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The currently accepted magnetic ground state of Sr2IrO4 (the − + +− state) preserves inversion
symmetry. This is at odds, though, with recent experiments that indicate a magnetoelectric ground
state, leading to the speculation that orbital currents or more exotic magnetic multipoles might
exist in this material. Here, we analyze various magnetic configurations and demonstrate that
two of them, the magnetoelectric − + −+ state and the non-magnetoelectric + + ++ state, can
explain these recent second-harmonic generation (SHG) experiments, obviating the need to invoke
orbital currents. The SHG-probed magnetic order parameter has the symmetry of a parity-breaking
multipole in the −+−+ state and of a parity-preserving multipole in the ++++ state. We speculate
that either might have been created by the laser pump used in the experiments. An alternative is
that the observed magnetic SHG signal is a surface effect. We suggest experiments that could be
performed to test these various possibilities, and also address the important issue of the suppression
of the RXS intensity at the L2 edge.

PACS numbers: 78.70.Ck, 75.25.-j, 75.70.Tj, 42.65.-k

I. INTRODUCTION

The physical properties of layered iridates, in particu-
lar Sr2IrO4, have been thoroughly investigated since the
seminal paper of B. J. Kim and collaborators [1] and their
suggested analogy with the physics of cuprate supercon-
ductors. The formation of a half-filled t2g doublet by the
strong Ir spin-orbit interaction, that is then gapped by
correlations, mimics what is seen in the cuprates, making
Sr2IrO4 an insulator, despite its Ir4+ ionic configuration
with five occupied t2g electrons [1, 2]. More recent ex-
periments on doped iridates point to the emergence of a
pseudogap [3] and at low temperatures a d-wave gap [4],
therefore strengthening the analogy with cuprates. Most
recently, a new experiment based on second-harmonic
generation (SHG) [5] claimed the detection of an odd-
parity, magnetic hidden order in Sr2IrO4, suggesting the
presence of orbital currents as proposed by Varma for
cuprates [6]. This followed an earlier bulk property study
indicating a giant magnetoelectric effect in Sr2IrO4 [7].

Despite these analogies, there are also significant dif-
ferences between Sr2IrO4 and La2CuO4. First, the insu-
lating gap has a different character, spin-orbit plus Mott
versus charge transfer, therefore doped holes in Sr2IrO4

go into the Ir 5d states, and not in the oxygen 2p ones
as in La2CuO4. Second, the 5d states of Ir are much
more spatially extended than the 3d states of Cu, mak-
ing the on-site Coulomb and exchange terms significantly
weaker. Therefore, the physical motivation for orbital
currents, based as it is on the near degeneracy of the
transition metal d and oxygen p states [6], seems unlikely
in the iridate case, where the oxygen 2p bands lie more
than 3 eV below the Ir t2g doublet [8].

The existence of an SHG signal [5] points to a reduc-

tion of the magnetic space group symmetry 2/m1′ previ-
ously indicated by neutrons and resonant x-ray measure-
ments. Whether this reduction is due to orbital currents
or another mechanism remains to be seen. If we analyze
the relative stacking along the c-axis of the ferromag-
netic (FM) in-plane component of the moment in each of
the IrO2 planes, we find that three inequivalent config-
urations are possible. They can be labeled as − + +−,
+ + ++ and −+−+ (Fig. 1), where ± refer to the pro-
jection of the FM component in each plane along the
b-axis, with the first configuration being that identified
in Sr2IrO4. As detailed in Section III, both + + ++ and
−+−+ lead to a symmetry reduction of 2/m1′ and, for
different reasons, can explain the SHG results. The for-
mer was found by resonant x-rays in Ref. 9 in a 0.3 T
magnetic field and has also been identified by both neu-
trons and resonant x-rays upon doping with Rh [10–12].
Since the inter-plane spin exchange has been estimated
to be as small as 1 µeV [13], one could speculate that
the inter-plane magnetic pattern might be disrupted by
a laser pulse of 1mJ/cm2 fluence as used in Ref. 5. We
argue that any such pattern breaking should in general
lead to an SHG signal because of the resulting symmetry
reduction. Another possibility is that SHG arises from a
magnetized surface, which also has the desired symme-
try. For these reasons, we believe the SHG signal can in
principle be explained by magnetism.

The aim of the present paper is to critically revisit sev-
eral aspects of Ref. 5, looking for alternative explanations
of the SHG signal, and as a byproduct address some im-
portant issues on the suppression of the resonant x-ray
scattering (RXS) intensity at the Ir L2 edge. To reach
our goals, the present article is organized as follows: in
Section II, we review the details of the crystal and mag-
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netic symmetries of Sr2IrO4, and show how RXS data on
Rh-doped samples below TN might be explained in terms
of the − + −+ state as well as the previously suggested
+ + ++ state [10–12]. We propose further RXS and
neutron experiments to clearly identify the actual mag-
netic pattern. Section III is devoted to an analysis of the
SHG experiment from the quantum-mechanical micro-
scopic expressions of the tensors involved. This allows us
to show that only two magnetic space groups are consis-
tent with the SHG experiment. The first is 2′/m, advo-
cated in Ref. 5, which is also the magnetic space group of
the −+−+ magnetic pattern. The second is 2′/m′, which
is the magnetic group corresponding to the + + ++ pat-
tern. We characterize the multipole ranks of the order
parameters identified by the SHG experiment for each
magnetic group. In particular, for the 2′/m magnetic
space group of the−+−+ state, the allowed order param-
eters have the symmetry of inversion-odd magnetic mul-
tipoles of rank one, two and three: toroidal dipole, mag-
netic quadrupole and toroidal octupole (the magnetic
quadrupole, though, does not contribute in an SS polar-
ization geometry). Instead, for the 2′/m′ magnetic space
group of the + + ++ state, the allowed order parameters
have the symmetry of inversion-even magnetic multipoles
up to rank three: magnetic toroidal monopole, magnetic
dipole, magnetic toroidal quadrupole and magnetic oc-
tupole. In this Section, we also speculate on whether the
SHG signal is induced by the laser pump, or rather that
it is a surface effect (the magnetic point group of the sur-
face being 2′). Several experiments are suggested to test
these possibilities. In Section IV, we address the impor-
tant issue of the suppression of the RXS intensity at the
L2 edge and the results obtained in the literature on the
doublet Jeff = 1/2 of Sr2IrO4. We discuss some of the
critical aspects of this doublet and clarify its connection
to the RXS experiments. Finally, in Section V, ab initio
simulations for some key x-ray absorption spectroscopy
(XAS) experiments are presented, with the dual goal of
confirming (or modifying) the Jeff = 1/2 doublet picture,
and also to test whether the two proposed magnetic sym-
metries we suggest could explain the SHG experiment [5].
Some conclusions are offered in Section VI.

II. CRYSTAL AND MAGNETIC SYMMETRIES
IN Sr2IrO4: ANALYSIS OF RESONANT

STRUCTURE FACTORS

The original analysis of the crystal space group of
Sr2IrO4 suggested I41/acd [15], with the 8 Ir ions in this
unit cell related by the symmetry operations of the 8a site
of I41/acd, as detailed in Table I. For future reference,
we note that, though the point symmetry of the Ir site is
4, the further reduction from the 4/m point symmetry,
and therefore the breaking of inversion symmetry, is de-
termined only by the oxygens in the IrO2 planes above
(below) that of the Ir, and these are quite distant (> 6.5
Å). For this reason, the effect of inversion-breaking at an

Ir site, though non-zero, is extremely small. Of course,
inversion symmetry in the unit cell is restored for the
global symmetry I41/acd.

Very recently, the crystal structure has been resolved
by neutron scattering to be rather I41/a [11], explaining
the observation of forbidden Bragg peaks in earlier ex-
periments [16, 17] and in keeping with recent SHG data
[18]. Within this space group, the 8 Ir atoms in the unit
cell split into two nonequivalent groups of 4 atoms, each
with the same point group 4 (sites 4a and 4b). The same
remark concerning the inversion breaking made above
still applies, as the symmetry reduction from I41/acd to
I41/a, leading to the loss of the two glide planes contain-
ing the c-axis, is just determined by a tiny displacement
of the planar oxygen atoms (< 0.1%). As all the sym-
metry analysis in the literature up to now has been per-
formed with the I41/acd space group, in what follows,
we shall use both the I41/acd and I41/a space groups,
highlighting any differences between the two.

A. Resonant structure factors for I41/acd and
I41/a

In the I41/acd space group (settings 2), the 8 Ir atoms
occupy the positions shown in Table I, in fractional units
(with a=b=5.4846 Å, c=25.804 Å) [15]. They are char-
acterized by a surrounding distorted oxygen octahedron,
as shown in Fig. 1 for the basal (ab) planes, with apical
oxygens along the c-axis at 2.057 Å and planar oxygens
at 1.979 Å, with a tetragonal distortion of 4% [15]. The
planar oxygens are rotated by about 12◦ around the c-
axis: this rotation is the basis of the loss of the I4/mmm
space-group symmetry that characterizes the analogous
compound, Ba2IrO4. Below TN ' 230 K [13], an anti-
ferromagnetic state develops, characterized by magnetic
moments lying in the basal plane and forming an angle
of about 12◦ with the a-axis, as shown in Fig. 1. The
in-plane magnetic pattern is such as to have an anti-
ferromagnetic order parameter along the a-axis and a
ferromagnetic component along the b-axis (smaller by
the ratio sin 12◦/ cos 12◦), leading to the loss of tetrago-
nal symmetry. The ferromagnetic component is however
compensated when summed up over the four IrO2 layers
of the unit cell. In the undoped compound, the ferromag-
netic component along the b-axis has the pattern −++−
[9], as shown in Fig. 1.

In order to write down the resonant x-ray structure
factor at the Ir L3 edge, we need to know the magnetic
symmetry relations among the 8 Ir atoms of the 8a site.
In order to allow for comparison with previous work, we
list in Table I the Ir atoms with the − + +− pattern
and the symmetry operations that need to be applied
to the first Ir atom in order to obtain the others (this
column, for the first atom, corresponds to its point-group
symmetries). For future convenience, we list also two
other patterns of the ferromagnetic component, the + +
++ and the − + −+ patterns, as shown in Fig. 1. The
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FIG. 1: (Color online) Crystal and magnetic symmetries of Sr2IrO4 in the 4 IrO2 planes of the unit cell: (a) z = 1
8
; (b) z = 3

8
;

(c) z = 5
8
; (d) z = 7

8
. The three magnetic patterns of interest, − + +− (black arrows), + + ++ (blue arrows) and − + −+

(red arrows), are shown. They differ by the order of the ferromagnetic in-plane component along the b-axis. Iridium atoms are
labelled as in Table I.

+ + ++ structure has been identified as the magnetic
structure of Sr2IrO4 in a magnetic field (H ≥ 0.3 T)
directed in the ab-plane [9, 19] and also suggested as the
magnetic structure in Rh-doped samples [10, 11]. The
−+−+ magnetic structure has not been suggested in the
literature up to now, but we claim that it can describe
some of the experimental results on Rh-doped samples,
as detailed below [12]. Both patterns can explain the
SHG experiment, as we shall see.

Here T̂ , Î and Ê are the time-reversal operator, the
inversion and the identity, and m̂i and Ĉ2i are the mir-
ror symmetry and the two-fold rotation around the axis
i (x, y, z parallel to a, b, c). Taking into account these
symmetries, the resonant x-ray structure factor for the
− + +− pattern, summed over the 8 Ir atoms, can be
written as:

F−++−
hkl ∝(1 + T̂ (−1)h+k+l)(1 + Î(i)2k+l)

(1 + T̂ m̂x(−1)h+k)f1 (1)

where f1 is the resonant atomic scattering amplitude for
Ir atom 1 (see, e.g., Ref. 20). Below, we write, for future

TABLE I: Fractional positions in the I41/acd crystal space
group and magnetic symmetries relative to Ir1. The orienta-
tion of the magnetic moment for the − + +−, + + ++ and
−+−+ patterns relative to the a-axis is also given, with φ the
rotation angle. Note that certain operations are accompanied
by glide, screw, or body-centered translations.

Atom frac. pos. sym−++− φ−++− φ++++ φ−+−+

Ir1 (0,1/4,3/8) Ê, T̂ Ĉ2z 12o 12o 12o

Ir2 (0,3/4,5/8) Î, T̂ m̂z 12o 12o 192o

Ir3 (1/2,1/4,5/8) Ĉ2y, T̂ Ĉ2x 168o 168o 348o

Ir4 (1/2,3/4,3/8) m̂y, T̂ m̂x 168o 168o 168o

Ir5 (1/2,3/4,7/8) T̂ , Ĉ2z 192o 12o 12o

Ir6 (1/2,1/4,1/8) m̂z, T̂ Î 192o 12o 192o

Ir7 (0,3/4,1/8) Ĉ2x, T̂ Ĉ2y 348o 168o 348o

Ir8 (0,1/4,7/8) m̂x, T̂ m̂y 348o 168o 168o

use, the structure factors for the two other patterns, + +
++ and −+−+. It is important to notice that both the
++++ and−+−+ magnetic structures are characterized
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by the same in-plane ferromagnetic component for IrO2

layers z = 3
8 and z = 7

8 , as shown in Fig. 1. This implies
that the time-reversal symmetry relating Ir1 and Ir5 in
Eq. (1) is replaced by the identity (see Eqs. (2) and (3)).
The difference between the two structures lies in the way
(for example) layer z = 7

8 is related to layer z = 5
8 . For

the + + ++ structure, Ir1 and Ir2 atoms are related by
inversion, as for the − + +− structure, whereas for the
− + −+ structure, Ir1 and Ir2 atoms are related by T̂ Î.
This is the second factor in the right-hand side of Eqs. (2)
and (3). Overall, the corresponding structure factors are:

F++++
hkl ∝(1 + (−1)h+k+l)(1 + Î(i)2k+l)

(1 + T̂ m̂x(−1)h+k)f1 (2)

F−+−+
hkl ∝(1 + (−1)h+k+l)(1 + T̂ Î(i)2k+l)

(1 + T̂ m̂x(−1)h+k)f1 (3)

We remark that the last factor (1 + T̂ m̂x(−1)h+k) is
unchanged in all three patterns because it relates the two
in-plane Ir atoms, whose relative behavior is not affected
by the overall stacking along the c-axis. This term is
however responsible for changes in the structure factor
when the symmetry is reduced to I41/a. In fact, such a
reduction is determined by the breaking of the m̂x (and
m̂y) symmetry. This implies that (for example) Ir1 and
Ir4 atoms in Table I now belong to two inequivalent sites
(4a and 4b). This in turn leads to the altered structure
factors:

F̃−++−
hkl ∝(1 + T̂ (−1)h+k+l)(1 + Î(i)2k+l)

(f1 + (−1)h+kf4) (4)

F̃++++
hkl ∝(1 + (−1)h+k+l)(1 + Î(i)2k+l)

(f1 + (−1)h+kf4) (5)

F̃−+−+
hkl ∝(1 + (−1)h+k+l)(1 + T̂ Î(i)2k+l)

(f1 + (−1)h+kf4) (6)

We notice for the next section on SHG interpretation
that all the previous equations are equally valid for the
SHG experiment by putting h = k = l = 0 (in the op-
tical regime, only the zone center is involved). Interest-
ingly, this shows that optical reflections in the − + +−
pattern are only sensitive to time reversal and parity-
even observables, otherwise the (1 + T̂ )(1 + Î) prefactor
of Eq. (4) would be zero. Likewise, optical reflections
in the + + ++ pattern are only sensitive to parity-even
quantities (both magnetic and non-magnetic, see Eq. (5))

and in the −+−+ pattern they are sensitive to T̂ Î-even
observables (i.e., either magnetic, parity-odd multipoles,
or non-magnetic parity-even ones).

TABLE II: Magnetic symmetries relative to Ir1 in the I41/a
crystal space group for the − + +− (2/m1′ group), + + ++
(2′/m′) and − + −+ (2′/m) patterns. Note that certain op-
erations are accompanied by glide, screw, or body-centered
translations. Only the four equivalent Ir1, Ir2, Ir5 and Ir6 are
shown.

Atom sym−++− sym++++ sym−+−+

Ir1 Ê, T̂ Ĉ2z Ê, T̂ Ĉ2z Ê, T̂ Ĉ2z

Ir2 Î, T̂ m̂z Î, T̂ m̂z m̂z, T̂ Î

Ir5 T̂ , Ĉ2z Ê, T̂ Ĉ2z Ê, T̂ Ĉ2z

Ir6 m̂z, T̂ Î Î, T̂ m̂z m̂z, T̂ Î

B. Analysis of key x-ray reflections

There are two groups of resonant x-ray reflections that
have been studied in the literature at the Ir L3 edge and
deliver two independent pieces of information.

In the first group, we have those reflections which
served to identify the −++−magnetic space group of the
stoichiometric compound. They are of the kind (1,0,4n),
(0,1,4n+2) [21] and (0,0,2n+1), that we analyze within
the I41/acd space group to compare with the existing lit-
erature. Later, we shall highlight the differences induced
by the reduction to I41/a. From Eq. (1), as h+k+l is odd,
these three reflections must be magnetic in the − + +−
state, and they vanish for the other two patterns. Their
presence is therefore a signature of the − + +− state.
Notice also that for SP scattering [22], f1 is proportional

to ~ko · ~m ≡ mko (with ~ko the outgoing scattering vector,
~m the magnetic moment). The selection rule imposed by

the term (1 + T̂ m̂x(−1)h+k) gives a signal proportional
to (1 + m̂x)mko ∝ ma for both F−++−

1,0,4n and F−++−
0,1,4n+2.

Here ma is the projection of the magnetic moment along
the a-axis. Instead, for F−++−

0,0,2n+1, the signal is propor-

tional to (1 − m̂x)mko ∝ mb, as noted earlier [23]. This
method allows one to obtain the direction of the mag-
netic moment (the rotation angle of ' 12◦ reported in
the literature) by means of the ratio of the ma to the mb

components. However, this assumes the I41/acd space
group. The reduction to I41/a implies the breakdown of

the (1 + T̂ m̂x(−1)h+k) selection rule due to the inequiv-
alence of Ir1 and Ir4. Though this reduction is small, as
stated above, it could lead to changes in the rotation an-
gle, and it might be worthwhile to repeat this analysis for
I41/a, as now the magnetic moments of the two in-plane
Ir atoms become inequivalent (though the argument of
Ref. 2 should still impose a locking with the rotation of
the oxygen octahedra). As a last remark on the I41/acd
to I41/a symmetry reduction, we emphasize that it does
not play any role for the coupling along the c-axis, as the
symmetry that it breaks is the one that links the two Ir
atoms in the same plane.

A second group of reflections more interesting for our
work, as they are key to interpreting the SHG experi-
ment, are of the kind (1,0,4n±1) (similarly (0,1,4n±1)).
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As clear from Eq. (4), these reflections cannot have mag-
netic origin and their appearance below TN indicates an
alteration of the −++− configuration. They were found
either by applying a small magnetic field in the stoichio-
metric material [9] or by Rh doping [10, 11]. In both cases
they were suggested as being signatures of the + + ++
state. We show below that this is not necessarily the
case, as the − + −+ configuration can give rise to the
same magnetic or charge reflections, and further investi-
gation is needed to disentangle the two patterns, at least
in the case of Rh doping [12]. As before, we start our
analysis with the I41/acd space group. Though h+ k+ l
is even, reflections (1,0,4n±1) are Bragg forbidden for the
−+ +− configuration, since h+ k is odd (Eq. (1). They
can however be explained as magnetic in origin (but can
also be non-magnetic in I41/a space group, see below)
if the system undergoes a phase transition to either the
+ + ++ configuration or the − + −+ configuration. If
this is the case, the structure factors become:

F++++
1,0,4n±1 ∝ (1± i)ma (7)

and

F−+−+
1,0,4n±1 ∝ (1∓ i)ma (8)

They lead to the same intensity, so from a purely mag-
netic analysis, they cannot be differentiated. We should
notice here that care is needed in identifying the or-
thorhombic a and b axes, as reversing them might lead to
an incorrect pattern identification. In fact, switching h
and k Miller indices corresponds to switching the ++++
and −+−+ patterns:

F++++
0,1,4n±1 ∝ (1∓ i)ma (9)

and

F−+−+
0,1,4n±1 ∝ (1± i)ma. (10)

In all these expressions, ma is the a-axis component of
the magnetic moment at sites Ir1 and Ir4 (difference of
f1 and f4).

In order to disentangle the two magnetic patterns, we
need to play on the differences between the T̂ Î and Î
operators that relate f1 to f2. This can only be done
by allowing an interference with the charge scattering.
In fact, the charge scattering in resonant conditions is
not only given by the (scalar) Bragg scattering, but also
by the anisotropic scattering that does not obey the ex-
tinction rule (1 + m̂x(−1)h+k) = 0, because the mirror
symmetry is not necessarily +1. The intensity of the
charge scattering at these (1,0,4n± 1) reflections will be
increased by the symmetry reduction to the I41/a space
group. As stated above, such a group breaks the m̂x-
symmetry, violating the above extinction rule, even at
the level of the scalar charge scattering, and in fact the
existence of these reflections in neutron scattering above
TN have been taken to be a signature of this space group

[16]. For RXS, magnetic and non-magnetic terms are
out of phase by π/2. This implies that, writing the non-
magnetic atomic scattering factor as fc (in the I41/a space
group, from Eqs. (5) and (6), it is fc1−fc4) and the mag-
netic one as fm (= fm1 −fm4 ), apart from an overall phase
factor, the structure factors can be written as:

F̃++++
1,0,4n±1 ∝ (1±i)f c∓(1∓i)fm = (f c∓fm)±i(f c±fm)

(11)

and

F̃−+−+
1,0,4n±1 ∝ (1± i)(f c ± fm) (12)

From these expressions, we see that the interference of
magnetic and non-magnetic terms allows differentiating
the two patterns. In the case of the + + ++ pattern, the
signals at (1,0,4n+1) and (1,0,4n−1) are identical (apart
from the different geometrical factors due to the different
~Q). But, they are different for the − + −+ pattern due
to the constructive/destructive interference seen in these
expressions. A numerical simulation of these findings by
the FDMNES code (see Section V) is reported in Fig. 2.

We should remark here on an important warning for
this analysis. In the previous six equations, we have
treated the atomic scattering factors fc and fm as if
they were real quantities, whereas, close to an edge,
they are complex, because of the energy denominator
(~ω − ∆E + iΓ), where ∆E measures the energy dif-
ference of the two levels related by the photon transi-
tion and Γ measures the inverse of the core-hole life-
time. If, however, we are very close to a resonance, then
|~ω − ∆E| � Γ, and the denominator becomes purely
imaginary and all the previous discussion on interferences
keeps its validity (Fig. 2, being at the L3 maximum, cor-
responds to this case). Of course, the same is true in the
opposite, non-resonant case: |~ω −∆E| � Γ. It is not,
however, true when |~ω −∆E| ∼ Γ, or if two resonances
are sufficiently close to one another.

Even though magnetic neutron scattering differs from
magnetic RXS (in particular, no resonant denominator),
in Ref. 11, the authors find a different signal at (101)
and at (103) in the spin-flip versus non-spin-flip ratios.
In the light of our previous analysis, this would seem to
point to the − + −+ configuration. In RXS, this shows
us as an alternation of the (10L) (L odd) intensity versus
L for −+−+ (due to the above mentioned interference)
as opposed to the smooth dependence for the + + ++
configuration, which, as we show in Fig. 2, is quite pro-
nounced in ab initio calculations. A smooth behavior
versus L was seen by Clancy et al. for their Rh-doped
samples [10] which is probably why they advocated the
+ + ++ state over the − + −+ state. One issue is that
their azimuthal plots indicate multi-domain effects. An-
other is that the energy at which the measurement was
performed might have induced extra interference due to
the energy denominator, as discussed above. We suggest
that additional RXS and neutron experiments on single
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FIG. 2: (Color online) The alternating intensities (at the RXS
maximum for L3) for magnetic pattern − + −+ as opposed
to + + ++, of (a) the (1,0,4n-1) and (1,0,4n+1) reflections,
and (b) the (0,1,4n-1) and (0,1,4n+1) reflections. These sim-
ulations were performed with the FDMNES code for a cluster
radius of 6.5 Å and a Hubbard U on the Ir sites of 2 eV. For
(10L), the azimuthal angle was 0◦ and for (01L), it was 90◦. In
all cases, the polarization geometry was SP, with an assumed
core-hole lifetime of 5.25 eV. Similar oscillations are found for
a cluster radius of 3 Å, though they are less pronounced.

domains be performed to check which pattern (− + −+
or + + ++) is actually induced by Rh doping. Regard-
less, both −+−+ and ++++ configurations can explain
the SHG experiment [5], without the need to invoke ex-
otic magnetic symmetries. As shown in the Table II, the
− + −+ state has the magnetic space group 2′/m, and
the + + ++ state the 2′/m′ one. As detailed in the next
Section, both are compatible with the SHG result.

III. A REANALYSIS OF THE SYMMETRIES OF
THE SHG EXPERIMENT

In this Section, we reanalyze the SHG experiment [5],
listing all the symmetries that allow one to address the
experimental results. In subsection A, we discuss the two
susceptibility tensors, χ(e) and χ(m) (defined in Appendix
A.1), possibly involved in the interference pattern with

the high-temperature signal, determined by χ(q) [18].
Both tensors should be investigated on the same footing
because it is known, e.g., for Cr2O3, that the magnetic
part [24] of χ(e) and χ(m) are of the same order of mag-
nitude [25]. We also identify the symmetry of the order
parameters associated with χ(e) and χ(m) for linear po-
larizations and their multipolar ranks. Then, in subsec-
tion B, we evaluate the different azimuthal dependences
of χ(e) and χ(m). This, together with a full analysis of
the magnetic symmetries of Sr2IrO4 and the findings of
subsection A, allows us to point towards the following
interpretation of the SHG experiment [5]: only two mag-
netic space groups can explain the interference pattern
of the SHG experiment. The former is 2′/m (as already
suggested in Ref. 5). The associated order parameters
are all inversion and time-reversal odd, with the sym-
metry of either a toroidal dipole, a magnetic quadrupole
or a toroidal octupole (the magnetic quadrupole cannot
be observed in SS geometry). The latter is 2′/m′, which
is characterized by an order parameter with the symme-
try of either a magnetic toroidal monopole, a magnetic
dipole, a magnetic toroidal quadrupole or a magnetic oc-
tupole. In either case, we suggest that the observed sym-
metry reduction is not determined by exotic magnetic
patterns, but by a transition to the −+−+ state (2′/m
group), or to the + + ++ state (2′/m′ group). How this
transition could happen is discussed at the end of this
Section, along with an alternate explanation that what
is observed is surface magnetic SHG.

A. Order parameters associated with SHG tensors

Second harmonic generation is a third-order process
in the matter-radiation interaction, determined by two
absorptions of a photon ~ω and the emission of a pho-
ton 2~ω [26], as pictorially described in Fig. 3. The full
cross-section and its explicit derivation are reported in
Appendix A.1. The total scattering amplitude, ASHG, is
obtained, as for RXS [20], by a scalar coupling of tensors
representing the properties of the sample with the cor-
responding tensors describing the electromagnetic field.
The full SHG amplitude, reported in Eq. (A3), is then

composed of terms of the kind: ASHG ∼ χ
(e)
αβγε

∗
αεβεγ +

χ
(m)
αβγ(~ε∗ × ~k)αεβεγ + χ

(q)
αβγδε

∗
αkβεγεδ, where ~ε and ~k are

the polarization and wave-vectors of the electromagnetic
field.

As clear from the definitions in Appendix A.1, χ(e)

is characterized by all three transitions (the two at fre-
quency ω and the one at frequency 2ω) of electric-dipole
character (therefore inversion odd), and χ(m) is charac-
terized by one magnetic-dipole and two electric-dipole
transitions (therefore inversion even). They can both in-
terfere with the electric-quadrupole tensor χ(q) (charac-
terized by one electric-quadrupole and two electric-dipole
transitions), responsible for the SHG signal in the high-
temperature phase of Sr2IrO4 [18]. From Eqs. (A4), (A6)
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(a) (b) (c)

(d1) (e1) (f1)

(d2) (d3) (e2) (e3) (f2) (f3)

∆(1) ∆(2) ∆(3)

χ(m,1,1)

χ(m,1,2)χ(m,1,3)
χ(m,2,3) χ(m,2,1)

χ(m,2,2)

χ(m,3,2) χ(m,3,1)

χ(m,3,3)

χ(e,3)χ(e,2)χ(e,1)

FIG. 3: (Color online) Schematic representation of the SHG process. E1 transitions are represented in red and M1 transitions

in blue. The three processes leading to χ(e) are shown in (a), (b), (c). The nine processes leading to χ(m) are shown in (d),

(e), (f). All these processes are expressed in Appendix A through Eqs. (A21) to (A32). Each label χ(m,j,i) is explicitly defined
in one of these equations. The non-resonant processes are highlighted by an energy level represented by a dotted line. The
denominators ∆(i), defined in the text, correspond to doubly-resonant, singly-resonant and non-resonant processes.

and (A15) in Appendix A, η(q), the transition-matrix el-
ement associated to the susceptibility χ(q), contains an

extra factor of i coming from the expansion of ei
~k·~r, and

this determines the phase shift of π/2 of these matrix el-
ements with respect to those of the η(e) term. Following
the analysis reported in Appendix A.2, we have therefore
that the time-reversal even part of η(q) is imaginary (and
the time-reversal odd part of η(q) real); the time-reversal
even part of η(e) is real (and its time-reversal odd part is
imaginary); finally, the time-reversal even part of η(m) is
imaginary (and its time-reversal odd part is real). This
implies that, in the non-resonant regime where denom-
inators are real, the time-reversal even part of χ(q) can
interfere with both the time-reversal odd part of χ(e) and
with the time-reversal even part of χ(m), but not with the
time-reversal even part of χ(e) and with the time-reversal
odd part of χ(m). However, the presence of the imaginary
damping factors iΓn in the resonant denominators scram-
bles up this analysis, as detailed in Appendix A.2, so that
all terms can interfere among themselves. Yet, this analy-

sis in terms of η
(e,m,q)
αβγ;ln without the resonant denominator

is fundamental, as in the case of RXS, in order to iden-
tify the time-reversal properties of the order parameters

associated with this process, that are determined just by
the matrix elements. In fact, the physical origin of the
complex numerators and denominators in second-order
(RXS), or third-order (SHG) expressions is profoundly
different. The imaginary unit in the numerator is a con-
sequence of magnetism: in its absence, eigenstates Φj of
Eq. (A2) can be chosen as real and all matrix elements

η
(e,m,q)
αβγ;ln (see Appendix A.2) would be real as well. There-

fore, the time-reversal symmetry of the matrix elements

η
(e,m,q)
αβγ;ln is related to their real and imaginary parts. The

imaginary unit in the denominator is, instead, a con-
sequence of damping due to spontaneous emission [27]:
that sign cannot be changed, because damping is irre-
versible.

The previous classification reminds one of the simpler
RXS case [20, 28]. There are however several differences,
because of the intrinsic asymmetry of the SHG amplitude
(two photons ω in; one photon 2ω out). For example, it
is well known that the electric dipole-electric dipole (E1-
E1) approximation in RXS leads to a time-reversal odd,
imaginary part of the matter tensor, which is propor-
tional to the magnetic dipole and is scalarly coupled to
ε∗out × εin. This in turn implies that for E1-E1, no mag-
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netic signal occurs in the SS channel. This is not the case
for SHG, because of the asymmetry of the denominators

∆
(i)
l,n with respect to the exchange n ↔ l, as shown in

detail in Appendix A.1 and A.2: indeed, a magnetic SS
signal is quite common in SHG [26].

The general classification of the order parameters as-
sociated with the transition matrix elements in the SHG
susceptibilities is quite lengthy and will be treated in a
future publication. As already reported in Ref. 29 for
second-order susceptibilities, the order parameters in the
optical regime, differently from the x-ray regime, are cor-
relation functions, which are much harder to analyze.
Here we focus on the SHG experiment of Ref. 5 and, in
particular, consider just the symmetry of the order pa-
rameter associated with the χ(e) and χ(m) tensors when
the incoming and outgoing electric fields are linearly po-
larized, and therefore real.

Consider for example χ(e) and Eq. (A42). A
(e)
SHG is

a scalar quantity. We can take advantage of this prop-
erty to decompose the susceptibilities χ(e) in spherical
tensors, as each of them must be scalarly coupled to an
equivalent spherical tensor representing the polarization

properties. Each spherical tensor derived from χ
(e,m,q)
αβγ is

an irreducible representation of the rotation group whose
symmetry can be identified with that of a given multi-
pole. We can rewrite Eq. (A42) as:

A
(e)
SHG ∝ χ̃

(e)
αβγε

o
αε
i
βε
i
γ (13)

=
1

2
(χ̃

(e)
αβγε

o
αε
i
βε
i
γ + χ̃

(e)
αγβε

o
αε
i
γε
i
β)

=
1

4
(χ̃

(e)
αβγ + χ̃

(e)
αγβ)εoα(εiβε

i
γ + εiγε

i
β)

Though there are several ways to couple three vectors
in irreducible components, Eq. (13) suggests the most
natural one: the symmetry of the εiγε

i
β part implies that

only 6 out of 9 cartesian components contribute in this
coupling: they form a scalar tensor (T (0)) and a second-

rank spherical tensor (T
(2)
m , m = −2 to 2). In turn,

these two spherical tensors couple to the remaining out-
going polarization vector ~εo. The coupling of the scalar
(order-zero spherical tensor) with the vector ~εo (first-
rank spherical tensor), gives a first-rank spherical tensor

(O
(1)

). The coupling of the second-rank spherical tensor

T
(2)
m with the vector ~εo leads to three spherical tensors:
Õ(1), Õ(2) and Õ(3) (as in the usual coupling of angular
momenta). The explicit expression for all these tensors
is given in Appendix A.3.

The case of χ(m) is less straightforward because of the

substitution of εi,oα with (~εi,o × ~ki,o)α and the associ-
ated symmetrization over all three terms, as reported
in Appendix A.3. However, mutatis mutandis, the or-
der parameters are in this case spherical tensors of rank

i =0, 1, 2, 3: ˜̃O(i). In this case, more tensors of the
same order can appear, as detailed in Appendix A.3. Of

course, the Õ(i) are all inversion-odd and the ˜̃O(i) are

all inversion-even. The former are associated with or-
der parameters with the symmetry of a toroidal dipole,
a magnetic quadrupole and a toroidal octupole (for the
time-reversal odd part) and with the symmetry of an
electric dipole, an axial toroidal quadrupole and an elec-
tric octupole (for the time-reversal even part). The latter
are associated with order parameters with the symmetry
of a magnetic toroidal monopole, a magnetic dipole, a
magnetic toroidal quadrupole and a magnetic octupole
(for the time-reversal odd part) and with the symmetry
of an electric charge, an axial toroidal dipole, an electric
quadrupole and an axial toroidal octupole (for the time-
reversal even part). As stated above, we can just speak
of an order parameter ‘with the symmetry of’, because in
the optical regime, differently from the x-ray regime, all
involved states are band-like and the “order parameters”
are rather many-body correlation functions [29, 30].

In the following subsection, we specialize this analysis
to the magnetic symmetries of Sr2IrO4.

B. SHG symmetry analysis applied to Sr2IrO4

The magnetic space group of the − + +− state of
Sr2IrO4 associated with the I41/a crystal symmetry is
2/m1′, as clear from Table II, when only the 4 equiv-
alent Ir atoms of the I41/a group are considered (e.g.,
Ir1, Ir2, Ir5, Ir6). The behavior of the two tensors χ(e)

and χ(m) under the magnetic symmetry group 2/m1′ and
subgroups is analyzed here and in Appendix A.4, the aim
being to find out what magnetic subgroups allow for both
the interference with the time-reversal even χ(q) signal of
the non-magnetic phase (found in Ref. 18) and the odd
ψ-dependence seen in the experimental data (Figs. 1 and
3 of Ref. 5). As shown in Eq. (14) below, the key feature
for having an odd ψ-dependence is to have allowed carte-
sian tensors with an even dependence on z (which means
an odd dependence on x and y, as both χ(e) and χ(m) are
third-rank cartesian tensors). This statement comes from
the following expressions for the electromagnetic field (in
= incoming, frequency ω; out = outgoing, frequency 2ω;
θ is the angle between the outgoing beam and the c-axis;
ψ is the azimuthal angle around the c-axis, with ψ = 0
when the in-plane projection of the incoming wave-vector
is along the a-axis):

EinS = (− sinψ, cosψ, 0) = −Hin
P (14)

EinP = (cos θ cosψ, cos θ sinψ, sin θ) = Hin
S

EoutP = (− cos θ cosψ,− cos θ sinψ, sin θ) = Hout
S

noting that EinS = EoutS and Hin
P = Hout

P . For future use,
we also write kin = (sin θ cosψ, sin θ sinψ,− cos θ) and
kout = (sin θ cosψ, sin θ sinψ, cos θ).

For the eight magnetic groups discussed below, those
allowing for a third-rank tensor with an odd ψ-
dependence can easily be picked out from Tables 4 and
7 of Birss [31]. For the time-odd case of interest, there
are only two possibilities: a polar tensor for 2′/m (that
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is, χ(e)) and an axial tensor for 2′/m′ (that is, χ(m)). For
the unlikely time-even case, there is only a polar tensor
for m1′ and an axial tensor for 1̄1′. A detailed demon-
stration of these properties is provided in Appendix A.4.
We remark that the surface electric dipole contribution
for the relevant point groups, as listed in Ref. 18 (sup-
plemental material), have an even dependence on ψ and
can be excluded for this reason.

It is interesting to identify the allowed components
of the order parameters for the two space groups 2′/m
and 2′/m′. For the latter, the magnetic-dipole order pa-
rameter is the in-plane ferromagnetic component along
the b-axis, noting that the SHG signal is actually de-
termined by higher-order correlation functions with the
same symmetry (Appendix A.3) as opposed to those de-
termined from core-hole spectroscopies. For the 2′/m
space group, the calculation of the toroidal dipole and
magnetic quadrupole is slightly more complex: we can
explicitly calculate their values, for the −+−+ pattern,
taking, respectively, the antisymmetric and the sym-
metric traceless parts of the following cartesian tensor:

Mij ≡
∑8
n=1 r

(n)
i m

(n)
j . Here the sum is performed over

the 8 Ir atoms in the unit cell, r
(n)
i is the ith cartesian

component (i = x, y, z) at the nth Ir site of the posi-

tion vector and m
(n)
j the jth cartesian component of the

magnetic moment at the nth Ir site (here, we consider
magnetic patterns where mz = 0 for all sites). A di-
rect calculation using Table I shows that the only com-
ponents different from zero for the − + −+ pattern are
the toroidal dipole Ωx (antisymmetric) and the magnetic
quadrupole Myz (symmetric, traceless). All other com-
ponents are zero. The absolute value of both Ωx and
Myz is 1

2 |m||c| sinφ, where |m| is the value of the mag-
netic moment at the Ir sites, |c| is the value of the c-axis
length (25.804 Å) and φ ∼ 12◦ is the angle of the mag-
netic moment with the a-axis. Again, we remind that
the SHG signal is actually associated with higher-order
correlation functions with the same symmetry as Ωx and
Myz (Appendix A.3).

Some brief comments on the azimuthal dependence of
the experimental data are in order. The high tempera-
ture data originates from a χ(q) signal, since χ(e) is not
allowed and χ(m) does not have the correct angular de-
pendence [18, 31]. These data cannot be fit by func-
tions of just 4/mmm symmetry [18]. In fact, the coeffi-
cients of the 4/m terms not in 4/mmm are larger than
the 4/mmm term, despite the weak nature of the 4/m
symmetry breaking (Fig. 4(a)). Similar observations ap-
ply as well to the third harmonic signal [18]. Whether
this is a real effect, or due to other factors not taken into
account in the analysis, remains to be seen. In the low
temperature phase, where C4 symmetry is broken down
to C1 [5], we find that dipole terms alone are not suffi-
cient to fit the change in the azimuthal dependence (in SS
geometry, quadrupole terms do not enter, and the dipole
term goes as sin(ψ)). This means that octupole terms
play a significant role (see caption of Fig. 4(b)), as often
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FIG. 4: (Color online) Second harmonic signal in SS geom-
etry at (a) 295K and (b) 175K [5]. The zero of the an-
gle is along the a-axis. The solid curves are fits to angular
functions as tabulated in Ref. 18. For (a), the curve is the
square of 0.91 − 0.42 sin(4ψ) − 1.69 sin2(2ψ). Note that the
smallest coefficient is for the only allowed term in 4/mmm
(the rest only occur for 4/m). For (b), the curve is the
square of 0.86 − 0.40 sin(4ψ) − 1.70 sin2(2ψ) − 0.03 cos3(ψ) −
0.25 cos2(ψ) sin(ψ)−0.11 cos(ψ) sin2(ψ)+0.005 sin3(ψ). Note
the small changes in the first three coefficients relative to (a),
and the fact that the last four coefficients indicate the signif-
icance of the octupole terms.

found as well in RXS.

To summarize, the 2′/m and 2′/m′ magnetic groups
are the only ones that can explain the SHG data with
time-reversal odd order parameters. Two other groups,
11′ and m1′, could have been compatible with the inter-
ference pattern, but are characterized by non-magnetic
order parameters that make them implausible. Both
2′/m, corresponding to the − + −+ magnetic pattern,
and 2′/m′, corresponding to the + + ++ magnetic pat-
tern, can therefore explain the experimental SHG data
without the need to invoke any exotic, higher-order, mul-
tipolar magnetic order or orbital currents.
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FIG. 5: (Color online) Sketch of the density of states of
Sr2IrO4, with the possible transitions leading to the SHG sig-
nal: a doubly resonant one, involving Jeff = 3/2 electrons,
and a non-resonant one, involving O 2p electrons.

However, the reason why the −+−+ or + + ++ mag-
netic patterns replaces the − + +− pattern remains to
be found. Here we advance some hypotheses and pro-
pose new experiments to check them. We begin with the
nature of the SHG process in Sr2IrO4.

Zhao et al. [5] propose a doubly non-resonant virtual
transition for the incoming 1.55 eV photon (λ = 800 nm)
from the O 2p band since it is more than 3 eV below
the Fermi energy (Fig. 5). We propose instead that the
incoming 1.55 photons undergo a doubly resonant transi-
tion from the filled Jeff = 3/2 band to the empty partner
of the Jeff = 1/2 doublet and then to the lower part of the
eg band (Fig. 5). The existence of the first resonance is
demonstrated by a previous pump-probe experiment [32]
and the position of the second one can be inferred from O
K-edge measurements in x-ray absorption [8] and x-ray
inelastic scattering [33]. This level scheme has been ad-
vocated by a recent optics measurement as well [34]. The
intensity of the doubly resonant path will be enhanced by
a factor ∼ 500 (for a typical damping Γ ∼ 0.1 eV), due
to the resonant denominator of Eq. (A3). Whereas in
reflection geometry, as in Ref. 5, both processes generate
an SHG signal, measurements in a transmission geome-
try would unambiguously identify one or the other [35]:
the strong damping due to real absorption of the doubly-
resonant mechanism would deplete it, contrary to the the
non-resonant process involving O 2p states.

We also speculate that the laser pump itself might
modify the SHG signal. After all, only a 0.3 T field or
a few % Rh doping are needed to stabilize the + + ++
state (or possibly the − + −+ state for Rh doping). In
support of our conjecture, it is known that laser-induced
non-thermal changes in the magnetism can occur that
follows the time profile of a short laser pulse (48 fs) as
demonstrated in Ref. 36, where the effect was attributed
to both the coupling of the electric and magnetic fields
of the laser to the spins, and the alteration of the elec-
tric field of the ions due to the photodoped carriers [37].
In FeBO3, this leads to a change in the anisotropy of
the probe polarization that has C1 symmetry [38]. The

laser can also generate changes in the symmetry of the
lattice on this time scale, again due to the photodoped
carriers, as demonstrated recently for Cr2O3 [39]. There,
the symmetry corresponded to an even parity mode, but
coupling of excitations to an odd parity mode was re-
cently suggested in Sr2IrO4 [34] for an energy correspond-
ing to the pump energy of Zhao et al. [5], which would
again lead to a C1 distortion of the SHG signal. More-
over, a non-thermal transition from an antiferromagnetic
state to a ferromagnetic state was generated on the time
scale of the laser pulse in a manganite [40], though this
required a critical fluence and also an external field to
align the ferromagnetic moments. In this context, Dean
et al. [14] monitored the (-3,-2,28) magnetic Bragg peak
associated with the − + +− ground state and found
that it was strongly suppressed with a laser fluence of
1 mJ/cm2. They speculate that this was due to destruc-
tion of the inter-plane magnetic correlations due to their
weak nature, though thermal-induced demagnetization is
the most likely cause due to laser heating. Regardless,
if they are right, even if the resulting 3D pattern were
random in nature, we would expect an SHG signal to be
present from the symmetry reduction (noting that even
for the ordered ground states, only − + +− has a null
SHG signal). Such an excited state might also be less
sensitive to Rh doping, which would then explain why
TΩ is less sensitive to Rh doping than TN . But in order
to obtain the measured azimuthal scan (Fig. 4), a given
laser pulse should not induce a random orientation of the
magnetic domains below TΩ since the measurement av-
erages over many pulses. This is doubtful, since Zhao et
al. [5] found the domains to change on each successive
cool down. Moreover, if the pump polarization oriented
the domains, then four domains would not have been
seen as they did. And any effect would have to occur on
the time scale of the emitted SHG photons. Still, these
speculations could be tested by future experiments: for
instance, monitoring in parallel magnetic Bragg peaks
associated with + + ++ or −+−+, measuring the SHG
signal as a function of laser fluence, or in the presence
of a magnetic field, or at different photon energies (some
of the effects mentioned above are very sensitive to the
photon energy), or performing actual pump-probe SHG
experiments.

Because of potential issues with a laser-induced inter-
pretation, one might wonder if there is an alternate ex-
planation. There is. Magnetic SHG can also originate
from the surface, as identified in a number of past studies
[41]. The magnetic point group of the surface of Sr2IrO4

is 2′. This allows for both the eee and eem SHG sig-
nals discussed above. Although it might seem unusual to
have interference between a bulk eeq signal and a mag-
netic surface eee/eem signal, this has been observed in
Fe/Au superlattices [42], with the origin of the inter-
ference attributed to the complex nature of the energy
denominator as we discussed above. This seems to us a
realistic possibility, and could be tested experimentally.
The SHG energy of Zhao et al. [5] corresponds to a max-
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imum in the conductivity [34]. This implies that many
of the SHG photons are absorbed, meaning the resulting
signal is dominated by the surface. On the other hand,
there is a pronounced minimum at 2 eV [34], meaning
that experiments with a pump energy of 1 eV (SHG en-
ergy of 2 eV) should be less surface sensitive and the
interference reduced.

We now turn to an analysis of the ground state of
Sr2IrO4, which we shall use in Section V.

IV. KRAMERS DOUBLET GROUND STATE IN
Sr2IrO4

The breakthrough idea in the original paper of
B. J. Kim et al. [1] was the identification of the ground
state of Sr2IrO4 as an octahedral Kramers doublet. As
shown in the last section, a proper knowledge of the
ground and the excited states of Sr2IrO4 are necessary,
in order to explain the SHG experiment. As a conse-
quence, we focus here on the theoretical description of
this Kramers doublet and on the experimental evidence
for its existence. We believe, in fact, that in spite of a
number of papers published on the subject [9, 19, 43, 44],
there are some experimental consequences of this state
that have not (or not correctly) been stated. As authors
in the iridate literature have sometimes followed different
conventions for the definition of spherical orbitals, we list
our own definitions in Appendix B.

One of the key experimental evidences leading to the
octahedral Kramers doublet was the absence of mag-
netic RXS intensity at the Ir L2 edge for reflections that
showed a big resonant intensity at the L3 edge [9, 19].
This feature has been confirmed in several other non-
stoichiometric compounds [19, 45, 46]. Initially inter-
preted as definitive evidence for this Kramers doublet
[9], the absence of a magnetic signal at the L2 edge was
considered as inconclusive, because an in-plane magnetic
moment could lead to the same conclusion [43] even if the
octahedral limit was not realized. However, the fact that
for some doped samples the magnetic moments point out
of the xy-plane and the magnetic RXS intensity at the
Ir L2 edge was still strongly depleted [45, 46] represent
yet another hint towards the physical realization of an
octahedral Kramers doublet. However, as this last men-
tioned experimental evidence referred to Ru-doped [46]
and Mn-doped [45] samples, it is still an open question
to find definitive experimental evidence of the octahedral
Kramers doublet in Sr2IrO4.

We want to show here, by revisiting some of the cal-
culations, that direct experimental evidence for the re-
alization of this Kramers doublet in Sr2IrO4 is possible,
looking at the Ir L2 edge by X-ray absorption in partial
yield in such a way as to reduce the core-hole lifetime to
a value below 2 eV. The reason is due to the fact that two
low-lying empty states are present in the spectrum: the
empty partner of the Kramers doublet, within 1 eV of
the Fermi level, and the eg states (around ∼ 3 eV above

the Fermi level). The two cannot be identified in usual
XAS measurements, because of the L2 core-hole width of
around 5 eV. If an octahedral Kramers doublet existed,
this would be a pure j = 5/2 state (see Fig. 6 and cal-
culations below) and no dipole transition at the L2 edge
would be allowed. Therefore in this case, the first, low ly-
ing peak would disappear and only the eg peak at higher
energies would be present, as eg states are a mixture of
both j = 5/2 and j = 3/2 states (Appendix B). Indeed,
a hint towards the presence of the two peaks was high-
lighted by Boseggia et al. [19], who noticed two bumps
in their magnetic spectra at the L2 edge. We think that
at least the higher energy peak corresponds to the eg
states that, though just slightly magnetically polarized,
can contribute to the magnetic intensity.

In what follows, we explain the details of our calcula-
tions. Note that as our main objective is to write down
the L2,3-edge cross-section, we shall not work with the
effective angular momentum for the t2g states often em-
ployed in the literature, but with the real ones. We feel
that this representation is more transparent if we analyze
core-level transitions, as the expression of the Kramers
doublet in terms of the |j = 5

2 , jz〉 states directly in-
forms us about whether this transition is dipole-forbidden
or not at the L2 edge (we remind that dipole transi-
tions are characterized by ∆j = ±1 and therefore the
||j = 1/2〉 core states of the L2 edge cannot be promoted
to |j = 5/2〉 states above the Fermi level). This would
not be the case with |Jeff = 1/2〉. In Appendix B, we
give the formulas to pass from one representation to the
other, in order to compare with the existing literature.

If we solve the crystal-field plus spin-orbit Hamiltonian
at an Ir site, as done several times in the literature [2, 47,
48], and as reported in detail in Appendix B, but then
express the solution in terms of the spin-orbit coupled
j = 5/2 and j = 3/2 states that can be associated with
the 5d electrons of Ir, we obtain:

|ψ+〉 =
1√
5N

[
(2 +

R√
2

)|5
2
,

3

2
〉 (15)

+(
√

2R− 1)|3
2
,

3

2
〉 −R

√
5

2
|5
2
,−5

2
〉

]

and

|ψ−〉 =
1√
5N

[
(2 +

R√
2

)|5
2
,−3

2
〉 (16)

−(
√

2R− 1)|3
2
,−3

2
〉 −R

√
5

2
|5
2
,

5

2
〉

]

where the coefficients R(η) and N(η) depend solely on
the ratio η = ∆t/λ between the tetragonal crystal field,
∆t, and the spin-orbit coupling, λ:

R(η) = − 1√
2

(
1− 1

2 (1 + 2η +
√

9− 4η + 4η2)
)

N(η) = 1 + 1
2

(
1− 1

2 (1 + 2η +
√

9− 4η + 4η2)
)2
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2

FIG. 6: (Color online) A schematic representation of the Kramers doublet formation. When jj coupling is considered (first
spin-orbit (SO) and then octahedral crystal field (OCF), right-to-center path) it appears that the Kramers doublet is the only
purely j = 5/2 state (in red). All other states are a mixing of j = 3/2 and j = 5/2 (blue and red lines).

Notice that in the octahedral limit, η = 0, R(η = 0) =
1√
2
. From this expression, it is clear that if the octahe-

dral limit is realized, then the coefficient of the | 32 ,±
3
2 〉

terms becomes zero and no signal at the L2 edge can be
detected.

What should be underlined here is that the absence
of intensity at the L2 edge is not limited to the mag-
netic signal: all the signal at the L2 edge associated with
the empty part of the Kramers doublet would be zero if
the octahedral limit is satisfied, even the non-magnetic
absorption. In fact, in this case |ψ±〉 would be a pure
|j = 5/2〉 state (see Fig. 6) and no dipole transition
can occur between 2p1/2 and 5d5/2 (∆j = 2 is dipole-
forbidden).

If we rewrite Eqs. (15) and (16) using the cartesian
representation, we obtain the form usually given in the
literature for the half-filled Kramers doublet [49]:

|ψ+〉 =
1√
N

(
iRdxy↓ −

1√
2
dxz↑ −

i√
2
dyz↑

)
|ψ−〉 =

1√
N

(
−iRdxy↑ +

1√
2
dxz↓ −

i√
2
dyz↓

)
(17)

This expression, with R(η = 0) = 1√
2
, gives the usu-

ally quoted doublet with equal weights of t2g states. The
expression above for the doublet corresponds to the case
where the magnetic moment is along the c-axis, as |ψ+〉
and |ψ−〉 are eigenstates of both Lz and Sz, of eigen-

value ±2/3 and ±1/6, respectively, when R = 1/
√

2. If
we want it in any direction, we should make a linear com-
bination of the two as follows:

|ψany〉 =
1√
N

[
cos(β)

(
iRdxy↓ −

1√
2
dxz↑ −

i√
2
dyz↑

)
+ sin(β)e−iγ

(
iRdxy↑ −

1√
2
dxz↓ +

i√
2
dyz↓

)]
(18)

In this expression, β = 0 and β = π/2 corresponds
to the magnetic moment oriented along ±c, whereas the

magnetic moment in the ab-plane, as detailed in Ap-
pendix B.3, is obtained when cos(β) = sin(β). In this
case, γ corresponds to the angle with respect to the local
x-axis in the direction of a planar oxygen (e.g., for Ir1 in
Fig. 1, β = γ = π/4).

The experimental configuration, where the magnetic
moment lies in the ab-plane, 45◦ from the local octahe-
dron axes [50], leads to the following expressions for the
Kramers doublets:

|ψ+
real〉 =

1√
2N

[(
iRdxy↓ −

1√
2
dxz↑ −

i√
2
dyz↑

)
(19)

+
1√
2

(1− i)
(
iRdxy↑ −

1√
2
dxz↓ +

i√
2
dyz↓

)]
|ψ−real〉 =

1√
2N

[(
iRdxy↓ −

1√
2
dxz↑ −

i√
2
dyz↑

)
− 1√

2
(1− i)

(
iRdxy↑ −

1√
2
dxz↓ +

i√
2
dyz↓

)]
The same expressions in the |j, jz〉 basis are reported

in Appendix B.1.
Notice that the expression given in Ref. 44 for

the moment along a does not appear to be correct.
In their expression, that in the octahedral limit is
1√
3

(
(dxy↑ − idxy↓)/

√
2 + idxz↓ + dyz↑

)
, only dyz↑ and

dxz↓ appear, violating the phase relation of the Jeff = 1/2
subspace. This state therefore brings in some admixture
with components from the Jeff = 3/2 subspace [51].

We can now evaluate the matrix elements that appear
in both magnetic RXS and XAS. The details are shown
in Appendix B.2. We draw here the conclusions of such
calculations, Eqs. (B8) and (B9). Where the L2 edge is
concerned, Eq. (B8) clearly shows that in the octahedral
limit, R(η = 0) = 1√

2
and all matrix elements are zero.

This is to be expected: in this limit, the Kramers dou-
blet becomes a purely |j = 5/2〉 state and no transition is
possible for the L2 edge. Eq. (B8) tells us also that when
the magnetic moment is in the ab-plane, whatever its ori-
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entation, cos(2β) = 0 and off-diagonal elements are zero,
independent of R. This implies, in particular, that the
magnetic RXS signal is zero. We remind that this con-
clusion is valid because magnetic RXS is proportional to

the antisymmetric part of the L
(2)
αβ tensor (Eq. (B8)) and

that the latter is an irreducible tensor of rank one: if it
is zero in one frame, it will be zero in any other rotated
frame. The opposite also is true, valid at the L3 edge,
Eq. (B9): if at least one component is non-zero in a given
frame, there will be at least one non-zero component in
any other rotated frame. This is sufficient to affirm that
there is always a magnetic RXS signal at the L3 edge,
whatever R and β are (this rule, of course, does not con-
sider eventual extinctions due to the structure factor).
At the L3 edge, moreover, Eq. (B9) shows us that the
absorption coefficient for the empty part of the Kramers
doublet is always different from zero for any incoming
polarization (2R2 +

√
2R + 1 > 0, for any R) and for

any direction of the magnetic moment. We finally no-
tice that, contrary to what was stated in Ref. 44, the L2

edge magnetic RXS in the π−π channel is zero whatever
R is if the magnetic moment is confined within the ab-
plane, as Eq. (B8) implies that no magnetic signal exists
in this case, in any frame (any incoming and outgoing
polarizations).

V. KEY EXPERIMENTS FOR Sr2IrO4

This Section is focused on the description of some key
experiments with the double aim to find the fingerprint
of a) the octahedral Kramers doublet in the stoichiomet-
ric material and b) the magnetic space groups, + + ++
and −+−+, of interest for the SHG experiment [5]. As
explained in the previous Section, one key experiment
to confirm whether the Jeff = 1/2 doublet is realized in
Sr2IrO4 is to compare XAS experiments at the L2 and
L3 edges of Ir, using the high-resolution capabilities of
partial fluorescence detection to reduce the value of the
core-hole width at these edges. Typical values of the
core-hole width for Ir at the L2 and L3 edges are 5.69 eV
and 5.25 eV, respectively [53]. We remark in this respect
that, as depicted in Fig. 6, eg orbitals have both j = 3/2
and j = 5/2 character, as well as the Jeff = 3/2 subman-
ifold of t2g [54]. This is evident by a simple inspection
of the transformation formulas given in Appendix B. In
the octahedral limit, the only purely j = 5/2 state is the
Kramers doublet Jeff = 1/2. Therefore, dipole transi-
tions can reach the empty eg states but not the empty
partner of the Kramers doublet Jeff = 1/2. This is not
the case for the L3 absorption transitions that can reach
both eg states and the empty partner of the Kramers
doublet. A comparison of the two high-resolution XAS
spectra could therefore provide a definitive confirmation
of this issue for the stoichiometric compound.

In Fig. 7 we show the results of a numerical simula-
tion of L2-edge XAS by means of the FDMNES code
[55]. We remind that the FDMNES code is based on
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FIG. 7: (Color online) Ir L2 edge XAS for two different core-
hole widths. The core-hole width of total fluorescence yield,
Γ = 5.69 eV, does not allow one to separate the underlying
peak structure. The A-peak should be absent in the octahe-
dral limit. The − + +− state was assumed (the − + +− and
+ + ++ states give indistinguishable results at this scale).
The Fermi level sets the zero of the energy scale.

a spin-polarized multiple-scattering approach including
spin-orbit akin to LSDA+SO (local spin density approx-
imation plus spin-orbit) calculations [56]. We performed
two XAS calculations, one with a core-hole width of 5.69
eV and the other with a core-hole width of 2 eV. We used
a cluster radius of 6.5 Å, containing 85 atoms [57]. With
Γ = 2.0 eV, the doublet structure of what appeared to
be a single peak for Γ = 5.69 eV clearly emerges. The
lower-lying structure, labelled as the A-peak in Fig. 7,
should not be there if the octahedral Kramers doublet
is realized (i.e., R = 1/

√
2). Its absence is a fingerprint

of the octahedral Kramers doublet. Unfortunately, the
simulation does not reproduce all of the features of the
data: for example, the energy splitting of the eg 5d3z2−r2
and 5dx2−y2 states is underestimated (only ∼ 0.6 eV, as
compared to 1.6 eV experimentally [33]), though it would
take very high resolution to see this splitting in XAS.

We performed also the same calculation with a Hub-
bard U = 2 eV, but it did not change qualitatively the
results of Fig. 7, except for a shift of 0.5 eV of the higher-
energy shoulder to still higher energies (however, this dif-
ference would be difficult to observe experimentally). As
shown in the literature in the case of actinides, it is possi-
ble to select photons emitted from decay channels charac-
terized by longer lifetimes, i.e. a smaller core-hole width,
with resolutions of ∼2.0 eV at L edges, or even down
to 1.2 eV for the M2 edge in uranium compounds [58].
These resolutions would clearly allow for the detection of
the presence or absence of the Jeff = 1/2 peak at the L2

edge, thereby providing the final word on this issue [59].

A further experiment to double-check the behavior of
the Kramers doublet is suggested by Eq. (B8). Here it
is shown that when XAS is measured with incoming po-
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FIG. 8: (Color online) Iridium L1 XAS, highlighting E2 tran-
sitions below 8 eV and the positions of the t2g and eg states
(see the main text for explanations). The − + −+ state was
assumed, and the Fermi level sets the zero of the energy scale.

larization along z, one should get a null L2 signal for the
Kramers doublet, regardless of whether one is in the oc-
tahedral limit or not. That is, z polarization only picks
up the eg states. This would allow one to fix experimen-
tally the energy level(s) of the eg states. If, starting from
this configuration, we rotate the polarization towards,
say, the x-direction, any signal that develops at lower en-
ergies would necessarily imply that we are filling in the
unoccupied partner of the Kramers doublet and therefore
we are not in the octahedral limit. The results of Moon et
al. [8] at the O K edge and our simulations by FDMNES
at the Ir L1 edge, shown in Fig. 8, allow us to confirm
that any signal of x character developed below the low-
est z peak cannot be of eg origin (e.g., 5dx2−y2 orbitals),
because the latter are higher in energy than the 5d3z2−r2
states. Here as well, the experiment would strongly rely
on a high resolution to resolve the three peaks.

Further independent pieces of information on the na-
ture of the low-lying energy states and their orbital dis-
tribution come from polarized XAS spectra at the Ir L1

edge, where it is possible to play with both incoming po-
larization and wave-vector through electric-quadrupole
(E2) transitions. The main results are shown in Fig. 8. In
particular, we show some results that would be measured
by high-resolution XAS (Γ ∼ 2 eV). The comparison with
the curves characterized by Γ = 8.3 eV (the typical core-
hole width for L1 XAS [53]) highlights the necessity for
high-resolution XAS. For all curves with Γ = 2.0 eV, the
E2 signal is clearly visible in the region up to 8 eV above
the Fermi energy (the zero of our energy scale). The
E2 origin of the signal is demonstrated by the different
behavior of the black and red curves in the region from
0 to 4 eV, and the behavior of the green and light-blue
curves in the region from 0 to 8 eV. In particular, set-

ting ~ε ‖ c and ~k ‖ a (black curve) makes XAS blind to
both the 5dx2−y2 and 5d3z2−r2 states and only sensitive

to the t2g 5dxz ones. This allows the identification of the
lowest-lying peak, between 0 and 1 eV, as due to these
5dxz states. We remark that the E2 nature of this peak
is demonstrated by the difference with the purely E1 cal-
culation (red curve). Experimentally, such a feature can

be shown by rotating ~k. When we rotate the polarization
to the a direction and the wave-vector to the b direction
(both in-plane), E2 transitions become allowed for both
the 5dx2−y2 and 5d3z2−r2 states (the latter, because of
the x2 + y2 part contained in the r2 term). This is seen
by the green curve in Fig. 8. Finally, the dark-blue curve

with ~ε ‖ a and ~k ‖ c allows to double-check a) the E2
nature of the lowest-lying peak (because it is symmet-
ric in the a ↔ c exchange, as only E2 transitions are)
and b) the partly E1 nature of the features around 4 eV
(of course, the latter is evident also from the purely E1,
light-blue curve).

We remark also that a smooth extrapolation of the
E1 peaks around 14 eV shows that the Ir 6p density of
states is present down to the Fermi energy and, in cor-
respondence with the E2 features, further p density of
states, probably due as well to the hybridization of the Ir
5d and O 2p states. The possibility that this inversion-
odd density of states is magnetized, so as to be TI-
invariant, as required in the 2′/m group suggested by the
SHG experiment, can be analyzed by non-reciprocal x-
ray linear dichroism or magnetochiral (XMχD) dichroism
[60, 61]. Such a technique would highlight the presence
of a toroidal, magnetic signal of E1-E2 origin, therefore
providing an independent confirmation of the presence of
toroidal multipoles. By symmetry, this is only possible
for the − + −+ state. Unfortunately, as the inversion
breaking at the Ir sites is only determined by further
oxygen neighbors (see Section II), E1-E2 radial matrix
elements are extremely small, less than 10−4 of the E2-
E2 radial matrix elements leading to the XAS pre-edge
peak shown in Fig. 8. We have verified this by FDMNES,
where we find an XMχD peak at the pre-edge for k par-
allel to the a-axis that is of order 10−4 of the L1 XAS
maximum (this requires a cluster radius of at least 7 Å).
The same order of magnitude applies to the K edge. This
implies that, were the toroidal nature of the SHG signal
confirmed, SHG would be a much more sensitive tool to
detect a tiny T̂ Î-breaking order parameter than dichro-
ism in XAS.

In order to identify the actual magnetic state indi-
cated by the SHG experiment, a more sensitive tool than
XMχD is x-ray magnetic circular dichroism (XMCD),
whose signal is zero for the − + −+ and − + +− states
and non-zero for the + + ++ state. An XMCD signal
has been reported in Ref. 62 in the presence of a mag-
netic field (therefore inducing the + + ++ state) with an
intensity about 1% of the XAS intensity [63].

As shown already in Section II in Fig. 2, the two mag-
netic configurations −+−+ and ++++ can be identified
also by RXS experiments at the L3 edge, with the aim of
identifying whether the −+−+ state or the ++++ state
is realized in Sr2IrO4 in the case of Rh doping. Though
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challenging, it would be interesting to perform both the
RXS and the XMCD experiments under the influence of
a laser beam, so as to check whether the experimental
conditions of the SHG experiment in Ref. 5 could have
possibly induced a phase transition from the − + +−
state to the + + ++ or −+−+ states. We remind that
a relatively small applied magnetic field (H ' 0.3 T) has
been shown to induce the + + ++ state [9]. In fact, it
would be very interesting to repeat the SHG experiments
in the presence of a magnetic field that would induce the
+ + ++ state.

Finally, we have tried to highlight the difference be-
tween the + + ++ and − + −+ states also at the Ir L1

edge, by interference of E1 and E2 signals at the pre-
edge (experimentally, they could be disentangled with
the technique of phase plates developed in Ref. 65). Un-
fortunately, our FDMNES calculations find that charge
scattering is the dominant term in this energy range, so
no qualitative differences between the two states could
be determined.

VI. CONCLUSIONS

To conclude, we summarize here the main achieve-
ments of the present paper:

1) We have shown that the SHG experiment [5] can be
explained by either the 2′/m or the 2′/m′ magnetic space
groups. The former was already identified in Ref. 5 where
it was interpreted in terms of toroidal moments induced
by orbital currents. However, an order parameter with
the symmetry of a toroidal dipole is not sufficient to ex-
plain the azimuthal scan, as noted in Section III. The
octupole is needed as well.

2) We have demonstrated that it is not necessary to in-
voke exotic orbital currents to obtain an SHG signal: an
induced transition to the −+−+ state or to the + + ++
state would have the same effect. The latter was explic-
itly excluded in Ref. 5, probably because only χ(e) was
considered in that paper, not χ(m). Two other magnetic
space groups might explain the odd-ψ azimuthal depen-
dence of the interference SHG signal: m1′ and 11′. The
former was also identified in Ref. 5. However, both of
them are characterized by time-reversal even order pa-
rameters, and it appears implausible that they play a
central role below the magnetic transition temperature.
Finally, the − + −+ state has a magnetoelectric space
group and could explain also the results of Ref. 7, that
invokes the breaking of both spatial parity and time-
reversal symmetry. Either effect could also arise from
surface magnetic SHG, and we have suggested that the
photon energy could be changed to test for surface sen-
sitivity of the SHG signal.

3) We have suggested new experiments to highlight
the interplay of the three states, − + +−, + + ++,
or − + −+, characterized by different magnetic space
groups. Though neutron and x-ray diffraction data
clearly show that − + +− is the ground state for sto-

ichiometric Sr2IrO4, the three are very close in energy
(the inter-plane exchange ∼ µeV [13]). A laser pulse of
1mJ/cm2 fluence is known to suppress the −+ +− state
at fs timescales [14]. Whether this is what produces the
additional C1 distortion of the SHG signal below TΩ re-
mains to be determined by future experiments, several of
which were outlined in Section III.

4) From the calculations of Appendix B, we have high-
lighted a new experimental criterion, based on high-
energy resolution XAS, to identify the octahedral nature
of the Kramers doublet in stoichiometric Sr2IrO4. Such
an XAS measurement is independent of the direction of
the Ir magnetic moments (in-plane or out-of-plane), as it
only relies on the purely j = 5/2 nature of the Kramers
doublet in the octahedral limit. It can provide, there-
fore, an independent confirmation of the realization of the
octahedral Kramers doublet in the stoichiometric com-
pound.
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Appendix A: Technical details on the SHG
calculations

1. The total SHG amplitude

In the most general case, the transition probability per
unit time from a state Φg to a state Φf can be written
in term of the transition operator TI as follows:

Wgf =
2π

~
ρf
∣∣〈Φf |TI |Φg〉∣∣2 (A1)

where ρf is the density of the final states and TI =
HI + HIGHT

HI , with HI the matter-radiation inter-
action Hamiltonian and GHT

= (Σg − HT + iΓ)−1

the Green’s function related to the total Hamiltonian
HT = H0 + HI . Σg is the total energy associated with
Φg. Here H0 is the sum of the matter Hamiltonian and
the radiation Hamiltonian, separately. With the usual
Dyson expansion GHT

= GH0
+ GH0

HIGH0
+ ..., we

can replace in the above expression for TI and rewrite
Eq. (A1) up to any order in HI . The scattering cross-
section is obtained from the transition probability per
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unit time by dividing by the incoming flux (c/V for pho-
tons, when the vector potential is normalized to one pho-
ton per unit volume, V [27]). We can then pick out the
third order for the scattering cross-section, of interest

for SHG, σSHG = 2πV
~c ρf

∣∣ASHG∣∣2, where the amplitude
reads (with Φf = Φg):

ASHG =
∑
l,n

〈Φg|HI |Φl〉〈Φl|HI |Φn〉〈Φn|HI |Φg〉
(Σg − Σn)(Σg − Σl)

(A2)

We can now separate in HI the radiation part from
the matter part, as Σi = Ei + m~ω. Here Ei is the en-
ergy of the material alone (without radiation) for state
i and ~ω measures the photon energy associated with a
given matrix element. In particular, for SHG, m = 1 in
absorption and m = 2 in emission, because of the absorp-
tion of two photons of energy ~ω and the emission of one
photon of energy 2~ω. Three different terms are possi-
ble, as represented in Fig. 3, and they correspond to the
three processes: 1) absorption (~ω) - absorption (~ω) -
emission (2~ω): this is a doubly resonant process; 2) ab-
sorption (~ω) - emission (2~ω) - absorption (~ω): this is
a singly resonant process; 3) emission (2~ω) - absorption
(~ω) - absorption (~ω): this is a non-resonant process.
Three different energy denominators are associated with
each term, as shown below. For the interaction Hamil-
tonian, we suppose that we can perform a multipole ex-
pansion of the vector potential contained in HI [20] and
consider electric-dipole (E1), magnetic-dipole (M1) and
electric-quadrupole (E2) terms, only. With this hypoth-
esis, Eq. (A2) can be written as (a sum over repeated
variables α, β, γ = x, y, z is employed):

ASHG =
∑
l,n

(
∆

(1)
l,n

(
η

(e,1)
αβγ;lnO

(e,1)
αβγ

+

3∑
i=1

η
(m,1,i)
αβγ;lnO

(m,1,i)
αβγ +

3∑
i=1

η
(q,1,i)
αβγδ;lnO

(q,1,i)
αβγδ

)
+ ∆

(2)
l,n

(
η

(e,2)
αβγ;lnO

(e,2)
αβγ +

3∑
i=1

η
(m,2,i)
αβγ;lnO

(m,2,i)
αβγ

+

3∑
i=1

η
(q,2,i)
αβγδ;lnO

(q,2,i)
αβγδ

)
+ ∆

(3)
l,n

(
η

(e,3)
αβγ;lnO

(e,3)
αβγ

+

3∑
i=1

η
(m,3,i)
αβγ;lnO

(m,3,i)
αβγ +

3∑
i=1

η
(q,3,i)
αβγδ;lnO

(q,3,i)
αβγδ

))
≡ χ(e,1)

αβγ O
(e,1)
αβγ +

3∑
i=1

(
χ

(m,1,i)
αβγ O

(m,1,i)
αβγ + χ

(q,1,i)
αβγδ O

(q,1,i)
αβγδ

)
+ χ

(e,2)
αβγ O

(e,2)
αβγ +

3∑
i=1

(
χ

(m,2,i)
αβγ O

(m,2,i)
αβγ + χ

(q,2,i)
αβγδ O

(q,2,i)
αβγδ

)
+ χ

(e,3)
αβγ O

(e,3)
αβγ +

3∑
i=1

(
χ

(m,3,i)
αβγ O

(m,3,i)
αβγ + χ

(q,3,i)
αβγδ O

(q,3,i)
αβγδ

)
(A3)

where the denominators are: ∆
(1)
l,n = ((Elg − 2~ω −

iΓl)(Eng −~ω− iΓn))−1, ∆
(2)
l,n = ((Elg +~ω)(Eng −~ω−

iΓn))−1, and ∆
(3)
l,n = ((Elg + ~ω)(Eng + 2~ω))−1.

Cartesian tensors χ
(e,m,q)
αβγ represent tensor properties

of the matter and O
(e,m,q)
αβγ those of incoming and out-

going polarizations and wave-vectors. We remark that

the quantities χ
(e,i)
αβγ ≡

∑
l,n ∆

(i)
l,nη

(e,i)
αβγ;ln correspond to

the SHG susceptibilities usually defined in the literature

(e.g., Ref. 26) from the macroscopic relation: ~P (2ω) =

χ : ~E(ω) ~E(ω), and analogously for χ
(m,i,j)
αβγ and χ

(q,i,j)
αβγ .

The only difference is that in the quantum-mechanical

approach, all the processes depicted in Fig. 3 for χ
(e,i)
αβγ

and χ
(m,i,j)
αβγ must be considered. In Eq. (A3) we have

chosen to introduce the tensors η
(e,m,q)
αβγ;ln (defined below),

factorizing denominators explicitly because, as detailed
in Sections III and A.2, this factorization allows a clearer
identification of the irreversible part, related to the de-
nominators, and of the transition matrix elements, re-
lated to the order parameters, where time-reversal can

be investigated. The three denominators, ∆
(1)
l,n , ∆

(2)
l,n

and ∆
(3)
l,n weight the three quantum-mechanical transi-

tion amplitudes leading to the SHG signal (two resonant
processes, only one resonant process, no resonant pro-
cesses), as shown in Fig. 3.

For simplicity, we call χ(e) the tensors with three
electric-dipole transitions (E1-E1-E1), often called in
the optics community χ(eee), χ(m) the tensors with two
electric-dipole and one magnetic-dipole transition (E1-
E1-M1), often called χ(eem), and χ(q) the tensors with
two electric-dipole and one electric-quadrupole transition
(E1-E1-E2), often called χ(eeq). For symmetry reasons,
the M1 and E2 transitions can appear at any of the three
positions and this is the origin of the extra index i for
χ(m) and χ(q). It is pictorially shown in Fig. 3 for χ(m).
Using the notation Eij = Ei−Ej , the explicit expressions

of the η
(e,m,q)
αβγ;ln tensors are:

η
(e,1)
αβγ;ln = i

e3

~3
EglElnEng〈φg|rα|φl〉

〈φl|rβ |φn〉〈φn|rγ |φg〉 (A4)

η
(e,2)
αβγ;ln = η

(e,3)
αβγ;ln = η

(e,1)
αβγ;ln (A5)
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η
(m,1,1)
αβγ;ln =

ie3

2me~2
ElnEng〈φg|(L+ 2S)α|φl〉

〈φl|rβ |φn〉〈φn|rγ |φg〉 (A6)

η
(m,1,2)
αβγ;ln =

ie3

2me~2
EglEng〈φg|rα|φl〉

〈φl|(L+ 2S)β |φn〉〈φn|rγ |φg〉 (A7)

η
(m,1,3)
αβγ;ln =

ie3

2me~2
EglEln〈φg|rα|φl〉

〈φl|rβ |φn〉〈φn|(L+ 2S)γ |φg〉 (A8)

η
(m,2,1)
αβγ;ln = η

(m,1,1)
αβγ;ln (A9)

η
(m,2,2)
αβγ;ln = η

(m,1,2)
αβγ;ln (A10)

η
(m,2,3)
αβγ;ln = η

(m,1,3)
αβγ;ln (A11)

η
(m,3,1)
αβγ;ln = η

(m,1,1)
αβγ;ln (A12)

η
(m,3,2)
αβγ;ln = η

(m,1,2)
αβγ;ln (A13)

η
(m,3,3)
αβγ;ln = η

(m,1,3)
αβγ;ln (A14)

η
(q,1,1)
αβγδ;ln = − e3

2~3
EglElnEng〈φg|rαrβ |φl〉

〈φl|rγ |φn〉〈φn|rδ|φg〉 (A15)

η
(q,1,2)
αβγδ;ln = − e3

2~3
EglElnEng〈φg|rα|φl〉

〈φl|rβrγ |φn〉〈φn|rδ|φg〉 (A16)

η
(q,1,3)
αβγδ;ln = − e3

2~3
EglElnEng〈φg|rα|φl〉

〈φl|rβ |φn〉〈φn|rγrδ|φg〉 (A17)

η
(q,2,1)
αβγδ;ln = η

(q,3,1)
αβγδ;ln = η

(q,1,1)
αβγδ;ln (A18)

η
(q,2,2)
αβγδ;ln = η

(q,3,2)
αβγδ;ln = η

(q,1,2)
αβγδ;ln (A19)

η
(q,2,3)
αβγδ;ln = η

(q,3,3)
αβγδ;ln = η

(q,1,3)
αβγδ;ln (A20)

Here φj are the eigenstates of the matter alone from H0.

It should be noted that η
(e,1)
αβγ = η

(e,2)
αβγ = η

(e,3)
αβγ ≡ η

(e)
αβγ (we

remove the ;ln label when not explicitly needed, though
the dependence on intermediate states should not be for-
gotten). In fact, even though each term in the prod-
uct (Eg −El)(El −En)(En −Eg) can be different in the
three cases (as states g, l and n are different), the com-
bined product is always the same. Notice also that η(m)

and η(q) (χ(m) and χ(q)) are dimensionally homogeneous,
whereas η(e) (χ(e)) should not be directly compared to
η(m) and η(q) (χ(m) and χ(q)) as they are not dimension-
ally homogeneous (χ(m)/χ(e) ∼ length ∼ λ/2π as χ(e)

does not multiply the wave-vector, as do the former two,
see Eq. (A21) and below).

The polarization matrices O(e,m,q;1,2,3) are (here εi, εo,
ki and ko are incoming and outgoing polarizations and
wave-vectors):

O
(e,1)
αβγ = εo∗α ε

i
βε
i
γ (A21)

O
(e,2)
αβγ = εiαε

o∗
β ε

i
γ (A22)

O
(e,3)
αβγ = εiαε

i
βε
o∗
γ (A23)

O
(m,1,1)
αβγ = (εo∗ × ko)αεiβεiγ (A24)

O
(m,2,1)
αβγ = (εi × ki)αεo∗β εiγ (A25)

O
(m,3,1)
αβγ = (εi × ki)αεiβεo∗γ (A26)

O
(m,1,2)
αβγ = εo∗α (εi × ki)βεiγ (A27)

O
(m,2,2)
αβγ = εiα(εo∗ × ko)βεiγ (A28)

O
(m,3,2)
αβγ = εiα(εi × ki)βεo∗γ (A29)

O
(m,1,3)
αβγ = εo∗α ε

i
β(εi × ki)γ (A30)

O
(m,2,3)
αβγ = εiαε

o∗
β (εi × ki)γ (A31)

O
(m,3,3)
αβγ = εiαε

i
β(εo∗ × ko)γ (A32)

O
(q,1,1)
αβγδ = εo∗α k

o
βε
i
γε
i
δ (A33)

O
(q,2,1)
αβγδ = εiαk

i
βε
o∗
γ ε

i
δ (A34)

O
(q,3,1)
αβγδ = εiαk

i
βε
i
γε
o∗
δ (A35)

O
(q,1,2)
αβγδ = εo∗α ε

i
βk

i
γε
i
δ (A36)

O
(q,2,2)
αβγδ = εiαε

o∗
β k

o
γε
i
δ (A37)

O
(q,3,2)
αβγδ = εiαε

i
βk

i
γε
o∗
δ (A38)

O
(q,1,3)
αβγδ = εo∗α ε

i
βε
i
γk

i
δ (A39)

O
(q,2,3)
αβγδ = εiαε

o∗
β ε

i
γk

i
δ (A40)

O
(q,3,3)
αβγδ = εiαε

i
βε
o∗
γ k

o
δ (A41)

2. Time-reversal and interference

Consider first the case of the E1-E1-E1 transition am-
plitude, A

(e)
SHG, associated with χ(e). In this case, we

get:

A
(e)
SHG =

∑
l,n

(
∆

(1)
l,nη

(e,1)
αβγ O

(e,1)
αβγ

+ ∆
(2)
l,nη

(e,2)
αβγ O

(e,2)
αβγ + ∆

(3)
l,nη

(e,3)
αβγ O

(e,3)
αβγ

)
=
∑
l,n

η
(e)
αβγ

(
∆

(1)
l,nO

(e,1)
αβγ + ∆

(2)
l,nO

(e,2)
αβγ

+ ∆
(3)
l,nO

(e,3)
αβγ

)
= εoαε

i
βε
i
γχ̃

(e)
αβγ (A42)

In the last equality of the above expression, we defined

χ̃
(e)
αβγ =

∑
l,n

(
∆

(1)
l,nη

(e)
αβγ;ln + ∆

(2)
l,nη

(e)
γαβ;ln + ∆

(3)
l,nη

(e)
βγα;ln

)
.
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We also considered the specific conditions of the SHG
experiment [5], where all polarizations are real.

An important element of our analysis is the recognition
that, analogously to the case of RXS [20], each η(e,m,q)

tensor is characterized by a time-reversal odd and a time-
reversal even part, due to the matrix elements and inde-
pendent of the complex energy denominators. They can
be found by looking for the real and imaginary parts of
each tensor: η(e) = <η(e)+i=η(e), η(m) = <η(m)+i=η(m)

and η(q) = <η(q)+i=η(q). Notice that we did not consider
in our analysis the common imaginary unit multiplying
the E1-E1-E1 transition matrix elements in Eq. (A4). Of
course, we factorized it also in Eq. (A6) and Eq. (A15), so
that η(q) is always phase shifted by π/2 compared to η(e)

and η(m). We remark that this analysis corresponds to
Birss’ separation into i-tensors and c-tensors [31]. Start-
ing from Eq. (A42), we report the full expression only
for η(e) (in order not to overburden the notation, in the
following we remove the label (e), superfluous as we just
deal with η(e)):

A
(e)
SHG = εoαε

i
βε
i
γχ̃

(e)
αβγ

= εoαε
i
βε
i
γ

[∑
ln

(
∆̃

(1+)
lng <η̃

(glng)
αβγ +

∆̃
(2+)
lng <η̃

(glng)
γαβ + ∆̃

(3+)
lng <η̃

(glng)
βγα

)]
+ iεoαε

i
βε
i
γ

[∑
ln

(
∆̃

(1−)
lng =η̃

(glng)
αβγ +

∆̃
(2−)
lng =η̃

(glng)
γαβ + ∆̃

(3−)
lng =η̃

(glng)
βγα

)]
(A43)

where we defined ∆̃
(i−)
lng = (∆̃

(i)
lng − ∆̃

(i)

l̄n̄ḡ
)/2, ∆̃

(i+)
lng =

(∆̃
(i)
lng + ∆̃

(i)

l̄n̄ḡ
)/2, <η̃(glng)

αβγ = (η̃
(glng)
αβγ + η̃

(gnlg)
γβα )/2 and

=η̃(glng)
αβγ = (η̃

(glng)
αβγ − η̃

(gnlg)
γβα )/(2i). We have grouped

in ∆̃
(i)
lng all coefficients of Eq. (A4), i e

3

~3EglElnEng, so

as to leave in η̃
(glng)
βγα only the matrix elements; so,

for example, ∆̃
(1)
lng = i e

3

~3EglElnEng∆
(1)
lng and η̃

(glng)
αβγ =

〈φg|rα|φl〉〈φl|rβ |φn〉〈φn|rγ |φg〉. Following the notation
of Ref. 28, we labelled the energy spectrum of the time-
reversed configuration as En̄. So, if time-reversal is
a symmetry for our system, then En̄ = En, so that

∆̃
(i)
lng = ∆̃

(i)

l̄n̄ḡ
and ∆̃

(i−)
lng = 0.

We have also highlighted the order of appearance of in-
termediate states in the matrix elements through (glng),
which plays a fundamental role in the analysis. In fact,

the complex conjugate of η̃
(glng)
αβγ is η̃

(gnlg)
γβα : this implies

that we should not only reverse the order of the carte-
sian indices (which, alone, would have led to the antisym-
metrization of the γ and α labels), but also keep track
of the order of the intermediate states l, n (or n, l). The
latter point is what makes the profound difference, math-
ematically, with the RXS case, where the imaginary part
of the cartesian, third-rank tensor is antisymmetric in
two labels α and γ (see Ref. 28 for the analysis of the
analogous E1-E2 third-rank cartesian tensor in the case

of RXS) and therefore only couples with the correspond-
ing antisymmetric part of the polarization, leading to a
powerful selection rule based on time-reversal. In SHG

this is not possible, for this technical reason: =η̃(glng)
αβγ is

not antisymmetric in α ↔ γ. Physically, this is related
to the order of the absorption and emission processes

(through the denominators ∆̃
(i)
lng, which have no definite

symmetry in the exchange l ↔ n), that does not allow
time-reversal to be a symmetry of the SHG process, as it
is of RXS.

In an analogous way, we can write similar expressions
also for χ(m) and χ(q) and deduce that <η̃(e), =η̃(m) and
=η̃(q) are time-reversal even tensors (non-magnetic or i-
tensors in Birss’ notation [31]), whereas =η̃(e), <η̃(m)

and <η̃(q) are time-reversal odd (magnetic or c-tensors
in Birss’ notation). These cartesian tensors can then be
analyzed in terms of the irreducible spherical decompo-
sitions, as shown in the next subsection and in Section
III.

In the light of our findings, it turns out that, of our
two candidates to explain the SHG signal, one (for the
2′/m case) is the time-reversal odd part of η(e), which
is imaginary and therefore can interfere with the time-
reversal even part of η(q), which is imaginary as well. The
other (for the 2′/m′ case) is the time-reversal odd part
of η(m), which is real. Yet, it can still interfere with the
time-reversal even part of η(q), which is purely imaginary
only far from resonance. In fact, sufficiently close to the
resonance (within ∼ Γ), the complex resonant denomina-
tors of the above SHG expressions for η(e), η(m) and η(q)

scramble the previous imaginary/real separation based
on the time-reversal properties of the matrix elements
in the numerator. In fact, whatever is the numerator
N = a+ ib (with a and b real), we get:

a+ ib

(ωmi − 2ω + iΓm)(ωni − ω + iΓn)
=

=
{

[a((ωmi − 2ω)(ωni − ω)− ΓmΓn)

+ b(Γn(ωmi − 2ω) + Γm(ωni − ω))]

+ i[−a(Γn(ωmi − 2ω) + Γm(ωni − ω))

+ b((ωmi − 2ω)(ωni − ω)− ΓmΓn)]
}{

((ωmi − 2ω)(ωni − ω)− ΓmΓn)2

+ (Γn(ωmi − 2ω) + Γm(ωni − ω))2
}−1

(A44)

So, a and b matrix elements interfere, unless we are in
one of the two extreme situations:

1) out of resonance (i.e., ωmi−2ω � Γm and ωni−ω �
Γn), so that Γ is negligible and a and b in Eq. (A44) do
not interfere any more;

2) in the case of a single, well separated resonance
(within ∼ Γ), exactly at resonance (i.e., ωmi − 2ω � Γm
and ωni−ω � Γn), so that the whole expression reduces
to − a+ib

ΓmΓn
, and again a and b do not interfere.
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3. Identification of the SHG order parameters

Here we give the explicit spherical and cartesian com-
ponents of some of the polarization tensors that couple
with the order parameters identified in Section III. We
first list all the tensors of E1-E1-E1 origin (χ(e)), asso-
ciated with the 2′/m magnetic group and then those of
E1-E1-M1 origin (χ(m)), associated with 2′/m′. For χ(e),
we have that the polarization dependence is determined
by: a) two first-rank tensors, Ō(1) and Õ(1), both coupled
to an order parameter with the symmetry of a toroidal
dipole, b) a second-rank Õ(2), coupled to an order pa-
rameter with the symmetry of a magnetic quadrupole
and c) a third-rank Õ(3), coupled to an order parame-
ter with the symmetry of a magnetic toroidal octupole.
Their explicit expression can be obtained from the scalar
product in Eq. (A42), that can be recoupled in spherical

tensors as: εoαε
i
βε
i
γχ̃

(e)
αβγ = Ō(1) · χ̄(1) +

∑3
i=1 Õ

(i) · χ̃(i). If,

for a simpler comparison with Eq. (14), we express the
spherical polarization tensors in cartesian components,
we have:

Ōα = εoα~ε
i · ~εi (A45)

here and below α is any of x, y or z.

Õα =
1√
15
εoα~ε

i · ~εi − 3√
15
εiα~ε

o · ~εi (A46)

Õ3z2−r2 = εiz(ε
o
xε
i
y − εoyεix) (A47)

Õx2−y2 =
1√
3

[
εix(εoyε

i
z − εozεiy)− εiy(εozε

i
x − εoxεiz)

]
Õxy =

1√
3

[
εix(εozε

i
x − εoxεiz) + εiy(εoyε

i
z − εozεiy)

]
Õxz =

1√
3

[
εiz(ε

o
yε
i
z − εozεiy) + εix(εoxε

i
y − εoyεix)

]
Õyz =

1√
3

[
εiz(ε

o
zε
i
x − εoxεiz) + εiy(εoxε

i
y − εoyεix)

]

Õy(3x2−y2) =
1

2

[
εoy(εixε

i
x − εiyεiy) + 2εoxε

i
yε
i
x

]
(A48)

Õx(x2−3y2) =
1

2

[
εox(εixε

i
x − εiyεiy) + 2εoyε

i
yε
i
x

]
Õz(x2−y2) =

1√
6

[
2εiz(ε

o
xε
i
x − εoyεiy) + εoz(ε

i
xε
i
x − εiyεiy)

]
Õxyz =

√
2

3

[
εozε

i
xε
i
y + εoxε

i
zε
i
y + εoyε

i
xε
i
z

]
Õxz2 =

1

2
√

15

[
8εozε

i
xε
i
z + 4εoxε

i
zε
i
z

− 3εoxε
i
xε
i
x − εoxεiyεiy − 2εoyε

i
xε
i
y

]
Õyz2 =

1

2
√

15

[
8εozε

i
yε
i
z + 4εoyε

i
zε
i
z

− 3εoyε
i
yε
i
y − εoyεixεix − 2εoxε

i
yε
i
x

]
Õz3 =

1√
10
εoz(3ε

i
zε
i
z − ~εi · ~εi)− 2εiz

(
εoxε

i
x + εoyε

i
y

)
Here, for example, Õyz couples to the correspond-

ing susceptibility χ̃yz, with the symmetry of a magnetic
quadrupole. Eqs. (A45) to (A48) allow us to associate
with each multipole component a well-determined az-
imuthal scan which constitutes a quantitative basis for
our statements in Section III. For example, using the
above equations with Eq. (14), we remark that first-
rank tensors, with the symmetry of a toroidal dipole,
contribute to the SHG signal with just a sinψ (cosψ)
dependence. However, in order to explain the SHG az-
imuthal scans, sin3 ψ (cos3 ψ) terms are necessary. This
implies that, as noted in Section III, we cannot neglect
the signal determined by the magnetic toroidal octupole,
Eq. (A48). We remark also that the azimuthal-scan tech-
nique employed for SHG by Ref. 5 proves to be a very
powerful tool to extract the relative weight of each multi-
pole order parameter, in full analogy with the RXS case
[66, 67].

We can look at an analogous treatment of the χ(m)

terms of the 2′/m′ group, though the algebra is slightly
more involved, given the number of terms to be treated in
the E1-E1-M1 case (see Fig. 3). Consider the case of the

E1-E1-M1 transition amplitude, A
(m)
SHG, associated with

χ(m), in full analogy with what was done above for χ(e).
In this case, from Eq. (A3) we get:

A
(m)
SHG =

∑
l,n

3∑
i,j=1

∆
(i)
l,nχ

(m,i,j)
αβγ O

(m,i,j)
αβγ

= O
(m,1,1)
αβγ

(∑
l,n

∆
(1)
l,nχ

(m,1,1)
αβγ + ∆

(2)
l,nχ

(m,2,2)
γαβ + ∆

(3)
l,nχ

(m,3,3)
βγα

)
+O

(m,2,1)
αβγ

(∑
l,n

∆
(1)
l,n(χ

(m,2,2)
βαγ + χ

(m,3,3)
βγα )

+ ∆
(2)
l,n(χ

(m,1,1)
αβγ + χ

(m,3,3)
γβα ) + ∆

(3)
l,n(χ

(m,2,2)
αγβ + χ

(m,1,1)
γαβ )

)
≡ O(m,1,1)

αβγ
˜̃χ

(m)

αβγ +O
(m,2,1)
αβγ

˜̃χ
(m)

αβγ
(A49)
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In the second step, we used the equalities (Eqs. (A24)

to (A32)): O
(m,1,1)
αβγ = O

(m,2,2)
γαβ = O

(m,3,3)
βγα and O

(m,2,1)
αβγ =

O
(m,3,2)
γαβ = O

(m,1,3)
βγα = O

(m,3,1)
αγβ = O

(m,1,2)
βαγ = O

(m,2,3)
γβα . In

the third step, we used relations (A6) to (A14). Finally,

the last line defines the tensors ˜̃χ
(m)

αβγ and ˜̃χ
(m)

αβγ
.

We can now analyze, as for χ(e) before, the properties

of the polarization tensors: O
(m,1,1)
αβγ ≡ (~εo × ~ko)αεiβεiγ

(Eq. (A24)) and O
(m,2,1)
αβγ ≡ (~εi × ~ki)αεoβεiγ (Eq. (A25)).

As above, we can write the two terms in the last line
of Eq. (A49) as a scalar product of spherical tensors:

(εo × ko)αεiβεiγ ˜̃χ
(m)

αβγ + (εi × ki)αεoβεiγ ˜̃χ
(m)

αβγ
=
∑3
i=1

˜̃O
(i)

·
˜̃χ

(i)
+
∑3
i=0

˜̃P (i) · ˜̃χ
(i)

.

Here we analyze in detail the transformation proper-
ties, under rotation, of the polarization spherical ten-
sor, that can be formally derived in a simple way from
Eqs. (A45), (A46), (A47) and (A48) by the replace-

ment: εoα → (~εo ×~ko)α for ˜̃O
(i)

and by the replacements:

εoα → (~εi × ~ki)α and εiβε
i
γ → (εiβε

o
γ + εoβε

i
γ)/2 for ˜̃P (i).

In this way, we double the number of tensors that we
had in the χ(e) case and obtain the cartesian compo-

nents of eight tensors (that we call ¯̄O
(1)

, ˜̃O
(1)

, ˜̃O
(2)

, ˜̃O
(3)

,

¯̄P
(1)

, ˜̃P
(1)

, ˜̃P
(2)

, ˜̃P
(3)

). Three further allowed polariza-

tion tensors are obtained from O
(m,2,1)
αβγ ≡ (~εi ×~ki)αεoβεiγ ,

(Eq. (A25)), when we couple εoβε
i
γ antisymmetrically so

as to have ~εo × ~εi (this term was obviously zero in the
previous cases with εiβε

i
γ). The three tensors are then

obtained by the coupling of the two vectors ~εo × ~εi and

~εi ×~ki: Ŏ(0) (a scalar, with a constant azimuthal depen-

dence), Ŏ(1) (a vector), and Ŏ(2) (a symmetric traceless
second-rank tensor). These three tensors only contribute
in SP, PS and PP geometry, as in SS geometry ~εo ×~εi is
zero. This also implies that the scalar contribution is not
allowed in SS geometry for any of the E1-E1-M1 terms
(Ŏ(0) is the only scalar term). In detail,

Ŏ(0) = (~εo × ~εi) · (~εi × ~ki) (A50)

Ŏ(1)
α =

[
(~εo × ~εi)× (~εi × ~ki)

]
α

(A51)

again here and below α is any of x, y, z.

Ŏ
(2)
3z2−r2 =

1

6

[
2(~εo × ~εi)z(~εi × ~ki)z

− (~εo × ~εi)x(~εi × ~ki)x − (~εo × ~εi)y(~εi × ~ki)y
]

Ŏ
(2)
x2−y2 =

1

2

[
(~εo × ~εi)x(~εi × ~ki)x − (~εo × ~εi)y(~εi × ~ki)y

]
Ŏ(2)
yz =

1

2

[
(~εo × ~εi)y(~εi × ~ki)z + (~εo × ~εi)z(~εi × ~ki)y

]
Ŏ(2)
xz =

1

2

[
(~εo × ~εi)x(~εi × ~ki)z + (~εo × ~εi)z(~εi × ~ki)x

]
Ŏ(2)
xy =

1

2

[
(~εo × ~εi)x(~εi × ~ki)y + (~εo × ~εi)y(~εi × ~ki)x

]
(A52)

Now we list the cartesian components of the former

eight tensors. They are, for ¯̄O
(1)

, ˜̃O
(1)

, ˜̃O
(2)

, ˜̃O
(3)

:

¯̄Oα = (~εo × ~ko)α~εi · ~εi (A53)

˜̃Oα =
1√
15

(~εo × ~ko)α~εi · ~εi −
3√
15
εiα
[
(~εo × ~ko) · ~εi

]
(A54)

˜̃O3z2−r2 = εiz((~ε
o × ~ko)xεiy − (~εo × ~ko)yεix)

˜̃Ox2−y2 =
1√
3

[
εix((~εo × ~ko)yεiz − (~εo × ~ko)zεiy)

− εiy((~εo × ~ko)zεix − (~εo × ~ko)xεiz)
]

˜̃Oxy =
1√
3

[
εix((~εo × ~ko)zεix − (~εo × ~ko)xεiz)

+ εiy((~εo × ~ko)yεiz − (~εo × ~ko)zεiy)
]

˜̃Oxz =
1√
3

[
εiz((~ε

o × ~ko)yεiz − (~εo × ~ko)zεiy)

+ εix((~εo × ~ko)xεiy − (~εo × ~ko)yεix)
]

˜̃Oyz =
1√
3

[
εiz((~ε

o × ~ko)zεix − (~εo × ~ko)xεiz)

+ εiy((~εo × ~ko)xεiy − (~εo × ~ko)yεix)
]

(A55)
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˜̃Oy(3x2−y2)

=
1

2

[
(~εo × ~ko)y(εixε

i
x − εiyεiy) + 2(~εo × ~ko)xεiyεix

]
˜̃Ox(x2−3y2)

=
1

2

[
(~εo × ~ko)x(εixε

i
x − εiyεiy) + 2(~εo × ~ko)yεiyεix

]
˜̃Oz(x2−y2) =

1√
6

[
2εiz((~ε

o × ~ko)xεix

− (~εo × ~ko)yεiy) + (~εo × ~ko)z(εixεix − εiyεiy)
]

˜̃Oxyz

=

√
2

3

[
(~εo × ~ko)zεixεiy + (~εo × ~ko)xεizεiy + (~εo × ~ko)yεixεiz

]
˜̃Oxz2 =

1

2
√

15

[
8(~εo × ~ko)zεixεiz + 4(~εo × ~ko)xεizεiz

− 3(~εo × ~ko)xεixεix − (~εo × ~ko)xεiyεiy − 2(~εo × ~ko)yεixεiy
]

˜̃Oyz2 =
1

2
√

15

[
8(~εo × ~ko)zεiyεiz + 4(~εo × ~ko)yεizεiz

− 3(~εo × ~ko)yεiyεiy − (~εo × ~ko)yεixεix − 2(~εo × ~ko)xεiyεix
]

˜̃Oz3 =
1√
10

(~εo × ~ko)z(3εizεiz − ~εi · ~εi)

− 2εiz
(
(~εo × ~ko)xεix + (~εo × ~ko)yεiy

)
(A56)

To finish, we list the terms coming from the second po-

larization term: O
(m,2,1)
αβγ ≡ (~εi×~ki)αεoβεiγ (Eq. (A25)). In

this case, as stated above, there is no symmetry between
the two polarizations associated with the electric-dipole
transitions, εoβε

i
γ . This implies that, besides the zeroth

and second-rank tensors, analogous to the previous case,
there is also the possibility of an antisymmetric coupling
of εoβ and εiγ , listed above. All three (zeroth, first and

second-rank) tensors must then be coupled to the last

vector, (~εi × ~ki). We have:

¯̄Pα = (~εi × ~ki)α~εo · ~εi (A57)

˜̃Pα =
1√
15

(~εi × ~ki)α~εo · ~εi

− 3

2
√

15

(
εiα
[
(~εi × ~ki) · ~εo

]
+ εoα

[
(~εi × ~ki) · ~εi

])
(A58)

˜̃P3z2−r2 =
1

2

[
(~εi × ~ki)x(εizε

o
y + εozε

i
y)

− (~εi × ~ki)y(εizε
o
x + εozε

i
x)
]

˜̃Px2−y2 =
1

2
√

3

[
(~εi × ~ki)y(εixε

o
z + εoxε

i
z)

+ (~εi × ~ki)x(εizε
o
y + εozε

i
y)− 2(~εi × ~ki)z(εiyεox + εixε

o
y)
]

˜̃Pxy =
1

2
√

3

[
2(~εi × ~ki)z(εixεox − εiyεoy)

− (~εi × ~ki)x(εizε
o
x + εozε

i
x) + (~εi × ~ki)y(εiyε

o
z + εoyε

i
z)
]

˜̃Pxz =
1

2
√

3

[
2(~εi × ~ki)y(εizε

o
z − εixεox)

− (~εi × ~ki)z(εoyεiz + εiyε
o
z) + (~εi × ~ki)x(εiyε

o
x + εoyε

i
x)
]

˜̃Pyz =
1

2
√

3

[
2(~εi × ~ki)x(εiyε

o
y − εizεoz)

− (~εi × ~ki)y(εoyε
i
x + εiyε

o
x) + (~εi × ~ki)z(εizεox + εozε

i
x)
]

(A59)

˜̃Py(3x2−y2) =
1

2

[
(~εi × ~ki)y(εixε

o
x − εiyεoy)

+ (~εi × ~ki)x(εiyε
o
x + εoyε

i
x)
]

˜̃Px(x2−3y2) =
1

2

[
(~εi × ~ki)x(εixε

o
x − εiyεoy)

+ (~εi × ~ki)y(εiyε
o
x + εoyε

i
x)
]

˜̃Pz(x2−y2) =
1√
6

[
(~εi × ~ki)x(εizε

o
x + εozε

i
x)

− (~εi × ~ki)y(εizε
o
y + εozε

i
y) + (~εi × ~ki)z(εixεox − εiyεoy)

]
˜̃Pxyz =

√
2

3

[
(~εi × ~ki)z(εixεoy + εoxε

i
y)

+ (~εi × ~ki)x(εizε
o
y + εozε

i
y) + (~εi × ~ki)y(εixε

o
z + εoxε

i
z)
]

˜̃Pxz2 =
1

2
√

15

[
4(~εi × ~ki)z(εixεoz + εoxε

i
z) + 4(~εi × ~ki)xεizεoz

− 3(~εi × ~ki)xεixεox − (~εi × ~ki)xεiyεoy − (~εi × ~ki)y(εixε
o
y + εoxε

i
y)
]

˜̃Pyz2 =
1

2
√

15

[
4(~εi × ~ki)z(εiyεoz + εoyε

i
z) + 4(~εi × ~ki)yεizεoz

− 3(~εi × ~ki)yεiyεoy − (~εi × ~ki)yεixεox − (~εi × ~ki)x(εiyε
o
x + εoyε

i
x)
]

˜̃Pz3 =
1√
10

(~εi × ~ki)z(3εizεoz − ~εi · ~εo)

−
(
(~εi × ~ki)x(εixε

o
z + εoxε

i
z) + (~εi × ~ki)y(εoyε

i
z + εiyε

o
z)
)
(A60)

4. Magnetic subgroups of Sr2IrO4

To follow the conclusions of Section III.B in more de-
tail, we make use of the following table for the symmetry

behavior of the ~P and ~M components under the 2/m1′

magnetic group (in this subsection, we use the notation
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Pα = erα and Mα = µB(Lα + 2Sα), which is more often
employed in the SHG community [25, 26]):

TABLE III: Symmetries of ~P and ~M in the 2/m1′ magnetic
group

Ê Ĉ2z m̂z Î T̂ T̂ Ĉ2z T̂ m̂z T̂ Î

Pz Pz -Pz -Pz P∗z P∗z -P∗z -P∗z

Px -Px Px -Px P∗x -P∗x P∗x -P∗x

Py -Py Py -Py P∗y -P∗y P∗y -P∗y

Mz Mz Mz Mz -M∗z -M∗z -M∗z -M∗z

Mx -Mx -Mx Mx -M∗x M∗x M∗x -M∗x

My -My -My My -M∗y M∗y M∗y -M∗y

From Table III, we can extract the allowed tensors for
2/m1′ and each of its subgroups. For 2/m1′, the to-
tal signal needs to be invariant under the sum over all
its symmetries. If the sum is calculated for each of the
above components, Pz, Px, Py, Mz, Mx, My, we get,
respectively, 0, 0, 0, 8i=Mz, 0, 0. This result simply
expresses the fact that no matrix element for Pα is al-
lowed in the above group (as a consequence of inversion
symmetry that forbids matrix elements of polar vectors).
Therefore χ(e) is zero in 2/m1′. However, this is not the
case for the imaginary part of χ(m), time-reversal even,
because of the 8i=Mz term. Such a term can interfere
with the χ(q) signal. However, the only components of

χ(m) that are different from zero are χ
(m)
zzz , χ

(m)
xxz , χ

(m)
yyz ,

and χ
(m)
xyz . Therefore, from Eq. (14), this tensor is asso-

ciated with a 2ψ azimuthal dependence, in disagreement
with the experimental data. We can therefore disregard
such a magnetic group and look for all possible symmetry
reductions.

A cautionary note is necessary: in principle, we should
study the symmetry behavior of third-rank tensors with
27 cartesian components. We can simplify it and just
study the sum of each line of Table III as done above
for the following reasons: a) the square of all symme-
try operations of Table III is +1; b) the couples (Px,
Py) and (Mx, My) have the same behavior and c) the
products Px(y)Pz and Mx(y)Mz are always zero. Putting
all this together implies that studying the behavior of∑

symmetriesAiBjCk (where A, B and C are any of P

and M) is the same as studying
∑

symmetries Ck alone and
then ‘add’ the non-zero AiBj part only to the non-zero∑

symmetries Ck-terms, as in the previous case.

Turning to subgroups of 2/m1′, we have 7 subgroups
with 4 symmetry elements, 2/m, 2′/m, 2/m′, 2′/m′, 21′,
m1′, 11′. We can repeat the above analysis for each sub-
group (keeping the order Pz, Px, Py, Mz, Mx, My) and
get:

• 2/m: The sum over the symmetry elements gives 0,
0, 0, 4Mz, 0, 0. No χ(e) is allowed. We have both
the real and imaginary parts of χ(m), but again,
as for the full 2/m1′ group, no odd dependence on

the azimuthal angle ψ. Therefore, this magnetic
subgroup is excluded.

• 2′/m: The sum over the symmetry elements gives
0, 4i=Px, 4i=Py, 4i=Mz, 0, 0. This implies a sig-

nal from the time-reversal odd part of χ(e) when
an odd number of x, y components is considered,
meaning an even number of z components. As cor-
rectly recognized in Ref. 5, this can explain the in-
terference with the χ(q) signal, being ψ-odd. The
χ(m) signal has the same behavior as for the 2/m1′

group, a 2ψ-azimuthal dependence. Therefore it
is not responsible for the signal. We remark that
this magnetic symmetry is the one of the − + −+
pattern studied in the previous section. We shall
analyze this case more below.

• 2/m′: The sum over the symmetry elements gives
4i=Pz, 0, 0, 4i=Mz, 0, 0. Both χ(e) and χ(m) can
contribute, but none have the correct odd-ψ depen-
dence.

• 2′/m′: The sum over the symmetry elements gives
0, 0, 0, 4i=Mz, 4<Mx, 4<My. No χ(e) is al-

lowed and the imaginary, time-reversal even χ(m)

tensor has no odd-ψ terms. However, the real,
time-reversal odd χ(m) tensor has the desired odd-

ψ terms (e.g., χ
(m)
zzx) and it can interfere with the

imaginary part of χ(q) (through the damping fac-
tor iΓ). Its order parameter is either a magnetic
dipole or a magnetic octupole. Interestingly, this
magnetic group corresponds to the + + ++ state.
It is further discussed below.

• m1′: The sum over the symmetry elements gives
0, 4<Px, 4<Py, 4i=Mz, 0, 0. The imaginary,

time-reversal even χ(m) tensor does not have odd-ψ
terms, because of the odd number of z components
and does not contribute to the signal. An odd-
ψ dependence for χ(e) is possible (even number of
z components), but only for its real, time-reversal
even part. Again, the real part of χ(e) can inter-
fere with the imaginary part of χ(q) because of the
damping factor iΓ. The order parameter associ-
ated with this magnetic group has the symmetry
of a time-reversal even electric polarization (or oc-
tupole). On the basis of the experimental evidence,
it appears as highly implausible that it determines
the SHG signal because such an order parameter
implies the displacement of atoms, so as to break
the global inversion, and this would be detectable
by other means. Moreover, the order parameter
is time-reversal even and should have contributed
also in the high-temperature phase, as no crystal
distortion is detected in passing from the high-
temperature phase to the low-temperature, mag-
netic phase. This is against the experimental evi-
dence.
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• 21′: The sum over the symmetry elements gives
4<Pz, 0, 0, 4i=Mz, 0, 0. As for the 2/m′ group,
both χ(e) (real part, time-reversal even) and χ(m)

can contribute, but none have the correct odd-ψ
dependence.

• 11′: The sum over the symmetry elements gives 0,
0, 0, 4i=Mz, 4i=Mx, 4i=My. No χ(e) is allowed.

The imaginary, time-reversal even χ(m) tensor is
allowed with an even number of z components and
can have the right odd-ψ dependence. It can in-
terfere with the imaginary part of χ(q), but, as for
the m1′ group, it seems implausible since its asso-
ciated order parameter is time-reversal even (sym-
metry of an axial toroidal dipole or of an electric
quadrupole): either it should have been different
from zero also in the high-temperature, tetrago-
nal phase, against the experimental evidence, or
it should be a secondary order-parameter, induced
by the ordered magnetic moments. In the latter
case, however, magnetic moments should break the
2′ symmetry by tilting along the c-axis, against the
experimental evidence as well.

Appendix B: Iridium ground state in a tetragonal
crystal field

In this Appendix, we list our own definitions for the
atomic-like ground state of Sr2IrO4, highlighting the dif-
ferences with other authors when needed. Notice that the
method that maps t2g orbitals to effective p orbitals with
angular momentum Leff = −1 is conceived to work within
the t2g subspace, so care must be taken when generalizing
to transition matrix elements involving other subspaces,
as in the case of the L2 and L3 edges. As our main objec-
tive is to write down the L2,3-edge cross-section, we shall
not work with the effective angular momentum, but with
the real ones. Below, we give the formulas to pass from
one representation to the other, in order to compare with
the existing literature.

1. Basic equations for an Ir ion in a tetragonal
crystal field

We define the ‘cartesian’ angular part of the 5d orbitals
in terms of spherical harmonics Y2m ≡ dm as follows:
d3z2−r2 = d0

dx2−y2 = (d2 + d−2)/
√

2

dxy = −i(d2 − d−2)/
√

2

dxz = −(d1 − d−1)/
√

2

dyz = i(d1 + d−1)/
√

2
From this, we get the inverse transformations as:
d0 = d3z2−r2

d1 = −(dxz + idyz)/
√

2

d−1 = (dxz − idyz)/
√

2

d2 = (dx2−y2 + idxy)/
√

2

d−2 = (dx2−y2 − idxy)/
√

2
Given its importance in the analysis of the L2 and L3

edges of Ir, we write down also the J = 5/2 and J = 3/2
states of the 5d electrons in terms of spherical harmonics
and spin functions (↑, ↓):
| 52 ,

5
2 〉 = |d2↑〉

| 52 ,
3
2 〉 = (|d2↓〉+ 2|d1↑〉)/

√
5

| 52 ,
1
2 〉 = (

√
2|d1↓〉+

√
3|d0↑〉)/

√
5

| 52 ,−
1
2 〉 = (

√
3|d0↓〉+

√
2|d−1↑〉)/

√
5

| 52 ,−
3
2 〉 = (2|d−1↓〉+ |d−2↑〉)/

√
5

| 52 ,−
5
2 〉 = |d−2↓〉

| 32 ,
3
2 〉 = (2|d2↓〉 − |d1↑〉)/

√
5

| 32 ,
1
2 〉 = (

√
3|d1↓〉 −

√
2|d0↑〉)/

√
5

| 32 ,−
1
2 〉 = (

√
2|d0↓〉 −

√
3|d−1↑〉)/

√
5

| 32 ,−
3
2 〉 = (|d−1↓〉 − 2|d−2↑〉)/

√
5

It should be reminded that a direct transition from the
L2 edge, characterized by J2p = 1/2, to the |j = 5

2 , jz〉
subspace is dipole forbidden. Therefore the decomposi-
tion of the half-filled Kramers doublet of Ir in Sr2IrO4 as
|j = 5

2 , jz〉 states will directly inform us about whether
this transition is allowed or not at the L2 edge. In order
to do this, we write down the inverse formulas to get dm
states as a function of |j, jz〉:

|d2↑〉 = |5
2
,

5

2
〉

|d2↓〉 = (|5
2
,

3

2
〉+ 2|3

2
,

3

2
〉)/
√

5

|d1↑〉 = (2|5
2
,

3

2
〉 − |3

2
,

3

2
〉)/
√

5

|d1↓〉 = (
√

2|5
2
,

1

2
〉+
√

3|3
2
,

1

2
〉)/
√

5

|d0↑〉 = (
√

3|5
2
,

1

2
〉 −
√

2|3
2
,

1

2
〉)/
√

5

|d0↓〉 = (
√

3|5
2
,−1

2
〉+
√

2|3
2
,−1

2
〉)/
√

5

|d−1↑〉 = (
√

2|5
2
,−1

2
〉 −
√

3|3
2
,−1

2
〉)/
√

5

|d−1↓〉 = (2|5
2
,−3

2
〉+ |3

2
,−3

2
〉)/
√

5

|d−2↑〉 = (|5
2
,−3

2
〉 − 2|3

2
,−3

2
〉)/
√

5

|d−2↓〉 = |5
2
,−5

2
〉 (B1)

These expressions can be directly related to the ‘carte-
sian’ states (dxy, dxz, etc.) through the relations given
above. However, it is more convenient to keep them
in this form and rather to express the Kramers doublet
(Eq. (B3)) in the spherical basis dm, as detailed below. It
should be noted in passing that Fig. 1(e) of Ref. 1 is some-
what misleading in one aspect: the |j = 3

2 , jz〉 atomic
(spherical) states do not branch just to the t2g ones in
an octahedral environment (called Jeff = 3/2 in that fig-
ure), but to both t2g and eg. The same is true for the
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|j = 5
2 , jz〉 states. However, it is true that the Kramers

doublet in an octahedral crystal field (i.e., Jeff = 1/2,
in the absence of a tetragonal distortion), is entirely due
to the |j = 5

2 , jz〉 states, as we shall see below. This is
expressed in Fig. 6.

As done in a number of publications on iridates [44],
and as detailed in Abragam and Bleaney [48], the Ir4+

state when restricted to the t2g subspace, and in the pres-
ence of a weak tetragonal crystal field in the z direction,
can be determined by the following Hamiltonian:

H = λ~L · ~S + ∆t(1− L2
z) (B2)

Here λ is the spin-orbit coupling and ∆t represents
the tetragonal distortion. But, to facilitate calculations
at the L2 and L3 edges, we consider this Hamiltonian
in the L = 2 basis instead of the Leff = −1 basis. For
comparison with earlier work, we report below the rela-
tion between the two bases. Following Balhausen [68],
we define the effective representation Leff = −1 through
the three states φ1, φ0 and φ−1, corresponding to ef-
fective angular momentum Lzeff = 1, 0,−1, respectively.

They are defined as: φ1 ≡ d−1 = (dxz − idyz)/
√

2, φ0 ≡
(d2 − d−2)/

√
2 = idxy, φ−1 ≡ −d1 = (dxz + idyz)/

√
2.

The inverse transformations are: dxz = (φ1 + φ−1)/
√

2,

dxy = −iφ0, dyz = i(φ1 − φ−1)/
√

2.

From the diagonalization of the previous Hamiltonian,
we find three Kramers doublets [47], one bonding, one
non-bonding and one antibonding. For what follows, we
are interested only in the half-filled doublet that can be
written as follows:

|ψ+〉 =
1√
N

(
d1↑ +R

(d2↓ − d−2↓)√
2

)
|ψ−〉 =

1√
N

(
d−1↓ −R

(d2↑ − d−2↑)√
2

)
(B3)

where the coefficients R(η) and N(η) depend solely on
the ratio η = ∆t/λ between the tetragonal crystal field,
∆t, and the spin-orbit coupling, λ:

R(η) = − 1√
2

(
1− 1

2 (1 + 2η +
√

9− 4η + 4η2)
)

N(η) = 1 + 1
2

(
1− 1

2 (1 + 2η +
√

9− 4η + 4η2)
)2

Notice that in the octahedral limit, η = 0, R(η = 0) = 1√
2

and N(η = 0) = 3
2 . In order to understand the behavior

at the L2 and L3 edges, it is instructive to rewrite this
Kramers doublet in terms of the |j, jz〉 basis. This is done
in Eqs. (15) and (16) in Section IV. Here we report the
expressions of Eqs. (18) and (19) in the |j, jz〉 basis:

|ψany〉 =
1√
5N

[
cos(β)

(
(2 +

R√
2

)|5
2
,

3

2
〉 −R

√
5

2
|5
2
,−5

2
〉

+(
√

2R− 1)|3
2
,

3

2
〉
)

+ sin(β)e−iγ
(
−(
√

2R− 1)|3
2
,−3

2
〉

+(2 +
R√
2

)|5
2
,−3

2
〉 −R

√
5

2
|5
2
,

5

2
〉

)]
(B4)

and

|ψ+
real〉 =

1√
10N

[(
(2 +

R√
2

)|5
2
,

3

2
〉 −R

√
5

2
|5
2
,−5

2
〉

+(
√

2R− 1)|3
2
,

3

2
〉
)

+
1√
2

(1− i)
(
−(
√

2R− 1)|3
2
,−3

2
〉

+(2 +
R√
2

)|5
2
,−3

2
〉 −R

√
5

2
|5
2
,

5

2
〉

)]
(B5)

|ψ−real〉 =
1√

10N

[(
(2 +

R√
2

)|5
2
,

3

2
〉 −R

√
5

2
|5
2
,−5

2
〉

+(
√

2R− 1)|3
2
,

3

2
〉
)
− 1√

2
(1− i)

(
−(
√

2R− 1)|3
2
,−3

2
〉

+(2 +
R√
2

)|5
2
,−3

2
〉 −R

√
5

2
|5
2
,

5

2
〉

)]
(B6)

2. Details of the calculations at the L2 and L3 edges

In order to perform calculations at the L2 and L3 edges,
we move to a spherical basis, so that the Gaunt coeffi-
cients are more directly evaluated. Eq. (18) can be writ-
ten as:

|ψany〉 =
1√
N

[
cos(β)

(
d1↑ +R

(d2↓ − d−2↓)√
2

)
+ sin(β)e−iγ

(
d−1↓ −R

(d2↑ − d−2↑)√
2

)]
(B7)

We need to evaluate matrix elements that appear in
the calculation of both RXS and XAS, of the kind∑

jz
〈ψany|rα|| 12 , jz〉〈

1
2 , jz||rβ |ψany〉

for the L2 edge and of the kind∑
jz
〈ψany|rα|| 32 , jz〉〈

3
2 , jz||rβ |ψany〉

for the L3 edge, reminding that α, β refer to any of the
three components x, y, z. In order to clearly identify
the core-hole states j, jz with respect to the 5d j, jz of
Eq. (B1), we used a || convention for their bras and kets.



25

As the transition operator rα only changes the orbital an-
gular momentum, it is more convenient to rewrite ||j, jz〉
states in terms of their 2p orbital counterparts. We have:

|| 12 ,
1
2 〉 = (

√
2|p1↓〉 − |p0↑〉)/

√
3

|| 12 ,−
1
2 〉 = (|p0↓〉 −

√
2|p−1↑〉)/

√
3

|| 32 ,
3
2 〉 = |p1↑〉

|| 32 ,
1
2 〉 = (|p1↓〉+

√
2|p0↑〉)/

√
3

|| 32 ,−
1
2 〉 = (

√
2|p0↓〉+ |p−1↑〉)/

√
3

|| 32 ,−
3
2 〉 = |p−1↓〉

Finally, the last step before performing the calculation
is to remember the expression for rα in terms of spherical
harmonics: z = crY10; x = cr(Y1,−1 − Y11)/

√
2; y =

cri(Y1,−1 +Y11)/
√

2. Here c =
√

4π/3 is a normalization
constant (not important for the following, as it can be
absorbed into the radial part, r).

Having all the coefficients, the transition matrix el-
ements are now easily calculated after noting that the
spin is not changed in the transition (so, only equal-spin
states are coupled during the x-ray excitation), and given
the expressions for the only two Gaunt coefficients that
appear in the calculation:

〈Y2m|Y1m1
|Y1m2

〉 =
√

3√
10π

(1,m1; 1,m2|2,m)

and

〈Y1m|Y1m1
|Y2m2

〉 = − 1√
2π

(1,m1; 2,m2|1,m)

where (1,m1; 2,m2|1,m) represents the Clebsch-Gordan
coefficient for the vector sum of (1,m1) and (2,m2) to
give (1,m). Notice that in the following, we shall drop
the radial matrix elements, |〈R2p(r)|r|R5d(r)〉|2, as they
are common to both the L2 and L3 edges, if we neglect
relativistic corrections. At L2, we obtain the following
values for the matrix elements:

〈 12 ,
1
2 ||Y11|ψany〉 = 0

〈 12 ,
1
2 ||Y1,−1|ψany〉 = 1√

10πN
cos(β)

(
1√
2
−R

)
〈 12 ,

1
2 ||Y10|ψany〉 = 0

〈 12 ,−
1
2 ||Y11|ψany〉 = 1√

10πN
sin(β)e−iγ

(
R− 1√

2

)
〈 12 ,−

1
2 ||Y1,−1|ψany〉 = 0

〈 12 ,−
1
2 ||Y10|ψany〉 = 0

These matrix elements are sufficient to derive the
full scattering matrix, noting that 〈j, jz||Y1m|ψany〉 =
−(〈ψany|Y1,−m||j, jz〉)∗, because of the spherical harmon-
ics phase rule Y1,m = −Y ∗1,−m.

From this, we get the following expressions for the to-

tal matrix L
(2)
αβ (α, β = x, y, z) at the L2 edge (with a

common constant C̃):

L(2)
xx =

C̃

20πN
(R− 1√

2
)2

L(2)
yy =

C̃

20πN
(R− 1√

2
)2

L(2)
zz = 0

L(2)
xy =

iC̃

20πN
(R− 1√

2
)2 cos(2β)

L(2)
yx = − iC̃

20πN
(R− 1√

2
)2 cos(2β)

L(2)
xz = L(2)

zx = L(2)
yz = L(2)

zy = 0 (B8)

Interestingly, as already highlighted after Eq. (16), we
get that in the octahedral limit, R(η = 0) = 1√

2
, all the

matrix elements at the L2 edge are zero, not just the
magnetic ones. In particular, the XAS signal should be
zero in this limit. Therefore, if an XAS signal is con-
firmed at the energy of this edge, this would show that
R deviates from 1√

2
, as discussed in Section IV. Notice

however that, differently from magnetic RXS, XAS can
also see the other empty states that are higher in en-
ergy, in particular the eg states, that are accessible from
the L2 edge because they have a sizable component in the
J = 3/2 subspace as seen above. Therefore, the XAS sig-
nal should be reanalyzed with a better energy sensitivity,
so as to clearly disentangle the unoccupied t2g states from
the eg ones, as discussed in Section V. If such a signal
is clearly detected at the edge itself, this is a definitive
proof that the half-filled Kramers doublet deviates sig-
nificantly from the octahedral limit. If such a signal is
not detected, to the contrary, this is clear proof that the
doublet is composed purely of J = 5/2 states, as is the
case of |ψany〉 above (Eq. (B4)) in the octahedral limit
(R(η = 0) = 1√

2
). In the latter case, this also implies the

absence of a signal in the magnetic RXS at the L2 edge.
In the former case, instead, absence of the magnetic sig-
nal at the L2 edge can also be explained by an in-plane
magnetic moment, that makes cos(2β) = 0, since the
magnetic signal originates from the off-diagonal matrix
element, xy. It should be noted, however, that this latter
case would not permit one to explain the lack of a RXS
signal that is also seen when the magnetic moment is
along c, as in Mn-doped [45] and Ru-doped [46] samples.

At L3, we obtain the following values for the matrix
elements:
〈 32 ,

3
2 ||Y11|ψany〉 = 0

〈 32 ,
3
2 ||Y1,−1|ψany〉 =

√
3

20πNR sin(β)e−iγ

〈 32 ,
3
2 ||Y10|ψany〉 =

√
3

20πN cos(β)

〈 32 ,
1
2 ||Y11|ψany〉 = 0

〈 32 ,
1
2 ||Y1,−1|ψany〉 = − 1√

20πN
cos(β)(

√
2 +R)

〈 32 ,
1
2 ||Y10|ψany〉 = 0

〈 32 ,−
1
2 ||Y11|ψany〉 = − 1√

20πN
sin(β)e−iγ(

√
2 +R)
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〈 32 ,−
1
2 ||Y1,−1|ψany〉 = 0

〈 32 ,−
1
2 ||Y10|ψany〉 = 0

〈 32 ,−
3
2 ||Y11|ψany〉 =

√
3

20πNR cos(β)

〈 32 ,−
3
2 ||Y1,−1|ψany〉 = 0

〈 32 ,−
3
2 ||Y10|ψany〉 =

√
3

20πN sin(β)e−iγ

From this, we get the following expressions for the to-

tal matrix L
(3)
αβ (α, β = x, y, z) at the L3 edge (with a

common constant C̄, differing from that at the L2 edge):

L(3)
xx =

C̄

20πN
(2R2 +

√
2R+ 1)

L(3)
yy =

C̄

20πN
(2R2 +

√
2R+ 1)

L(3)
zz = − 3C̄

20πN

L(3)
xy =

iC̄

40πN
(R2 + 2

√
2R− 1) cos(2β)

L(3)
yx = − iC̄

40πN
(R2 + 2

√
2R− 1) cos(2β)

L(3)
xz =

3
√

2iC̄

40πN
R sin(2β) sin(γ)

L(3)
zx = −3

√
2iC̄

40πN
R sin(2β) sin(γ)

L(3)
yz = −3

√
2iC̄

40πN
R sin(2β) cos(γ)

L(3)
zy =

3
√

2iC̄

40πN
R sin(2β) cos(γ) (B9)

We see that at least one off-diagonal matrix element al-
ways differs from zero, whatever R and β are. This im-
plies that the magnetic RXS signal is always different

from zero, as explained in Section IV.

3. Direction of the magnetic moment

The evaluation of < Mz >=< Lz + 2Sz > is straight-
forward using Eq. (B3) and Eq. (B7):

〈Mz〉any = cos2(β)〈ψ+|Mz|ψ+〉+ sin2(β)〈ψ−|Mz|ψ−〉 =

cos2(β)

(
1

N
+

1

N
− R2

N

)
+ sin2(β)

(
− 1

N
− 1

N
+
R2

N

)
= (cos2(β)− sin2(β))

2−R2

N
= cos(2β)

2−R2

N
(B10)

Notice that 〈Mz〉any = 0, i.e., the moment lies in the

ab-plane, when cos(2β) = 0 or R =
√

2. The latter case
corresponds to ∆t = λ, that we exclude for Sr2IrO4.
The former condition coincides with the one that makes
the L2 magnetic RXS zero (in keeping with Ref. 43 and
Ref. 44).

If we use the two partners of the Kramers doublet,
Eq. (19), it is straightforward to verify, using the usual
definitions for Lx = (L+ + L−)/2 and Ly = (L+ −
L−)/(2i), that the eigenstates of Lx and Sx correspond
to β = π/4 + kπ/2, with γ = 0 (positive x) or γ = π
(negative x) and that the eigenstates of Ly and Sy cor-
respond to β = π/4 + kπ/2, with γ = π/2 (positive y) or
γ = 3π/2 (negative y).

Finally, using Lx = (L+ + L−)/2 and Ly = (L+ −
L−)/(2i) and analogously for the spins Sx and Sy, it is
possible to show that the condition 〈Mx〉any = 〈My〉any

implies γ = π/4 (modulo nπ).
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