
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Heisenberg necklace model in a magnetic field
A. M. Tsvelik and I. A. Zaliznyak

Phys. Rev. B 94, 075152 — Published 26 August 2016
DOI: 10.1103/PhysRevB.94.075152

http://dx.doi.org/10.1103/PhysRevB.94.075152


Heisenberg Necklace Model in a Magnetic Field

A. M. Tsvelik and I. A. Zaliznyak

Condensed Matter Physics and Material Science Division,

Brookhaven National Laboratory, Upton, NY 11973-5000, USA

Abstract

We study the low-energy sector of the Heisenberg Necklace model. Using the field theory meth-

ods, we estimate how the coupling of the electronic spins with the paramagnetic Kondo spins affects

the overall spins dynamics and evaluate its dependence on a magnetic field. We are motivated by

the experimental realizations of the spin-1/2 Heisenberg chains in SrCuO2 and Sr2CuO3 cuprates,

which remain one-dimensional Luttinger liquids down to temperatures much lower than the in-

chain exchange coupling, J . We consider the perturbation of the energy spectrum caused by the

interaction, γ, with nuclear spins (I = 3/2) present on the same sites. We find that the resulting

Necklace model has a characteristic energy scale, Λ ∼ J1/3(γI)2/3, at which the coupling between

(nuclear) spins of the necklace and the spins of the Heisenberg chain becomes strong. This energy

scale is insensitive to a magnetic field, B. For µBB > Λ we find two gapless bosonic modes that

have different velocities, whose ratio at strong fields approaches a universal number,
√
2 + 1.

PACS numbers: PACS numbers: 71.10.Pm, 72.80.Sk
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I. INTRODUCTION

The problem of interaction of electronic spins with “extrinsic” magnetic moments has first

emerged in metals, where this interaction leads to strong renormalization of the properties

of the bulk1. Quantum critical phases2 in strongly correlated magnetic insulators whose low-

energy behavior is described by a system of spins interacting via Heisenberg exchange, are

also sensitive to interactions with extrinsic magnetic moments, such as magnetic impurities,

or nuclear spins, which are universally present in real materials3. The response of a spin

system near quantum criticality often exhibits fascinating impurity-driven physics, such as

found in lightly doped cuprates and related two-dimensional Mott insulators4,5. On the other

hand, in some complex alloys with rare earths there is a lattice of macroscopically many

magnetic rare-earth “impurity” spins even for ideal stoichiometric materials, and they can

dramatically modify the spin dynamics of the host magnetic 3d ions6,7. Such cooperative

coupling of Ni2+ spins to paramagnetic rare-earths induces criticality in the Haldane (S=1)

chain antiferromagnet R2BaNiO5, leading to magnetic order at a finite temperature7,8.

In a spin system near quantum criticality, the hyperfine coupling of the electronic and

the nuclear spins becomes important at very low energy, since many abundant magnetic

isotopes have non-zero nuclear spin, I,3. Furthermore, electronic spins can also interact

with the nuclei of the nearby ligand ions9. In studies of magnetic-field-induced quantum

phase transitions it has been observed that these hyperfine interactions could result in an

avoided electronic quantum criticality. Instead of the expected full softening at the critical

field, the electronic spin excitation spectrum was found to have a gap, which increases with

the decreasing temperature, while a soft mode is induced in the nuclear spin system, which

”takes over” the quantum critical behavior10–12.

Here, we are motivated by the experimental situation in the chain cuprates, SrCuO2 and

Sr2CuO3, probably the most one-dimensional (1D) spin-1/2 model antiferromagnets known

to date. These materials have crystal structure composed of chains of corner-sharing CuO4

square plaquettes, where strong Cu-O hybridization results in an exceptionally strong in-

chain superexchange, J ∼ 2500 − 2800 K,13,14. Small orbital overlaps between the planar

CuO4 plaquettes on neighbor chains lead to an extremely small inter-chain coupling, J ′/J .

5 · 10−4, resulting in an almost ideal spin-chain structure, where a transition to the 3D

antiferromagnetically ordered state occurs only below about 5.5 K15,16. Such tremendous
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disparity between the two energy scales suggests that the hyperfine interactions with Cu

nuclear spins (I = 3/2) might be important. Even though the hyperfine coupling constant

for Cu is only ∼ 1.5 · 10−3 meV (∼ 17 mK),9 in a combination with the strong in-chain

exchange it can generate an energy scale comparable to the ordering temperature and thus

markedly modify the low-energy dynamics of the 3D ordering.

Recently, a very unusual dependence of the magnon gaps on a magnetic field has been

reported in Sr2CuO3, which was attributed to the interaction with the putative Higgs mode17.

However, a possibility that it could be explained by the necklace-type coupling to the nuclear,

or the impurity spins, has not been considered. Our present analysis essentially rules out

such a possibility.

The effect of a magnetic field on the system of electronic and nuclear spins coupled by

the hyperfine interaction presents an interesting extension of the Kondo chain problem.

This is because nuclear magnetic moments are roughly 2000 times smaller than those of

electrons, and therefore their interaction with magnetic field can be neglected and field can

be considered as acting selectively on the spins of the host antiferromagnetic chain.

We thus consider the case of perhaps the best understood quantum-critical spin system,

the one-dimensional spin-1/2 Heisenberg antiferromagnet19, where each of the electronic

spins is coupled to an additional free spin, which resides on the same lattice site. This

model, which is an extension of the Kondo necklace model,18 was previously considered in

the context of the Haldane gap problem, where authors tagged it a spin-rotator chain,20,21.

The authors established the existence of a characteristic energy scale, Λ, below which the

coupling between the host and the nuclear spins become strong. Our calculations support

this and give the same estimate for this scale.

The case of a single impurity coupled to the bulk spin-1/2 chain was considered in Ref.22,

where authors found that the impurity interaction with the bulk spins is relevant for either

sign (ferro- or antiferro-magnetic) of the coupling, but that a single impurity is screened by

the gapless modes of the bulk in a full analogy to the single impurity Kondo effect. As a

result the system flows to an open chain with the decoupled impurity of spin I − 1/2, with

the effective number of spin sites lowered by three for ferromagnetic impurity coupling and

by one for antiferromagnetic impurity coupling from the original chain length. However,

we will demonstrate that the analogy between the single impurity and the Kondo necklace,

where the density of impurities equals to the number of cites in the chain, is a superficial at
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best. Indeed, in both cases the interaction between the Heisenberg and the localized spins

scales to strong coupling, but the energy scale at which it reaches the strong coupling limit,

is different and for the necklace model is much larger (γ4/3 versus γ2 for the single impurity,

with γ being the hyperfine coupling). This disparity of the energy scales is related to the fact

that the nuclear spins act collectively. This collective behavior emerges due to the effective

inter-spin exchange interaction (an analogue of the Ruderman-Kittel-Kasuya-Yoshida or

RKKY interaction) which is absent in the single impurity model. This interaction also

determines the behavior of the system in the strong coupling limit. The remaining effective

spins interact and display a collective behavior for which we have derived a sigma model

description.

The necklace model has also been analyzed numerically using the flow equations23, and

authors concluded that quantum critical state only exists at zero coupling, and that any finite

coupling to the “Kondo” spins generates a spin gap, thus avoiding quantum criticality. We

claim that the latter statement is only correct for half-integer nuclear spins; for integer spins,

I, the model remains critical and in the same universality class as the spin-1/2 Heisenberg

chain. We further consider magnetic field, which acts selectively on the host spins, but not

on the nuclear ones. It is found that the characteristic energy scale survives and becomes

a crossover scale between the weak coupling high energy regime and the strong coupling

low energy quantum critical one. At low energy, there are two critical modes with different

velocities whose ratio approaches a universal limit at µBB ≫ Λ.

II. THE MODEL

We consider an isotropic S=1/2 Heisenberg chain where each spin is coupled with another

localized spin by an additional isotropic exchange interaction:

H =
∑

j

[

J(SjSj+1) + γSjIj + µBBS
z
j

]

. (1)

As one of the applications this model describes interaction with nuclear spins located on

the same sites as the electronic ones, if we adopt an approximation where only contact part

of the dipole-dipole interaction is important. In what follows we will call Ij “nuclear”spins

although they do not need to be such, as the derivation is carried out for the general case.
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III. THE LOW ENERGY DESCRIPTION. SMALL MAGNETIC FIELD

To derive a continuum limit of model (1) it is most convenient to use the path integral

representation. In this representation, the nuclear spins are replaced as Ij = INj, where

Nj is a unit vector field with the Berry phase action. As far as the Heiseberg chain is

concerned, at energies ≪ J we can use the continuum limit description, which is given

by the SU1(2) Wess-Zumino-Novikov-Witten (WZNW) theory24 (see also19). The resulting

action for energies ≪ J is given by:

S =
∑

j

IA[Nj ] +W [g] + iγI
∑

j

(−1)j
∫

dτNjTr[~σ(g
+ − g)], (2)

where I = IN, N2 = 1, g(τ, x) is the SU(2) matrix field, and W [g] is the action of the

SU1(2) WZNW theory, A[N] is the Berry phase. The Heisenberg spins are related to the

WZNW fields:

Sj =
i

2π
Tr(~σg∂xg

+) + i(−1)jCTr[~σ(g − g+)], (3)

where C is a nonuniversal amplitude. The WZNW model is a critical theory with a linear

excitation spectrum, ω = v|k|, v = πJ/2.

In the interaction term in (2) we kept only the most relevant term, which describes the

interaction of the nuclear spins with the staggered magnetization of the Heisenberg chain.

This action is not yet what we need since the nuclear spin variables remain discreet. In order

to obtain the continuum limit, we have to integrate out the fast components of the nuclear

spins. We assume that at low energies the nuclear spins have a short range antiferromagnetic

order, so we can write,

Nj = m(x) + (−1)j(1−m2)1/2n(x), x = a0j, (4)

where n2 = 1 and |m| ≪ 1. The validity of this assumption is justified by the final result,

which demonstrates that the correlation length of the nuclear spins is much larger than the

lattice constant. Substituting this into (2) and following the well known procedure25 (see

also19) we obtain,

S =

∫

dτdx
{ iI

2

(

n[∂τn× ∂xn]
)

+ iI(m[n× ∂τn])

+iγI(1−m2)1/2Tr[(~σn)(g − g+)]
}

+W [g]. (5)
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Now notice that G = i(~σn) is an SU(2) matrix. Hence, h = gG+ is also an SU(2) matrix

and we can use the identity26:

W [hG] = W [h] +W [G] +
1

2π

∫

dτdxTr(h+∂hG∂̄G+), (6)

∂, ∂̄ = 1
2
(∂τ ∓ iv∂x), so that the action (5) becomes

S = Smass + Sm + Sn +
1

2π

∫

dτdxTr(h+∂hG∂̄G+), (7)

Smass =W [h] + γI

∫

dτdxTr(h+ h+), (8)

Sm =

∫

dτdx
{D

2
m2 + iI(m[n× ∂τn])

}

, (9)

Sn = W [i(~σn)] + I(top-term), (10)

(top-term) =

∫

dτdx
i

2

(

n[∂τn× ∂xn]
)

, (11)

where

D = γI〈Tr(h+ h+)〉 ∼ (Iγ)4/3. (12)

The latter estimate follows from the fact that h-matrix operator in the SU1(2) WZNWmodel

has scaling dimension 1/2. In a (1+1)-dimensional critical theory, a relevant perturbation

with a scaling dimension d and coupling constant λ generates a spectral gap, Λ ∼ λ1/(2−d).

Consequently, the perturbation itself acquires a vacuum expectation value, ∼ Λd ∼ λd/(2−d),

giving rise to (12).

Integrating over m and taking into account that

W [i(~σn)] =
1

2π

∫

dτdx[v−1(∂τn)
2 + v(∂xn)

2]

+(1/2)× (top-term), (13)

we obtain the effective Lagrangian density for the slow field n:

L =
1

2

(I2

D
+

1

πv

)

(∂τn)
2 +

v

2π
(∂xn)

2

+
i(I − 1/2)

2

(

n[∂τn× ∂xn]
)

, (14)

plus the action for the massive part:

Smass = W [h] + γI

∫

dτdxTr(h+ h+)

+

∫

dτdxTr(JL[n× ∂̄n]). (15)

6



The mass gap Λ serves as the ultraviolet cut-off for the sigma model (14). The corrections

to the sigma model generated by the last term in (15) carry higher power of gradients of the

n-field and therefore can be discarded for momenta < Λv−1.

The uniform magnetic field couples only to the electronic spins, through WZNW currents:

µBB(JzL + JzR) =
µBB

2π
Tr

[

σz(g∂̄g+ − g∂g+)
]

=
iµBB

2π
Tr

(

σzg∂xg
+
)

. (16)

After the transformation, g = hG, we obtain,

i[hσzh+(G∂xG
+) + σzh∂xh

+] ≈ iσz[(G∂xG
+) + h∂xh

+], (17)

that is, the field couples uniformly to the high and low energy modes.

IV. EXTRACTING THE RESULTS

Let us take a closer look at (15). We will use the remarkable property of the SU1(2)

WZNW that it can be reformulated as a theory of noninteracting bosonic field (the Gaussian

model) so that

W [h] + γI

∫

dτdxTr(h + h+)

=

∫

dτdx
[1

2
(∂µΦ)

2 − γI cos(
√
2πΦ)

]

, (18)

with the identification,

h =
1√
2





ei
√
2πΦ ei

√
2πΘ

−e−i
√
2πΘ e−i

√
2πΦ



 , (19)

where Θ is the field dual to Φ: [Φ(x), ∂yΘ(y)] = iδ(x− y). Hence, the model (8) describing

the high energy part of the spectrum is equivalent to the sine-Gordon model with a coupling

constant β2 = 2π:

Lmass =
1

2
(∂µΦ)

2 − γI(1− <m2 >)1/2 cos(
√
2πΦ)

+
µBB√
π
∂xΦ, (20)
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and is exactly solvable (see, for example,27 or19). The spectrum at this value of β in zero

magnetic field consists of a massive triplets and one singlet breather with the mass Λ2 =
√
3Λ1:

ǫ(p)n =
√

(vp)2 + Λ2
n, Λn ∼ J1/3(γI)2/3(1−m2

z)
1/3. (21)

Here Λ1 = CΛ with C being a known numerical constant.

A finite magnetic field has two effects. Firstly, it creates finite magnetization of the

nuclear spins, 〈mz〉 6= 0, and this leads to a decrease in the mass gap (21). Secondly, as we

discuss below, for fields above the threshold, µBB > Λ1, the magnetization appears in the

Heisenberg spin sector.

The sigma model (14) can be conveniently rewritten in the canonical form,

L =
1

2πg
[c−1(∂τn)

2 + c(∂xn− (h× n])2]

+i(I − 1/2)× (top-term), n2 = 1, (22)

where g is the dimensionless coupling constant,

c = vg, g = (1 + πvI2/D)−1/2 ∼ (γ/J
√
I)2/3. (23)

The condition g ≪ 1 validates the self-consistency of the semiclassical approach adopted

here. The O(3) sigma model with the topological term is integrable when the coefficient I

at this term is an integer factor27–29. If I − 1/2 is half integer, the spectrum of the sigma

model (22) is gapless, if not, it is gapped:

ǫ(p) =
√

c2p2 +∆2, ∆ ∼ Λg−1e−1/g, (24)

where Λ ∼ J1/3(γI)2/3 is the sigma model energy cut-off.

The above derivation is valid for any type of necklace, but the case most interesting from

the practical point of view is when the I-spins are nuclear ones not just in name. For nuclear

spins the exchange coupling γ is minuscule, and therefore the sigma model coupling constant

is also tiny. As a result, one can neglect all nonlinearities in (22) and consider n as a free

field. Hence, for magnetic fields small in comparison to Λ the low-energy spectrum of the

necklace model consists of three gapless modes:

ωz = c|q|, ωx,y = c|q − h|. (25)
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V. STRONG MAGNETIC FIELD µBB ≫ J1/3(Iγ)2/3

Here we consider the situation where the magnetization caused by the applied field is

small, 〈Sz〉 ≪ 1. In this case one can neglect the changes in the Luttinger parameter

caused by the field. The uniform field can be removed by a unitary transformation, so that

the longitudinal part of the staggered magnetization becomes oscillatory. Then, it is more

convenient to use the abelian bosonization:

Sz −m =
1√
π
∂xΦ + (−1)n sin(

√
2πΦ+ 2kFx) + ... (26)

The staggered components of the transverse magnetization are cos(
√
2πΘ) and sin(

√
2πΘ),

where the dual field Θ is not shifted.

In order to maximize the energy gain, the nuclear spins have to adjust to the Heisenberg

spins-1/2. The best configuration still respecting the condition I2j = I2 is,

Ij/I = m+
√
1−m2(−1)jn, (27)

n = (cos(α+ 2kFx), sin(α + 2kFx) cos(2kFx+ φ),

sin(α + 2kFx) sin(φ+ 2kFx)), (28)

where ∂xα, ∂xψ ≪ 2kF and m is a fluctuational component to be integrated out. Discarding

the fast oscillatory terms, we obtain for the exchange interaction:

γ
√
1−m2

2
[sin(

√
2πΦ− α) + sin(α− ψ −

√
2πΘ)]

=
γ
√
1−m2

2
Tr(h+g + g+h), (29)

where

g+ =
i√
2





−e−iα ei(α−ψ)

ei(ψ−α) eiα



 , h =
1√
2





ei
√
2πΦ ei

√
2πΘ

−e−i
√
2πΘ e−i

√
2πΦ



 . (30)

Now we can use the fact that the XXX spin-1/2 Heisenberg model is described by the SU1(2)

WZNW model with matrix field h. We shift h-field by g using the identity (6). This yields

the massive sine-Gordon theory and the WZNW action:

W [h] =
1

16π

∫

dτdx[(∂µα)
2 + (∂µ(ψ − α))2] (31)

The Berry phase is still equal to

iI

∫

dτdx
(

m[n× ∂τn]
)

, (32)
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where n in this case is given by (28). We have to integrate it over m, as in Eq. 9, to get,
∫

dx
1

2D
(∂τn)

2 =
1

2D

∫

dx
[

(∂τα)
2 + sin2(2kFx+ α)(∂τψ)

2
]

=
1

2D

∫

dx
[

(∂τα)
2 +

1

2
(∂τψ)

2
]

, (33)

where D is given by (12). Combining (31,33) we get the effective low-energy description in

terms of the Gaussian model of two fields

L =
1

2
(D−1 + 1/4πv)

[

(∂τα)
2 +

1

2
(∂τψ)

2
]

+
v

8π

[

(∂xα)
2

+
1

2
(∂xψ)

2
]

− 1

8π

[

v−1∂τα∂τψ + v∂xα∂xψ
]

. (34)

Diagonalizing the action in the leading order in D/v we obtain the following spectrum:

ω± = |q|
[Dv

4π
(1± 1/

√
2)
]1/2

(35)

There are two gapless modes whose ratio of the velocities is equal to
√
2 + 1. They exist

at momenta |q| < Λv−1, below the gap of the sine-Gordon model. The energy scale of the

latter is impervious to the magnetic field and, as in zero field, it marks a crossover from the

dynamics dominated by the Heisenberg spins to the strongly coupled dynamics.

VI. CONCLUSIONS

The summary of the results for zero magnetic field is as follows. We have demonstrated

that the Necklace model (1) has a characteristic energy scale, Λ ∼ J1/3(γI)2/3, at which

the coupling between spins of the necklace and the spins of the Heisenberg chain becomes

strong. This energy scale may be quite sizable even when the necklace is made of nuclear

spins, provided the intrachain exchange is large. For the experimental case of Sr2CuO3,

where I = 3/2, J ≈ 250 meV (≈ 2800 K) and γ ∼ 1.5 · 10−3 meV (∼ 17 mK),9 we obtain

Λ ∼ 0.1 meV (∼ 1 K). This new energy scale is of the same order of magnitude as the Neel

temperature, TN ≈ 5.5 K, and therefore interactions with nuclear spins can be expected to

contribute significantly to the magnon dynamics at low temperature, T ≪ TN .

Thus, at high energies compared to the cutoff, Λ, we obtain the weak coupling limit

of the Heisenberg chain and the Kondo spins; the chain spectrum is linear, with velocity

v = πJ/2. At energies below Λ, the dynamics is described by the O(3) nonlinear sigma

model with the topological term (14). Strong retardation effects coming from the dynamical
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interaction between the nuclear spins and the critical fluctuations of the Heisenberg chain

strongly renormalize the coupling constant g and the asymptotic velocity, c = gv, of the

sigma model excitations. Its spectrum remains gapless if the nuclear spins are integer and

acquires an exponentially small gap otherwise.

The energy scale Λ survives in a strong magnetic field, but the character of the low

energy sector changes. For µBB > Λ, the dynamics is described by two gapless bosonic

modes with different velocities. Their ratio at strong fields approaches a universal number,
√
2 + 1. The high-energy spectrum above the cutoff, Λ, is insensitive to magnetic field

that is strong compared to Λ, but small compared to the in-chain Heisenberg exchange

coupling, J ≫ µBB > J1/3(γI)2/3 (i.e. when the magnetization is small). Therefore, this

interaction cannot explain an unusually strong magnetic field dependence of the magnon

gaps in Sr2CuO3 observed by ESR17, which authors have attributed to magnon interaction

with the putative Higgs mode.
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