plane waves,

|kv
i 〉 =

1√
V

∑

G

Ci,v
G (ki) exp

(

i
(

ki +G
)

· r
)

,

|kv′

f 〉 = 1√
V

∑

G′

Cf,v′

G′ (kf ) exp
(

i
(

kf +G′
)

· r
)

,

(A8)

where V is the volume of the sample, G represents the

reciprocal lattice vector of graphene and Ci,v
G (Cf,v′

G ) are
the plane-wave coefficients. Thus, the electron-phonon
matrix elements are given by

Mv,v′

ep (kf ,ki) =
1

V

N−1
∑

n=0

6
∑

α=1

∑

σ=A,B

∑

G,G′

C∗f,v′

G′ (kf )C
i,v
G (ki)

×Aα
ρ (q)e

iq·Rn

eασ(q) ·mD(kf ,ki),

(A9)

where mD is expressed by

mD(kf ,ki) =

∫

ei(kf−ki+G′−G)·r∇rV (r −Rn
σ)dr.

(A10)

Then, by changing variables r′ = r −Rn
σ, and dr

′ = dr,
m′

D(kf ,ki) is expressed by

m′
D(kf ,ki) =

∫

ei(kf−ki+G′−G)·r′∇r′V (r′)dr′. (A11)

To obtain an explicit expression for the electron-phonon
matrix element, we multiply the following unity relation
into Eq. (A9):

1 = ei(kf−ki+G
′−G)·Rn

σe−i(kf+G
′)·Rn

σei(ki+G)·Rn
σ .

(A12)

TABLE IV. Coefficients vp and τp for the ion potential V (r)
in Eq. (A15) [40, 41]. The units of vp are Hartree × a.u., and
τp is in atomic units. (1 Hartree is 27.211 eV and 1 a.u. is
0.529177 Å)

p 1 2 3 4

vp -2.13 -1.00 -2.00 -0.74

τp 0.25 0.04 1.00 2.80

the electron-phonon matrix elements are given by

Mv,v′

ep (kf ,ki)

=
1

V

N−1
∑

n=0

6
∑

α=1

∑

σ=A,B

∑

G,G′

C∗f,v′

G′ (kf )C
i,v
G (ki)

×Aα
ρ (q)e

−i(kf−ki+G′−G)·Rn
σeiq·R

n

× eασ(q) ·m′
D(kf ,ki). (A13)

Using the fact that
∑N−1

n=0 e
−i(kf−ki−q+G′−G)·Rn

=
δkf ,ki+q in Eq. (A13) and using Eq. (A1), we get the
following electron-phonon matrix element:

Mv,v′

ep (kf ,ki)

=
1

V

6
∑

α=1

∑

σ=A,B

∑

G,G′

C∗f,v′

G′ (kf )C
i,v
G (ki)

×Aα
ρ (q)e

−i(kf−ki+G′−G)·dσ

× δkf ,ki+qe
α
σ(q) ·m′

D(kf ,ki). (A14)

In order to obtain Eq. (A11), we expand an ion po-
tential, V (r), of a free carbon atom, obtained by the
ab-initio method [40, 41], into a sum of Gaussian basis
functions as follows:

V (r) = −1

r

4
∑

p=1

vp exp (
−r2

2τ2p
). (A15)

The fitting parameters for the potential in Eq. (A15) are
listed in Table IV.
Finally, putting Eq. (A15) into the Eq. (A11), we get

m′
D(kf ,ki) as follows

m′
D(kf ,ki) =− i2π

√
2π

Q

|Q|

4
∑

p=1

vpτpErfi

[ |Q|τp√
2

]

× exp

[

−
( |Q|τp√

2

)2
]

(A16)

where Q = q+G′−G and Erfi(z) is the imaginary error
function and it is defined as

Erfi(z) = −iErf(iz), (A17)

where Erf(z) is defined by

Erf(z) =
2√
π

∫ z

0

e−t2dt. (A18)
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(b)

FIG. 10. (Color online) Schematic representations of (a,c)
direct and (b,d) indirect transitions. In the direct (indirect)
transition, the momenta of the electron before and after the
transition are the same (different). Panel (c) shows a photoe-
mission process in the three-step model for the direct tran-
sition [43]. Panel (d) shows a photoemission process in the
three-step model for the indirect transition. The difference
between the direct and indirect transitions is on the first step,
where the momentum of the phonon q is added to the momen-
tum of the electron in the indirect transition.

Appendix B: Basic ARPES mechanism and the

lattice symmetry

ARPES is one of spectroscopy methods to observe the
electronic dispersion relations of the occupied bands of
solids [42]. In the case of the direct transition, this pro-
cess can be divided into three steps, the so-called three-
step model: (1) photoexcitation of an electron inside the
solid [see Fig. 10(a)], (2) travel of the photoelectron to the
solid surface by an incident momentum [see Fig. 10(a)],
and (3) emission of the photoelectron into the vacuum
[see Fig. 10(c)].
The photoemission intensity as a function of the bind-

ing energy and momentum of the electron shows the elec-
tron dispersion relations of solids. The binding energies
of the electron inside the sample and outside the sample,
respectively, are determined by the energy conservation
rules:

Ekin,in = ~ω − |Eb| (B1)

and

Ekin,out = ~ω − φ− |Eb| (B2)

where Ekin,in and Ekin,out are the kinetic energy of elec-
tron inside and outside of the sample, respectively, ~ω is
the photon energy, φ is the work function of the solid and
|Eb| is the binding energy.
The momentum of the electron parallel to the surface

of the solid is conserved during this process because the
force is applied to the photoelectron only in the perpen-
dicular direction to the surface [43], as shown in Fig. 10
(c). Thus, the parallel momentum of the electron inside

FIG. 11. (Color online) (a) Electrons are scattered from
around the K or K′ point into a k point, labeled P, shown
in (a) as a yellow dot, along Γ–K by phonons. The phonon
wave vectors which scatter electrons from K and K′ into the
observation point, P, are shown by red and green dot arrows,
respectively. The phonon wave vector q1,q3,q5 and q2,q4,q6

indicate scattering from K and K′ respectively. (b) Only two
phonon momenta are inequivalent, whereas the phonon mo-
menta q3,q5 and q4,q6 are folded back into the first Brillouin
Zone, q1 and q2, respectively, due to the lattice symmetry [7].

the sample is related to the parallel momentum of the
electron outside of the sample as follows:

kout,‖ = kin,‖ (B3)

In the case of the indirect transition [see Fig. 10(b)],
although the three-step model is still appropriate, the
first step of energy and momentum conservation has an
additional term [see Fig. 10(d)], which come from the mo-
mentum of the phonon. The energy conservation outside
of the sample is written as follows

Ekin,in = ~ω − φ− |Eb + Eb,q| (B4)

where Eb,q expresses the binding energy of the electron
after scattering and

kout,‖ = kin,‖ = ki,‖ + q‖ (B5)

where q‖ is the additional momentum that the electron
absorbs after the electron-phonon scattering.
In the case of graphene-based materials and similar

materials such as silicene and germanene, the highest
binding energy of the electron is limited at the Fermi
level (Eb = 0). Therefore, the energy conservation of the
electron is reduced to

Ekin = ~ω − φ− |Eb,q|. (B6)

Then, resolving the energy of the electron after scatter-
ing becomes possible. Furthermore, in the indirect tran-
sition, since the observation of the electron is near the Γ
point (kout,‖ = 0), and the initial state of the electron is
limited to be near the kin,‖ = K point, the momentum
conservation of the electron in this process is satisfied
when q‖ = K.
Now, we consider that electrons are scattered by

phonons from around the K or K ′ points into a cer-
tain k as shown by a yellow circle at the Γ–K line in
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Fig. 11 (a). The phonon wave vectors which scatter elec-
trons from the K and K ′ points into k, are shown by the
red solid and green dot arrows, respectively. The phonon
wave vectors q1,q3,q5 and q2,q4,q6 indicate scatter-
ing from the K and K ′ points, respectively. However,
only two phonon momenta are inequivalent whereas the
phonon momenta q3,q5 and q4,q6 are folded into the
first Brillouin zone q1 and q2, respectively, due to the
lattice symmetry [7], see Fig. 11 (b). As a result, when

the ARPES intensity along the Γ–K direction is inves-
tigated, the phonons Γ–K ′ and K–M–K ′ can also be
observed. Similarly, when the ARPES intensity along
the Γ–K ′ direction is investigated, the phonon along the
Γ–K andK ′–M–K directions can be observed. Thus, we
can distinguish whether the electrons scatter from the K
or K ′ points by observation of the Γ–K ′ or K–M–K ′

phonon dispersions, respectively.
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