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Ferromagnetic transitions between quantum Hall states with different polarization at a fixed fill-
ing factor can be studied by varying the ratio of cyclotron and Zeeman energies in tilted magnetic
field experiments. However, an ability to locally control such transitions at a fixed magnetic field
would open a range of attractive applications, e.g. formation of a reconfigurable network of one-
dimensional helical domain walls in a two-dimensional plane. Coupled to a superconductor, such
domain walls can support non-Abelian excitation. In this article we report development of het-
erostructures where quantum Hall ferromagnetic (QHFm) transition can be controlled locally by
electrostatic gating. A high mobility two-dimensional electron gas is formed in CdTe quantum wells
with engineered placement of paramagnetic Mn impurities. Gate-induced electrostatic field shifts
electron wavefunction in the growth direction and changes overlap between electrons in the quantum
well and d-shell electrons on Mn, thus controlling the s-d exchange interaction and the field of the
QHFm transition. The demonstrated shift of the QHFm transition at a filling factor ν = 2 is large
enough to allow full control of spin polarization at a fixed magnetic field.

I. INTRODUCTION

One of the key ingredient in the realization of topo-
logical superconductivity1 is to remove fermion dou-
bling. The doubling is naturally absent in fully spin
polarized systems, yet ferromagnetic spin arrangement
is not compatible with a conventional s-wave super-
conductivity. It has been realized that spin doubling
can be removed in spin-full systems if spin is locked
to the carrier momentum2–6. While signatures of Ma-
jorana fermions have been reported in hybrid semicon-
ductor/superconductor nanowires7–9, removal of fermion
doubling has been observed in electron transport only in
the cleanest nanowires fabricated by cleaved edge over-
growth technique10.
An elegant proposal to circumvent fermion doubling is

to couple two two-dimensional electron gases (2DEGs)
with different sign of Landé g-factor and subject then
to a quantized magnetic field11,12. In a quantum Hall
effect (QHE) regime two oppositely polarized counter-
propagating edge channels at the boundary of two 2DEGs
form a helical domain wall (h-DW), similar to helical
channels at the edges of two-dimensional topological
isolators13. Coupled to an s-wave superconductor, h-DW
should support Majorana fermions in the integer QHE
regime and parafermions in the fractional QHE regime11.
While bringing two different electron gases into a close

proximity is an experimentally challenging proposition,
we propose to use electrostatically controlled quantum
Hall ferromagnetic (QHFm) transitions to form helical
domain walls14–16, see schematic in Fig. 1. In a QHE
regime kinetic energy of electrons in a 2DEG is quan-
tized into Landau levels (LL), which are further split due
to the presence of spin. Polarization of a 2DEG and,

more importantly, of the top filled energy level, depends
on the number of occupied energy levels ν = n/nφ (the
filling factor is a ratio of electron n and magnetic flux
nφ = eB/h densities), and changes as the system under-
goes phase transitions between QHE states with different
filling factors. If a 2D gas is separated into regions with
different ν’s by, e.g., electrostatic gating, chiral current-
caring states are formed at the boundary. The actual
order of spin-split energy levels is determined by an in-
tricate balance between Zeeman, cyclotron and exchange
energies. By shifting the balance it is possible to in-
duce magnetic phase transitions between different QHE
states with the same filling factor. QHFm transitions in
integer and fractional QHE regimes have been studied
extensively in the past17–22. The QHFm transition field
B∗(B||) in those experiments was adjusted by in-plane
(Zeeman) magnetic field B||, which does not afford local
control of polarization.

In this article we report development and characteri-
zation of heterostructures where B∗ is sensitive to elec-
trostatic gating, B∗(Vg), and, thus, can be controlled lo-
cally, an enabling step toward experimental realization of
theoretical concepts11,12. In devices with multiple gates
a possibility to reconfigure a network of h-DW opens a
new class of systems where non-Abelian excitation can
be created and manipulated.
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FIG. 1. (a) In a QHE regime a potential barrier creates
counter-propagating edge channels with the same polariza-
tions, while (b) a filling factor gradient ν2 > ν results in a
formation of a chiral domain wall, c-DW. (c) A local change of
the topmost Landau level polarization results in the formation
of a helical domain wall, h-DW, where counter-propagating
edge channels have opposite polarization. Coupled to a su-
perconducting contact (green), these h-DW should support
non-Abelian excitations (magenta dots). (d) Schematic of a
reconfigurable h-DW in a multi-gate device.
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FIG. 2. (a) Energy spectrum of Landau levels in a CdTe QW
with 1.5% of Mn calculated for T = 25 mK. For the filling fac-
tor ν = 2 (gray shadow) electron gas undergoes ferromagnetic
phase transition at B∗(Vg). Field dependence of spin sub-
bands (Eq. 1) is plotted in the inset. (b) Spectrum for com-
posite fermions Λ levels for xeff = 0.15%. QHFm transitions
at ν = 5/3 and 4/3 have been experimentally observed22.

II. ELECTROSTATIC CONTROL OF

QUANTUM HALL FERROMAGNET

A. QHFm transition in dilute magnetic

semiconductor

Electrostatic control of QHFm transitions is realized
in a dilute magnetic semiconductor CdTe:Mn with engi-
neered placement of paramagnetic impurities. Substitu-
tional Mn is a neutral impurity in CdTe and fractional

QHE has been observed in high mobility CdTe:Mn two-
dimensional electron gases with ∼ 1% of Mn22. Exchange
interaction between d-electrons on Mn (spin S = 5/2)
and s-electrons in the QW modifies energy spectrum of
a 2DEG and results in unusual spin splitting and level
crossing at high magnetic fields23. QHFm transition in
both integer and fractional QHE regimes have been ob-
served in tilted magnetic fields experiments in QWs with
uniformMn doping20,22. In the presence of magnetic field
B spin-dependent energy in dilute magnetic semiconduc-
tors is24:

E↑↓
s = ±1

2

[

g∗µBB + xeffEsdSBs

(

g∗µBSB

kB(T + TAF )

)]

,

(1)
where the first term is the Zeeman splitting and the sec-
ond term is due to an s-d exchange. Here g∗ ≈ −1.7 in
CdTe, Esd ≈ 220 meV25,26, xeff is an effective Mn con-
centration, and TAF is due to Mn-Mn antiferromagnetic
interaction. At low fields spin splitting is dominated by
a large positive exchange term, while at high fields and
low temperatures the Brillouin function Bs(B, T ) ≈ 1
and B-dependence is dominated by the negative Zee-
man term. In Fig. 2 we plot spin splitting of energy
levels (1) and spectrum of Landau levels (LL) for elec-
trons (n + 1/2)~ωc + E↑↓

s and composite fermions (CF)
ECF

p + E↑↓
s , where energy gaps between CF levels27

ECF
p+1 − ECF

p ≈ αCEc/(2p + 1) ∝
√
B. Here ~ is the

reduced Plank’s constant, ωc is the cyclotron frequency,
Ec = e2/ǫℓ is the charging energy, ℓ is the magnetic
length, constant αC ≈ 0.01−0.03 depends on the confin-
ing potential28, n = 0, 1, 2, ... and p = 1, 2, 3.... The field
of spin subbands crossing B∗ for the same LL (|n, ↑〉 and
|n, ↓〉) or neighboring LLs (|n, ↑〉 and |n± 1, ↓〉) depends
on the strength of the s-d exchange interaction xeffEsd.
Thus, engineering heterostructures with gate-tunable s-d
exchange will allow local control of spin polarization in
both integer and fractional QHE regimes.

B. Heterostructures with s-d exchange control

The second term in (1) is a mean-field approximation

to the exchange Hamiltonian Jsd
∑

~Ri
δ(~r − ~Ri)~Si · ~σ ∝

[

∫

[Mn]
|ϕ(z)|2dz

]

〈~S〉, where interaction of an electron

at a position ~r with a large number of Mn ions at po-

sitions ~Ri is approximated as an overlap of the elec-
tron probability density |ϕ(z)|2 with a uniform Mn back-
ground within z ∈ [Mn] and an average magnetization

〈~S〉 = 〈Sz〉 = SBs(B, T ). For quantum wells with ho-
mogeneous Mn distribution throughout the whole QW
region an integral χ =

∫

[QW ] |ϕ(z)|2dz = 1 and level

crossing field B∗ is found to be independent of a gate
voltage20.
We now consider non-uniform distribution of Mn in-

side a QW, e.g. Mn is confined to regions [Mn1] or
[Mn2] within the QW, see Fig. 3b,c. In these regions
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FIG. 3. (a) Band diagram of a 30nm CdTe QW heterostruc-
ture device is modeled using nextnano3 package29. Electron
probability density (square of the modulus of electron wave-
function) is calculated for different voltages on the top (b)
and back (c) gates. In (d) an integral overlap χ(Vg) between
Mn-doped regions [Mn1] and [Mn2], normalized to the value
at zero gate voltage χ(0), is plotted as a function of the 2D
gas density change for front (FG) and back (BG) gates. (e)
Mn doping distribution (red regions) in different wafers.

ϕ(z) has strong dependence on the out-of-plane electric
field and χ becomes gate dependent, χ = χ(Vg). Applica-
tion of positive (negative) voltage to the front gate shifts
electron wavefunction closer to (away from) the surface,
dχ/dVfg > 0 for [Mn1] and dχ/dVfg < 0 for [Mn2].
Gate voltage also changes electron density dn/dVfg > 0,
thus dχ/dn > 0 for [Mn1] and dχ/dn < 0 for [Mn2] for
the front gate. Application of a back gate voltage results
in a density change dn/dVbg > 0 but electrical field shifts
wavefunction in the opposite direction, thus dχ/dn < 0
for [Mn1] and dχ/dn > 0 for [Mn2] for the back gate.
Described behaviour is summarized on a Fig.3d. For the
formation of well defined h-DWs we want to control B∗

with a minimal change of n in order to remain at the
same filling factor ν, or maximize |dχ/dn|.
In order to demonstrate electrostatic control of QHFm

transition several Cd1−xMnxTe/ Cd0.8Mg0.2Te quantum
well heterostructures were grown by molecular beam epi-
taxy (MBE), see20,22 for details. Iodine delta-doping
layer is separated from the QW by a 30 nm Cd0.8Mg0.2Te
spacer. Mn was introduced into the QW region either as
a digital δ-doping or as a continuous doping, see schemat-
ics in Fig. 3e. More than 35 wafers have been grown and
characterized with different Mn placement and concen-
tration, here we report data on 4 representative wafers
with xeff = 1.71%, 0.34%, 0.20% and 0.085% (wafers
A,B,C and D). Samples were patterned into 100µm-wide
Hall bars. A semitransparent Ti front gate (10 nm thick)
was thermally evaporated onto the central part of Hall
bars. Ohmic contacts were produced by soldering freshly
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FIG. 4. (a) Longitudinal (Rxx) and Hall (Rxy) magnetoresis-
tances in wafer A measured at T = 400 mK for Vfg = Vbg = 0.
A peak at B = 7 T is a QHFm transition between |1 ↑〉 and
|0 ↓〉 states. (b) magnetoresistance in wafer C measured at
T ≈ 30 mK for various Vbg from −200 V (bottom trace) to
+200 V (top trace), the traces are offset proportional to Vbg.
Blue arrow marks evolution of the m = 2 node, red arrow
marks evolution of SdH peaks. In (c) and (d) Rxx in wafer
A is plotted as a function of Vbg or Vfg at a fixed Vfg = 0 or
Vbg = 100 V respectively. Position of the QHFm transition
is highlighted by a white dotted line. For B = 7 T polariza-
tion of the top LL can be switched between ↑ and ↓ by the
gate. Both plots have the same color scale. Measurements
are performed at T = 300 mK.

cut indium ingots similar to previous studies20,22. Cop-
per foil glued to the back of samples served as a back
gate. Devices were illuminated with a red LED at 4 K,
low temperature electron density and mobility were in
the range of 3.2− 3.5 · 1011 cm−2 and 2− 3 · 105 cm2/V·s
in different samples. Electron transport was measured in
a dilution refrigerator using standard ac technique with
10 nA excitation.

C. Smooth QHFm transition at ν = 1

Spin levels crossing measured in optical experiments23

and QHFm transitions observed in the fractional QHE
regime22 are well described by Eq. 1 and the values of
xeff extracted from the beating of Shubnikov - de Haas
(SdH) oscillations at low fields30. Yet, we did not observe
any re-entrant behavior at ν = 1. We conclude that the
absence of a transport signature of the QHFm transition
at ν = 1 is either due to a phase separation in the vicinity
of the transition or strong e-e exchange interaction and
anticrossing of levels with the same orbital wavefunction.
An ability to locally control exchange interaction for

small xeff < 0.01 is crucial for the formation of h-DW in
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a fractional quantum Hall regime, a prerequisite for the
creation of higher order non-Abelian excitations. The
strength of the exchange interaction can be obtained from
the beating in the SdH regime, where the m-th node is
defined by the condition30 (m + 1/2)~ωc = |E↑

s − E↓
s |.

Gate dependence of magnetoresistance in wafer C at low
fields is shown in Fig. 4b. Nodes are shifted to lower fields
as the voltage on the back gate increases, dχ/dVbg <
0. At the same time SdH peaks shift to higher fields,
dn/dVbg > 0, and dχ/dn < 0 as is expected for the [Mn1]
doping arrangement.

D. Gate control of sharp QHFm transition at ν = 2

Unlike |0 ↑〉 ↔ |0 ↓〉 QHFm transition at ν = 1, the
|0 ↑〉 ↔ |1 ↓〉 transition at ν = 2 involves states from
different Landau levels and e-e exchange is strongly sup-
pressed. Also, at ν = 2 level crossing has much stronger
B-dependence ~ωc/B ≈ 1.6 meV/T, as compared to
gµB ≈ 0.057 meV/T at ν = 1, which suppresses phase
separation. As a result quantization is lifted in the vicin-
ity of the QHFm transition and a prominent signature in
magnetoresistance is observed20.

Magnetoresistance in sample A is shown in Fig. 4a. A
small peak atB = 7 Tesla in the middle of the ν = 2 state
is the QHFm phase transition between |1 ↓〉 and |0 ↑〉
states, polarization of the top filled energy level changes
across the transition. In the color plots magnetoresis-
tance is plotted as a function of voltage on the front and
back gates (Fig. 4c,d), measurements are performed by
sweeping magnetic field at constant gate voltages. Elec-
tron density increases with the increase of Vbg and Vfg

and peaks between adjacent QHE states shift to higher
B in both plots. In contrast, the QHFm transition B∗

shifts in opposite directions as a function of Vfg and Vbg,
consistent with the modelling of the wavefunction-Mn1
overlap χ(Vg) in Fig. 3d. Note that for B = 7 Tesla
polarization of the top level can be tuned between |1 ↓〉
and |0 ↑〉 states by electrostatic gating, thus realizing the
theoretical concept of Fig. 2a.

Gate control of the s-d exchange is summarized
in Fig. 5a for several wafers. The absolute val-
ues of Mn concentration xMn and s-d overlap χ can-
not be measured independently with high accuracy,
by a relative change of the exchange interaction can
be obtained from the gate dependence of the exper-
imentally measured xeff (Vg)/xeff (0) = χ(Vg)/χ(0).
Slopes dxeff (Vg)/dn(Vg) are in a good agreement with
dχ(Vg)/dn(Vg) obtained from band simulations, Fig. 3d.
Note that the efficiency of the s-d exchange control de-
pends on the |dxeff/dn| slope: dB∗/dn = dχ/dn =
dxeff/dn for QHFm transitions in the integer QHE
regime and dB∗/dn ≈ dχ/dn in the fractional QHE
regime for large fields.
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FIG. 5. (a) Gate dependence of the measured effective Mn
concentration, χeff (VG) for wafers A-D for front (open sym-
bols) and back (solid symbols) gates. Efficiency of s-d ex-
change control depend on the |dxeff/dn| slope: for QHFm
transition in the integer QHE regime (B∗(Vg) − B∗(0)) ∝
(xeff (Vg) − xeff (0)). (b) Arrhenius plot of the Rxx T-
dependence at the QHFm transition, the activation energy is
0.096 meV. Top inset: temperature dependence of Rxx near
ν = 2. Bottom plot: anticrossing of |0, ↑〉 and |1, ↓〉 levels
calculated using spin-orbit Hamiltonian, see text.

E. Spin-orbit-induced gap for ν = 2 QHFm

transition

The height of the peak at B∗ has exponential T -
dependence and vanishes at low temperatures with an
activation energy T0 ≈ 1K, see Fig. 5b. This small gap
can be attributed to the spin-orbit (SO) coupling31, its
value is calculated below for the crossing of two neigh-
boring LLs. Energy spectrum in the presence of SO in-
teractions is calculated by adding Dresselhaus γDκ · σ
and Rashba γRE · (σ × k) spin-orbit terms to the single-
particle Hamiltonian of a 2D gas in magnetic field in
the presence of s-d coupling (1), square well confine-
ment potential in z direction, and electric field poten-
tial eφ(z) ≈ eEzz, see Appendix for details. Here γD
and γR are the Dresselhaus and Rashba constants, and

κ is defined as ({k̂x, k̂2y− k̂2z}, {k̂y, k̂2z− k̂2x}, {k̂z, k̂2x− k̂2y}).
The energy spectrum near |0 ↑〉 and |1 ↓〉 levels crossing
is plotted in the insert in Fig. 5b. The value of the an-
ticrossing gap is found to depend only on the Rashba
spin-orbit coupling

∆SO =
2
√
2|γR〈Ez〉|

ℓ
. (2)

For an average electric field of 〈Ez〉 = 3.5 ·104 V/cm, B =

7 T and γR = 6.9 eÅ
2
the calculated gap ∆SO = 70 µeV,

in a good agreement with the experimentally measured
activation gap of 96 µeV. We note that an ability to open
a topologically trivial (spin-orbit) gap is required for the
localization of non-Abelian excitations11.
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III. CONCLUSIONS

In this paper we propose a new experimentally feasible
platform to realize non-Abelian excitations. The plat-
form is based on the ability to create ferromagnetic do-
mains in a quantum Hall effect regime, where helical do-
main walls are formed at the domain boundaries. These
domain walls, coupled to a superconductor with high crit-
ical field Bc, should support Majorana and higher order
non-Abelian excitations. Topological protection of the
QHE regime insures that only single channel with re-
moved fermion doubling is formed, thus alleviating multi-
channel complication encountered in nanowire-based de-
vices. We do not expect the presence of magnetic impu-
rities to enhance backscattering significantly because of
large Zeeman splitting in Mn at high magnetic fields,
∼ 45 K at 7 Tesla. As a proof-of-concept we devel-
oped CdTe quantum well heterostructures with engi-

neered placement of paramagnetic Mn impurities and
demonstrated local control of the QHFm transition at
ν = 2 by electrostatic gating. Further research is needed
to develop superconducting contacts to CdTe, a possible
path is to overgrow CdTe with HgCdTe/HgTe epilayers
where ohmic contacts with a high-Bc superconductor Nb
have been demonstrated32.
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Appendix: Calculation of spin-orbit–induced anticrossing of LLs in the presence of s-d exchange

A general single-particle Hamiltonian can be written as:

H0 = 1
2m∗

(

−i~∇+ e
cA
)2

+ 1
2gµBB · σ − eφ(r) + Vb(z) (A.1)

− Jσ ·∑i Siδ (Ri − r) + γDκ · σ + γRE · (σ × k) ,

where σ is a vector containing Pauli matrices, φ is an electric potential, and Vb is a confinement potential in z
direction, the fifth term is s-d exchange with Mn impurities and the last two terms are Dresselhaus and Rashba

spin-orbit coupling. κ is defined as ({k̂x, k̂2y − k̂2z}, {k̂y, k̂2z − k̂2x}, {k̂z, k̂2x − k̂2y}), where {A,B} = (AB + BA)/2 and
k = −i~∇+ eA/c. Magnetic field B = (0, 0, B) corresponds to a vector potential A = (0, Bx, 0).
For exchange interaction we use a mean-field model described in the main text −Jρi〈S〉 · σ =

−JρiBS(gµBS|B|/kBT )σ ·b , where ρi is the density of ions, B is the Brillouin function, kB is Boltzmann’s constant,
and b is a unit vector in the direction of magnetic field. We consider high-field limit BS(x) = 1. We also assume
uniform Mn doping in the range zmin < z < zmax. Electric potential is φ(x, z) ≈ −Ezz, we consider Ez > 0.
The Hamiltonian describing motion in z direction is

Hz = − ~
2

2m

∂2

∂z2
+ Vb(z)− e|Ez|z − Jθ(z − zmin)θ(zmax − z)σz . (A.2)

Its eigenvalues for the lowest subband are:

Λs = e|Ez|
[

−w −
(

~
2

2me|Ez|

)
1

3

ai1

]

(A.3)

+
sJ

Ai′ (ai1)
2

{

Ai′[Ξ (zmin)]
2 −Ai′[Ξ(zmax)]

2 −Ai [Ξ (zmin)]
2
Ξ (zmin) + Ai [Ξ (zmax)]

2
Ξ (zmax)

}

where Ai is the Airy function, ai1 is its first zero, Ξ(z) = (w + z)(2me|Ez|/~2)1/3 + ai1, and s = 1 for spin up states
and s = −1 for spin down.
In the presence of perpendicular magnetic field an effective Hamiltonian is

H0 =

(

~ωC

(

a†a† + 1
2

)

+ 1
2 (gµBB + δΛ) i γD√

2ℓ3

(

â†ââ† − a3 − 2ℓ2k2z â
†)+

√
2 γR|Ez|

ℓ â

−i γD√
2ℓ3

[

ââ†â− (â†)3 − 2ℓ2k2z â
]

+
√
2 γR|Ez|

ℓ â† ~ωC

(

a†a† + 1
2

)

− 1
2 (gµBB + δΛ)

)

, (A.4)
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where lowering and rising operators are defined as a† = (k̂y− ik̂x)/
√
2, a = (k̂y+ ik̂x)/

√
2, ℓ =

√

eB/~ is the magnetic
length, and ~ωC = ~eB/m is the cyclotron energy.
We treat spin-orbit couplings as perturbations and found that only Rashba term has a non-zero matrix element

between |0 ↑〉 and |1 ↓〉 energy levels. In the vicinity of crossing the energy spectrum is

E± = ~ωC ± 1

2

√

(~ωC − gµBB − δΛ)
2
+

8γ2
RE2

z

ℓ2
, (A.5)

and the anticrossing gap is given by Eq. 2.
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