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Motivated by the observation of multiphoton electric dipole spin resonance processes in InAs
nanowires, we theoretically study the transport dynamics of a periodically driven five-level system,
modeling the level structure of a two-electron double quantum dot. We show that the observed
multiphoton resonances, which are dominant near interdot charge transitions, are due to multilevel
Landau-Zener-Stückelberg-Majorana interference. Here a third energy level serves as a shuttle that
transfers population between the two resonant spin states. By numerically integrating the master
equation we replicate the main features observed in the experiments: multiphoton resonances (as
large as 8 photons), a robust odd-even dependence, and oscillations in the electric dipole spin
resonance signal as a function of energy level detuning.

PACS numbers: 71.70.Ej, 73.63.Kv, 76.30.-v, 85.35.Gv

I. INTRODUCTION

Harmonic generation occurs in a nonlinear system
when driving at frequency f results in a physical response
of the system at multiples of the driving frequency, e.g.
2f , 3f , 4f , and underpins nonlinear and quantum op-
tics [1, 2]. Two-photon absorption can be observed in
optically pumped systems at high powers [3, 4]. Har-
monic generation has also been observed in semiconduc-
tor systems that are driven with terahertz pulses [5] and
in electrically driven quantum dots [6, 7]. Generally, mul-
tiphoton resonances are only observed at very high drive
fields [8]. As a result, experimental observations are often
limited to two-photon processes.

Multiphoton resonances were recently observed in elec-
tric dipole spin resonance (EDSR) in nanowire and pla-
nar quantum dots [6, 7, 9]. Early experiments in these
systems demonstrated electric driving of single electron
spins [10]. These data were largely consistent with the-
oretical predictions, with an EDSR response observed
when hf = Ezi, where Ezi = giµBB is the Zeeman
energy of the i-th dot, h is Planck’s constant, f is the
frequency of the electric driving field, gi is the electron
g-factor of i-th dot, µB is the Bohr magneton and B is the
applied magnetic field [11, 12]. However, more detailed
investigations revealed that the multiphoton resonances
were strongest when the double quantum dot (DQD) was
driven near the interdot charge transition [9]. The EDSR
harmonics, indexed by integer n, followed the resonance
condition nhf = Ezi and showed a remarkable odd-even
dependence, wherein the sign of the EDSR signal differed
for odd and even n.

In this paper we develop a full model of the DQD,
building upon a three-level model of Danon and Rud-
ner [13]. We start by calculating the time-evolution of a
simple five-level system, which captures the physics of a
two-electron DQD. These simulations demonstrate that
when the DQD is initialized in a spin-blocked state the
system can make a Landau-Zener-Stückelberg-Majorana
(LZSM) transition to an intermediate state, before mak-

ing a final LZSM transition to a resonant unblocked state.
Thus the harmonics can be understood as being a multi-
level LZSM effect [14].

The EDSR resonances were observed in transport mea-
surements. Therefore, to realistically model the exper-
imental system, we add coupling to source-drain elec-
trodes, decoherence, and charge noise [15]. Our work ex-
tends the simple three-level model presented in Ref. [13]
to a complete 5-level system that accurately describes
a two-electron singlet-triplet qubit [16]. The additional
levels are found to contribute to the observed resonances
and allow us to make a quantitative comparison with the
experimental data.

The outline of the paper is as follows. In Sec. II
we describe the dynamics of a driven two-level system
(TLS). The celebrated LZSM equation is introduced be-
fore showing that periodic driving gives rise to n-photon
resonance conditions. In Sec. III we describe the singlet-
triplet energy level diagram of a doubly occupied DQD,
and show qualitatively how multilevel LZSM interference
gives rise to harmonic generation. Finally in Sec. IV,
we add the effects of lead coupling and decoherence to
our model. The calculated response is compared with
the experimental results and shown to reproduce the key
features observed in the data [9].

II. TWO-LEVEL
LANDAU-ZENER-STÜCKELBERG-MAJORANA

DYNAMICS

The LZSM problem describes the evolution of a TLS
that is forced through an energy level anticrossing [17–
21]. LZSM considered a generic TLS with states |0〉 and
|1〉, described by the Hamiltonian:

HTLS =

(
0 ∆
∆ −ε

)
. (1)

Here the detuning parameter ε sets the energy difference
between the states. An off-diagonal matrix element ∆
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Figure 1. (a) Energy level diagram described by Eq. 1. Si-
nusoidal driving with ε(t) = ε0 + ε1 sin(2πft) causes repeated
traversals of the anticrossing. (b) Energy levels as a func-
tion of time for sinusoidal driving. Each passage through
the anticrossing results in some population transfer, analo-
gous to a beam splitter. A phase Φi is accumulated between
beam splitter events. (c) Population of the |1〉 state, P|1〉, as
a function of time for two different values of ε0 [pictured in
(a)]. Dashed lines indicate the times of the LZSM transitions
(i.e. t’s such that ε(t) = 0). For ε0 = −39 µeV, the accumu-
lated phases result in destructive interference and successive
LZSM transitions cancel each other out (blue trace). With
ε0 = −16.5 µeV (red trace) successive LZSM transitions in-
terfere constructively, resulting in nearly complete transfer of
population to the |1〉 state at t ≈ 2 ns.

hybridizes the levels, resulting in an anticrossing of mag-
nitude 2∆ at ε = 0 [Fig. 1(a)].

In the LZSM problem the energy difference between
the states is varied with a linear level velocity v = d|E|1〉−
E|0〉|/dt, where E|1〉 (E|0〉) is the energy of the |1〉 (|0〉)
state. This can be accomplished by driving the detuning
according to ε(t) = vt. Starting in state |0〉 at time
ti = −∞, the probability of remaining in state |0〉 at
time tf = +∞ is given by the LZSM formula [17–20]:

PLZSM = exp

(
−2π

∆2

~v

)
, (2)

where ~ is the reduced Planck’s constant. When ~v �
∆2, PLZSM ≈ 0 and the evolution is adiabatic. The sys-
tem remains in the instantaneous eigenstate. In the op-
posite limit PLZSM ≈ 1 and the sudden change approxi-
mation can be made. Here a TLS that starts in |0〉 will
remain in |0〉 after the sweep through the anticrossing.

With intermediate level velocities, a sweep through the
anticrossing will generate a superposition of states |0〉 and
|1〉 [22–24]. This physics has been harnessed for quan-
tum control in a variety of systems, including Rydberg
atoms [25, 26], nitrogen vacancy centers [27, 28], and
GaAs DQDs [29].

A. Two-level dynamics under periodic driving

The effects of quantum interference are revealed when
the system is repeatedly driven through an anticross-
ing. Consider the case of sinusoidal driving. Here
ε(t) = ε0 + ε1 sin (2πft), where ε0 is a fixed detuning
set by dc gate voltages in the experiment and ε1 = eVac
is the amplitude of the ac drive. The ac drive results
in two anticrossing traversals for each cycle of the drive
field, with an approximate level velocity:

v ≈ 2πε1f

√
1−

(
ε0
ε1

)2

. (3)

In Fig. 1(b) we plot the energy levels as a function of time
for sinusoidal driving with f = 2 GHz, ε1 = 100 µeV,
∆ = 4 µeV, and ε0 = −16.5 µeV. A system initialized in
|0〉 at t = 0 will be forced through the anticrossing every
time that ε0 = −ε1 sin (2πft). For our driving parame-
ters the first crossing happens at t = 0.01 ns. After the
first sweep through the anticrossing the probability of re-
maining in the |0〉 state is approximately PLZSM = 0.9.
The non-unity probability results in the system entering a
superposition of states |0〉 and |1〉. After the anticrossing
the states accumulate a relative phase Φ1 due to their en-
ergy difference. At time t = 0.21 ns the system is forced
back through the anticrossing, interfering the two-paths
of the interferometer.

Such interference occurs twice during each cycle and
depends on the phases Φ1 and Φ2. Additionally the total
accumulated phase Φ1 +Φ2 will result in interference be-
tween subsequent cycles. Depending on the precise value
of the phase the system will exhibit behavior ranging
from constructive to destructive interference. To illus-
trate this we plot the occupation of state |1〉, P|1〉, as a
function of time in Fig. 1(c). We use two different val-
ues of the offset detuning ε0 and numerically integrate
Schrödinger’s equation with the Hamiltonian in Eq. 1.
For ε0 = −16.5 µeV the phase accumulation results in
constructive interference and P|1〉 oscillates between 0
and 1. For ε0 = −39 µeV, however, the interference
is destructive. As such the population transfer resulting
from one LZSM transition is immediately canceled out
by the next LZSM transition.

In the fast driving limit (where 1 − PLZSM � 1),
the condition for constructive interference can be de-
rived by considering the phase accumulation Φ1 occur-
ring between the first and second LZSM transition and
Φ2 occurring between the second and the third LZSM
transition [see Fig. 1(b)]. For constructive interference
to occur Φ1 − Φ2 = 2nπ for an integer n [21]. With

Φi =
ti+1∫
ti

E|1〉−E|0〉
~ dt ≈

ti+1∫
ti

ε0+eVac sin(2πft)
~ dt, the reso-

nance condition reduces to nhf = ε0. Here ti is the time
of the i-th anticrossing traversal. This can be interpreted
as an n-photon resonance condition and has been ob-
served in several studies on both superconducting qubits
[30, 31] and GaAs charge qubits [32].
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Figure 2. DQD energy levels plotted as a function of detuning
ε with B = 45 mT. Interdot tunnel coupling ∆ = 16.5 µeV
hybridizes the S(2,0) and S(1,1) states, while the spin-orbit
coupling ∆so = 4 µeV hybridizes the S(2,0) state with the
T+(1,1) and T−(1,1) states.

III. PERIODICALLY DRIVEN
TWO-ELECTRON DOUBLE QUANTUM DOT

EDSR experiments are typically performed near a
Pauli-blocked interdot charge transition, where the to-
tal number of electrons in the DQD is even [10, 33]. We
use a five-level Hamiltonian to capture the singlet-triplet
physics of this system. Starting with the DQD initial-
ized in a spin-blocked triplet state, we show that multi-
level LZSM interference leads to harmonics in the EDSR
response near zero detuning [13].

A. Double quantum dot energy level diagram

To reflect the experimental conditions we consider a
spin-orbit qubit defined in an InAs nanowire, as schemat-
ically shown in the inset of Fig. 2. We note that robust
Pauli blockade has been observed in many experiments
at higher electron occupancies [9, 34, 35]. For simplicity,
we therefore consider a DQD in the two-electron regime,
with one electron in each dot (1,1), or with two elec-
trons in one dot, e.g. (2,0). Here we use the notation
(Nl,Nr), where Nl (Nr) is the number of electrons in the
left (right) dot. In the (1,1) charge configuration there
are four spin states, the singlet state S(1,1) and the three
triplet states T−(1,1), T0(1,1), T+(1,1), with total spin
components ms = −1, 0,+1. An external magnetic field
results in Zeeman splitting of the electronic spin states
with Ez1 = g1µBB and Ez2 = g2µBB. The g-factors
are generally different due to strong spin-orbit coupling.
We set g1 = 7.8 and g2 = 6.8 to match the values mea-
sured in Ref. [9]. Due to the tight electric confinement
there is a large singlet-triplet splitting Est = 5.4 meV.
As a result, the (2,0) triplet manifold can be neglected
in most experimental situations. The Hamiltonian in the

five-state basis (|S(1, 1)〉, |S(2, 0)〉, |T0(1, 1)〉, |T−(1, 1)〉,
|T+(1, 1)〉) can be written as:

HDQD =
0 ∆ Ez1−Ez2

2 0 0
∆ −ε 0 ∆so ∆so

Ez1−Ez2

2 0 0 0 0
0 ∆so 0 Ez1+Ez2

2 0
0 ∆so 0 0 −Ez1+Ez2

2

 . (4)

Here ε is the detuning, ∆ is the interdot tunnel coupling,
and ∆so generates spin-orbit anticrossings [36, 37]. The
resulting energy level diagram is shown in Fig. 2 with pa-
rameters ∆ = 16.5 µeV, ∆so = 4 µeV [37–40]. These pa-
rameters are taken from Ref. [9] and the well-established
material properties of InAs [41–43].

B. Time evolution of the five-level double quantum
dot

To illustrate the importance of LZSM dynamics we
time-evolve the five-level system described by Eq. 4. This
simple model reproduces the strong detuning dependence
that is observed in the experimental data. The system is
initialized in the T+(1, 1) state and propagated under an
oscillatory detuning of the form ε(t) = ε0 + ε1 sin (2πft),
with B = 45 mT, and ε1 = 1.3 meV. Figures 3(a–d)
show the T0(1,1), T+(1,1), and S(2,0) state occupations
as a function of time. For panels (a,c) we choose driv-
ing that corresponds to a one-photon resonance between
the T+(1,1) and T0(1,1) states. For panels (b,d) the
drive corresponds to a two-photon resonance between the
T+(1,1) and T0(1,1) states. In the far detuned region (ε0
= 1.9 meV) the ac drive does not have a large enough
amplitude to force the system through the anticrossings
near ε = 0. In this case population transfer into the
T0(1,1) state is visible for the n = 1 harmonic, as seen
in Fig. 3(a) [11]. However, the dynamics for the n = 2
resonance proceed on a significantly slower time scale, as
expected from standard spin resonance theory [8]. For
both the n = 1 and n = 2 resonance conditions, there
is no significant population transfer into the S(2,0) state
[see Fig. 3(a,b)].

When |ε0| . ε1 the dynamics are radically different.
Here the system is repeatedly forced through the level
anticrossings, causing a portion of the population to be
transferred to the S(2,0) state, from which the system
can make further LZSM transitions to either the T+(1,1)
or T0(1,1) state. Evidence of these processes can be seen
in Fig. 3(c,d). For both the n = 1 and n = 2 resonances
clear population transfer is observed between the T+(1,1)
and T0(1,1) states. The population transfer is mediated
by the S(2,0) state, as evidenced by the periodic jumps
of the S(2,0) state population. Since transitions to both
the T−(1,1) and S(1,1) states are not resonant, there is
no significant population transfer into them. Finally note
that the timescale over which population transfer occurs
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Figure 3. S(2,0), T0(1,1), and T+(1,1) occupation probabil-
ities plotted as a function of time with ε1 = 1.3 meV and
B = 45 mT. The system is initialized in the T+(1,1) state at
t = 0. In (a,c) f is chosen to drive a n = 1 photon EDSR pro-
cess between the T+(1,1) and T0(1,1) states, while for (b,d)
f is chosen to drive a n = 2 photon EDSR process between
the T+(1,1) and T0(1,1) states. There is a remarkable differ-
ence between the dynamics when the levels are far detuned
[ε0 = 1.9 meV in (a,b)] compared to when the levels are near
zero detuning [ε0 = -0.05 meV (c,d)]. Near zero detuning, spin
transfer processes occur with significant population transfer
into the S(2,0) state, and occur on a much faster timescale
than in the case of far detuning. Since in all cases the S(1,1)
and T−(1,1) states (not shown) are not on resonance, there
is no significant population transfer into these states.

is much shorter when |ε0| . ε1.

IV. TRANSPORT CYCLE

In the previously reported experiments [9], the EDSR
response is detected by measuring the dc current through
the DQD. The DQD is configured at finite bias in Pauli
blockade. Resonant ac driving rotates the electronic spin
states, lifting the Pauli blockade, resulting in a small,
but measurable current [10, 33]. To make a quantitative
comparison with experiment we therefore model the full
transport cycle of the DQD. As seen in Fig. 4(a), starting
from the empty (1,0) state, tunneling from the right lead
results in the (1,1) charge configuration. If a polarized
(1,1) triplet state is loaded, the transport cycle becomes
blocked as tunneling into the (2,0) charge configuration
is forbidden by the Pauli exclusion principle [44]. The
Pauli blockade can be lifted by driving an EDSR tran-
sition, which rotates a blocked (1,1) state [T−(1,1) or
T+(1,1)] to an unblocked state [S(1,1) or T0(1,1)]. In
our case T0(1,1) is unblocked due to the difference in
g-factors, which leads to further rotation to the S(1,1)

(1,0)

T+(1,1) T0(1,1) T-(1,1) S(1,1)

S(2,0)ΓR

4 Γcharge
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Γspin
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Figure 4. (a) Illustration of the charge transport cycle. Start-
ing from the (1,0) charge state an electron is loaded into the
right dot. If a (1,1) triplet state is loaded the transport be-
comes blocked until the spin is rotated into the S(1,1) state,
from which the system can tunnel to S(2,0) and then into the
left lead. (b) Illustration of the various processes included in
simulations of the transport dynamics. Black arrows indicate
relaxation and incoherent tunneling processes, while green ar-
rows indicate coherent processes that arise due to the periodic
driving.

state. Strong electron-phonon coupling results in fast re-
laxation from the S(1,1) state to the S(2,0) state. The
electron then tunnels to the left lead with rate ΓL, com-
pleting the transport cycle.

A. Time evolution

We model the time dependence of the periodically
driven system by evolving the density matrix ρ using the
master equation:

dρ

dt
=− i

~
[HDQD, ρ] + ΓLD [|(1, 0)〉 〈S(2, 0)|] ρ+ (5)

ΓR

4
D [|S(1, 1)〉 〈(1, 0)|] ρ+∑

j

D [|Tj(1, 1)〉 〈(1, 0)|] ρ+

∑
j

ΓspinD [|S(1, 1)〉 〈Tj(1, 1)|] ρ+

ΓS(2,0)D [|S(2, 0)〉 〈S(2, 0)|] ρ+

Θ (ε) ΓchargeD [|S(2, 0)〉 〈S(1, 1)|] ρ+

Θ (−ε) ΓchargeD [|S(1, 1)〉 〈S(2, 0)|] ρ.

Here D [A] ρ = −1/2{A†A, ρ} + AρA† is the Lindblad
superoperator describing relaxation and decoherence, j
spans the ms = 0, +1, and −1 triplet states. Θ(x) is the
Heaviside step function. As shown in Fig. 4(b), terms
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Figure 5. (a) Measured current I through the device as a
function of magnetic field B and frequency f . With the DQD
configured at zero detuning a large number of multiphoton
resonances are observed. Adapted from Ref. [9]. (b) Calcu-
lated current through the DQD as a function of B and f . The
color-scale axes are slightly different since the off-resonance
leakage current measured in experiment is device specific.

with ΓL (ΓR) account for coupling to the left (right) lead:
the ΓL term relaxes the S(2,0) state into the empty (1,0)
state, while the ΓR term moves the population from the
empty state to one of the four (1,1) spin states. Note that
our model assumes unpolarized lead tunneling. There-
fore the tunneling probability into any of the (1,1) spin
states is equal. Γcharge is included to account for charge
relaxation, which is known to take place on nanosecond
timescales in semiconductor DQDs. For ε > 0, Γcharge

relaxes the S(1,1) state into the S(2,0) state, while for
ε < 0 this process is reversed. This ensures that charge
relaxation only takes place from a state of higher energy
to a state of lower energy. Γspin models spin relaxation,
which is relatively slow in semiconductor DQDs. Finally
ΓS(2,0) [not pictured in Fig. 4(b)] results in charge deco-
herence.

B. Charge transport and the role of decoherence

We now simulate the experimental system using realis-
tic parameters to account for tunnel coupling to the leads,
charge noise, and dephasing. To match typical experi-
mental conditions, we set ΓL = ΓR = 2 GHz, Γcharge = 1
GHz, ΓS(2,0) = 10 GHz, and Γspin = 1 MHz. The param-
eters in the Hamiltonian describing the DQD are speci-

fied in Sec. III. For each value of B and f we initialize the
system in the (1,0) state. We then numerically propagate
the system in time until the system reaches a steady state
(typically after 20 ns of evolution). We can then write
the current as I = eΓRP(1,0), where P(1,0) is the extracted
steady state population of the (1,0) state. We note that
for typical drive parameters the minimum time between
the T+(1,1)↔S(2,0) and the S(2,0)↔T0(1,1) LZSM tran-
sitions is on the order of a picosecond. As a result, the
S(2,0) state can still act as an intermediary that trans-
fers population between the other levels, despite the large
relaxation and decoherence rates.

In Figs. 5(a,b) we compare the spectroscopic data ob-
tained in the experiments with our model. Figure 5(a)
shows the data that were obtained with ε0 = 0. Here
the current I is plotted as a function of magnetic field
strength B and the applied excitation frequency f . For
n = 1 two distinct resonance lines of increased current
are visible. These correspond to Ez1 (g1 = 7.8) and Ez2

(g2 = 6.8). Higher photon transitions display a striking
odd-even dependence. Multiphoton resonances up to n
= 8 are observed. In Fig. 5(b) we plot the current I as a
function of B and f , as calculated by the model described
above. Following previous work, we include the effects of
quasi-static charge noise by using Gaussian smoothing of
the response [40, 45, 46]. In this plot the effects of charge
noise are included by sampling 30 different randomly cho-
sen offset detunings and weighing the final response with
a Gaussian of width σcharge = 60 µeV centered around
ε0 = 0. The effects of the fluctuating nuclear field are in-
cluded by smoothing the response in B with a Gaussian
of width 3.3 mT, which is the fluctuating Overhauser field
measured in Ref. [9]. This Overhauser field is consistent
with other values reported in the literature [47].

The results of our model replicate the overall struc-
ture of the experimental data. Both the large number of
higher photon transitions and the odd-even dependence
of the leakage current are in qualitative agreement with
the data. At a finer level, there are some slight deviations
between the theoretical predictions and the experimental
data. The observed current is in general higher then our
model predicts. We attribute this to imperfect fitting of
the tunneling rates. The simulations also exhibit faint
high frequency oscillations (oriented horizontally in the
figure) that are largely independent of B. We attribute
this to the imperfect modeling of the charge noise.

The experimental data also exhibit a characteristic de-
tuning dependence. To make a valid comparison with
experiments, we define ∆Ires as the change between res-
onant and non-resonant leakage current. In the experi-
ment this quantity was obtained by measuring the cur-
rent along nhf = g1µBB and subtracting from it the
current found approximately 5 mT away [9]. Figure 6
plots ∆Ires for ε1 = 1.3 meV and f = 4.7 GHz (succes-
sive harmonics are achieved by increasing B). The data
points are adapted from Ref. [9], while solid lines show
the calculated ∆Ires from the model. We note that all
experimentally observed features are reproduced. First,
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the odd-even dependence is evident. Near zero detuning
∆Ires has a maximum (minimum) for odd (even) photon
resonances. Second, the number of oscillations in ∆Ires
increases with n, as observed in experiment. Lastly, the
magnitude of ∆Ires is in good agreement with the data.

V. CONCLUSION

We have shown that the multiphoton resonances re-
cently observed in EDSR experiments are due to multi-
level LZSM interference. The fact that these high order
processes are possible raises several intriguing possibili-
ties. For example, since the mechanism for population
transfer is quite distinct from traditional Rabi oscilla-
tions, one could obtain very fast population transfer, an
attractive proposition for quantum manipulation [48, 49].
With smaller charge noise it would also be possible to per-
form a direct measurement of the spin-orbit gaps [50] and
investigate the interplay of the spin-orbit and hyperfine
interactions, both of which open gaps between the S(2,0)
state and the T+(1,1) and T−(1,1) states [51]. Finally
we note that so far experiments studying LZSM processes
have focused on the zero detuning region near the singlet
state anticrossing. However, similar behavior should also
be observable near anticrossings with the states in the
(0,2) triplet manifold. Due to the use of transport as a
probe of spin states, these have so far been experimen-
tally inaccessible. However, recent developments of fast
cavity based readout [40, 52] should make this exciting
regime within reach of experimental studies.
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