
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Origin of DC and AC conductivity anisotropy in iron-based
superconductors: Scattering rate versus spectral weight

effects
Michael Schütt, Jörg Schmalian, and Rafael M. Fernandes

Phys. Rev. B 94, 075111 — Published  8 August 2016
DOI: 10.1103/PhysRevB.94.075111

http://dx.doi.org/10.1103/PhysRevB.94.075111


Origin of the DC and AC conductivity anisotropy in iron-based superconductors:
scattering rate versus spectral weight effects
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To shed light on the transport properties of electronic nematic phases, we investigate the
anisotropic properties of the AC and DC conductivities. Based on the analytical properties of
the former, we show that the anisotropy of the effective scattering rate behaves differently than
the actual scattering rate anisotropy, and even changes sign as function of temperature.Similarly,
the effective spectral weight acquires an anisotropy even when the plasma frequencyis isotropic.
These results are illustrated by an explicit calculationof the AC conductivity due to the interaction
between electrons andspin fluctuations in the nematic phase of the iron-based superconductors,and
shown to be in agreement with recent experiments.

In-plane resistivity anisotropy measurements have
been employed as the primary tool to investigate the ne-
matic phase of both cuprate and iron-based supercon-
ductors [1–5]. In these systems, the onset of electronic
nematic order, characterized by an Ising order parameter
ϕ 6= 0, lowers the point-group symmetry from tetragonal
to orthorhombic, making the two in-plane x and y direc-
tions inequivalent [6–8]. As a result, a non-zero conduc-
tivity anisotropy arises, ∆σ = σx − σy 6= 0 [9].

In general, the longitudinal DC conductivity along di-
rection µ = x, y can be expressed in terms of the Drude
form σµ = τµΩ2

p,µ/(4π), where τ−1
µ is the transport scat-

tering rate and Ωp,µ is the plasma frequency. There-
fore, an anisotropy in the DC conductivity can arise
from an anisotropic scattering rate, which is sensitive
to impurities and low-energy excitations of the system,
and/or from an anisotropic Drude weight, which is sen-
sitive to the electronic structure. In the nematic phase
of the iron-based superconductors, different effects con-
tribute to these quantities. Anisotropic magnetic fluc-
tuations triggered by nematic order [10, 11] give rise
to an anisotropy in the inelastic scattering rate [12–14],
whereas the dressing of an impurity potential by mag-
netic correlations promotes an anisotropy in the elastic
scattering rate [15, 16]. Conversely, the distortion of the
Fermi surface caused by the ferro-orbital order triggered
at the nematic transition affect the plasma frequency [17–
20]. Disentangling these contributions would provide im-
portant insight into the dominant sources of anisotropy
in the nematic phase. Furthermore, it would offer im-
portant benchmarks to test theories proposed to explain
the nematic instability – particularly of the hotly de-
bated compound FeSe, where a variety of scenarios have
been proposed, such as magnetic fluctuations [21, 22],
charge-current fluctuations [23], a Pomeranchuk insta-
bility [24, 25], and different types of orbital order [26].

At first sight, a natural way to disentangle τ−1
µ and

Ωp,µ is via the width and the area of the Drude peak
of the AC conductivity, σµ (ω). In this paper, however,

FIG. 1. (color online) AC conductivity σµ (ω) of Eq. (1)
as function of frequency ω for both x and y directions. In
case (i), only the plasma frequency is anisotropic (Ω2

p,y =
(3/4)Ω2

p,x), while in (ii) and (iii) only the scattering rate
(τ−1
y = (4/3)τ−1

x ) and the optical mass (λy = (4/3)λx) are
anisotropic, respectively. Panel (iv) shows the case in which
both the scattering rate and the optical mass are anisotropic,
yielding AC and DC conductivities very similar to those in
panel (i). The causality properties of the AC conductivity do
not allow cases (ii) and (iii) to exist, i.e. both τ−1

µ and λµ
must be present.

we show that these quantities are unavoidably entan-
gled. This general result follows directly from the mem-
ory function formalism, which is valid even in the absence
of quasi-particles, and yields the following form for the
AC conductivity [27]:

σµ(ω) =
Ω2
p,µ

4π

1

τ−1
µ (ω)− iω [1 + λµ(ω)]

. (1)

The main point is that, besides Ωp,µ and τ−1
µ , the

AC conductivity depends on the optical mass enhance-
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ment λµ [28]. While λµ does not contribute to the DC
conductivity σµ(ω → 0), it does modify the effective

plasma frequency Ω̃2
p,µ (as extracted from the area of

the Drude peak) and the effective scattering rate τ̃−1
µ

(as extracted from the width of the Drude peak), yield-
ing Ω̃2

p,µ = Ω2
p,µ/ (1 + λµ) and τ̃−1

µ = τ−1
µ / (1 + λµ).

Consequently, the effective scattering rate anisotropy
depends on both the actual scattering rate anisotropy
∆τ−1 ≡ τ−1

x − τ−1
y and the optical mass anisotropy

∆λ ≡ λx − λy via ∆τ̃−1 = ∆τ−1 − τ−1
0 ∆λ, where we

assume the impurity induced scattering rate τ−1
0 to be

isotropic. The DC conductivity anisotropy, in contrast,
is sensitive only to ∆τ−1. Because of the analytical prop-
erties of the AC conductivity, ∆τ−1 and ∆λ are related
by a Kramers-Kronig transformation, which, very gener-
ally enforces the same sign upon them (see supplemen-
tary). As a result, ∆τ̃−1 is suppressed with respect to
∆τ−1. Even more, because inelastic scattering is sup-
pressed as temperature is lowered, the effective scattering
rate anisotropy can change sign as function of tempera-
ture, while the DC conductivity anisotropy retains the
same sign. Analogously, the effective plasma frequency
can acquire an anisotropy even if the actual plasma fre-
quency is isotropic, since ∆Ω̃2

p = −Ω2
p,0∆λ.

These general results strongly impact the interpre-
tation of transport data in nematic phases. To high-
light their importance, we refer to recent measurements
of ∆σ (ω) in detwinned BaFe2As2, which reported a
larger anisotropy in the effective plasma frequency than
in the effective scattering rate [4, 29]. In Fig. 1 we
plot Re [σµ (ω)] in Eq. (1) considering four cases: (i)
anisotropy only in the plasma frequency (Ωp,y < Ωp,x);
(ii) anisotropy only in the scattering rate (τ−1

y > τ−1
x );

(iii) anisotropy only in the optical mass (λy > λx);
(iv) anisotropy in both scattering rate and optical mass
(τ−1
y > τ−1

x and λy > λx). The system in cases (i)
and (ii) have very similar DC conductivities, but dif-
ferent AC conductivities in the intermediate frequency
range. In the presence of an optical mass anisotropy only,
case (iii), the system does not display a DC conductivity
anisotropy, instead the intermediate frequency range, is
similar to that of case (i). The key point is that cases (ii)
and (iii) are not allowed due to the causality properties
of the AC conductivity, which require both τ−1

µ and λµ
to be present. After combining these two effects, case
(iv), the system displays DC and AC conductivities very
similar to case (i). Thus, the AC conductivity anisotropy
observed in Ref. [4, 29] is equally consistent with either
case (i) or (iv), which have very different physical ori-
gins – electronic-structure anisotropy and scattering rate
anisotropy, respectively.

To illustrate our results, we explicitly compute the AC
conductivity of a multi-band model for the iron pnictides
in which the electrons interact with spin fluctuations –
which become anisotropic in the nematic phase [10, 11].

FIG. 2. (color online) Illustration of the Fermi surface, con-
sisting of hole-like (at Γ) and electron-like pockets (at X and
Y ), and the anisotropic processes promoted by spin fluctua-
tions. On the one hand, scattering off of spin fluctuations is
stronger for the hot spots exchanging QX = (π, 0) (red dots)
than QY = (0, π) (green dots) fluctuations. On the other
hand, the renormalized Fermi velocity suppression (or, equiv-
alently, mass renormalization) caused by the exchange of spin
fluctuations (arrows) is larger at the red hot spots than at the
green hot spots.

While this interaction does not promote anisotropy in the
bare plasma frequency (∆Ωp = 0), it causes ∆τ−1 6= 0
and ∆λ 6= 0 with the same relative sign. Physically,
the first effect arises from real collisions of electrons and
magnetic fluctuations, whereas the latter effect stems
from the reduction of the electronic Fermi velocity (or,
equivalently, the enhancement of the effective electron
mass) promoted by the exchange of virtual spin fluc-
tuations (see Fig. 2). Interestingly, because collisions
are suppressed at low temperatures, ∆τ−1 decreases as
the temperature is lowered. In contrast, ∆λ remains
finite as T → 0, since it is proportional to the elec-
tronic mass renormalization. Consequently, one gener-
ally expects a sign-change of ∆τ̃−1 = ∆τ−1 − τ−1

0 ∆λ as
function of temperature, accompanied by an increase in
∆Ω̃2

p = −Ω2
p,0∆λ, despite the fact that ∆σ (ω → 0) ∝

∆τ−1 retains the same sign. These behaviors agree
with the AC conductivity measurements in detwinned
BaFe2As2 [4, 29]. We note that anisotropies in the elec-
tronic structure, not considered here, will generically
cause anisotropy in Ωp but not in τ−1 or λ.

Our starting point is the minimal three band model
shown in Fig. 2 [30], and previously employed to investi-
gate the DC conductivity anisotropy due to the scatter-
ing by spin fluctuations [12]. This model has a hole-like
circular pocket centered at the Γ = (0, 0) point of the Fe-
square lattice Brillouin zone, and two elliptical electron
pockets centered atX = (π, 0) and Y = (0, π). Hereafter,
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FIG. 3. Interaction corrections to the optical conductivity
diagrams: self-energy Φself (left) and vertex corrections Φvert

(right). Solid lines refer to the electronic propagator, wavy
lines denote the spin fluctuation propagator, and v is the
velocity vertex.

for convenience, these bands are labeled β = 0, β = 1,
and β = −1, respectively. We also include in the model
point-like impurities, giving rise to the isotropic band-
independent elastic scattering rate τ−1

0 . We emphasize
that our goal here is not to provide a quantitative fit-
ting to the AC conductivity data, which requires detailed
electronic structure calculations [31–35], but rather to il-
lustrate the general properties of ∆σ (ω) discussed above.

In our problem, the AC conductivity can be written
in a band-resolved manner, σµ =

∑
β σ

β
µ . Without in-

teractions, we have σβ0,µ = 1
4π

(
Ωβp,µ

)2
/(τ−1

0 − iω), where
the subscript 0 denotes the non-interacting system and

Ωβp,µ =

√
2e2NβF

~ vβF , with density of states Nβ
F and av-

eraged Fermi velocity vβF . The tetragonal symmetry of

the system implies Ωβp,x = Ω−βp,y , i.e. σβ0,x = σ−β0,y , yield-
ing ∆σ0 ≡ σ0,x − σ0,y = 0, as expected for a tetragonal
system.

The contribution arising from the interaction with
spin fluctuations is conveniently expressed in terms of
the memory function Mβ

µ (ω), defined such that σβµ =
1

4π

(
Ωβp,µ

)2
/
[
τ−1
0 − iω +Mβ

µ (ω)
]

[27]. Hence, while

Re
(
Mβ
µ

)
renormalizes the scattering rate, −Im

(
Mβ
µ

)
/ω

renormalizes the optical mass. The fact that these two
quantities are related by Kramers-Kronig relations im-
plies that an anisotropy in the scattering rate must be
accompanied by an anisotropy in the optical mass, as
stated in the introduction. In this framework, calculating
the band-resolved AC conductivity anisotropy, ∆σβ ≡
σβx − σ−βy , is equivalent to calculating the anisotropic

memory function ∆Mβ = Mβ
x − M−βy , since ∆σβ =

−
(

σβ0,x
τ−1
0 −iω

)
∆Mβ . Consequently, expansion of ∆Mβ for

small frequencies yields the anisotropic scattering rate

and optical mass, ∆Mβ =
(
∆τβ

)−1 − iω∆λβ .

To leading order in the interaction parameter g be-
tween the electrons and the spin fluctuations, the mem-
ory function is given by the two Feynman diagrams de-
picted in Fig. 3 [36], where solid lines denote the elec-

tronic Green’s function Gβk = (iω̃n − εβk)−1 and the wavy
lines denote the spin fluctuation dynamic susceptibility
χk. Here, k = (iωn,k) is both momentum k and Matsub-

ara frequency ωn, εβk ≈ vβF ·k is the linearized dispersion
of band β, and ω̃n = ωn+sgn(ωn)/(2τ0) incorporates the
effect of impurity scattering within the Born approxima-
tion. In particular, the memory function is given by the

combination of

(
σβ0,µ

τ−1
0 −iω

)
Mβ
µ = e2

iω (2Φself,β
µ + Φvert,β

µ )

with:

Φself,β
µ,p = g2

∑
β′

ˆ
k,k′

χ
(ββ′)
k−k′ G

β
k v

β
µ,kG

β
k+pG

β′

k′+pG
β
k+pv

β
µ,k+p,

(2)

Φvert,β
µ,p = g2

∑
β′

ˆ
k,k′

χ
(ββ′)
k−k′ G

β
k v

β
µ,kG

λ
k+pG

β′

k′ v
β′

µ,k′+pG
β′

k′+p,

(3)

where vβµ,k is the velocity, p = (iΩn, 0), and
´
k

=

T
∑
ωn

´
BZ

d2k/(2π)2. As shown by inelastic neutron
scattering data [37], the magnetic susceptibility is peaked
at the ordering vectors QX = (π, 0) and QY = (0, π).

Therefore, only the terms χ
(10)
k ≡ χX,k and χ

(−10)
k ≡

χY,k contribute. At low energies and in the tetragonal
phase, these susceptibilities are equal and described by
χ−1
j,k = χ−1

0

(
ξ−2 + |k−Qj |2 + |ωn| /γ

)
, where χ−1

0 is the
magnetic energy scale, ξ is the correlation length (in units
of the lattice constant), and γ is the Landau damping.
Indeed, this form has been widely used to fit the neutron
data in pnictides [37–39]. In the nematic phase, the sus-
ceptibilities become different, since magnetic fluctuations
become stronger along either QX or QY . Specifically, the
correlation lengths are renormalized by the nematic order
parameter ϕ, yielding χ−1

j,k = χ−1
j,k ∓ χ

−1
0 ξ−2ϕ [10].

Such an anisotropy in the spin fluctuation spectrum,
which is observed experimentally [11], controls the mem-
ory function anisotropy. Consequently, it is useful to
expand ∆Mβ for small ϕ. In contrast to the isotropic
part of the memory function [40], the behavior of ∆Mβ

is dominated by the hot spots – i.e. points of the
Fermi surface connected by the magnetic ordering vec-

tors QX = (π, 0) and QY = (0, π), εβk = εβ
′

k+Qj
(see Fig.

2). Focusing on this contribution, we find the analytical
expression:

∆Mβ(ω) = −ϕg̃2CβeffωK
(
ξ−2

2π

γ

T
,
ω

ξ−2γ

)
. (4)

where we defined the dimensionless coupling constant
g̃2 = g2χ0ν

β
F and the complex function:

K(s, t) = −1

t

[
1− 1

2s
+

(
1 +

i

t

)
×(

1

s
+ ψ(s)− ψ(1 + s− ist)

)]
, (5)

with ψ denoting the digamma function. Eq. (4) naturally
separates the contributions arising from the Fermi surface
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FIG. 4. (color online) The coefficient Cβeff , as function of the
chemical potential µ (in units of the Fermi energy ε0), for
a circular hole pocket at the Γ point and elliptical electron
pockets centered at X and Y . The ellipticity here is set to
δ = 0.35.

geometry, into Cβeff (see supplementary [41] material for
the full expression), and the contributions arising from
the spin dynamics, encoded in K (s, t) via the two dimen-
sionless parameters s ≡ ξ−2γ/(2πT ) and t ≡ ω/

(
ξ−2γ

)
.

While s depends on the ratio between the spin correla-
tion length ξ and the length of thermal spin fluctuations
ξ2
T ≡ γ/T , t depends explicitly on the frequency. Because

we are interested in the interaction-induced corrections
to the Drude formula, hereafter we take the limit t� 1.
Terms beyond this approximation are particularly im-
portant near quantum critical points, where ξ →∞, and
at frequencies larger than the scale set by the isotropic
scattering rate τ−1

0 , which is of the order of 300 meV
in BaFe2As2 (see supplementary material and also [42]).
Although the study of these contributions is beyond the
scope of this paper, we note that for ω � τ−1

0 they give
rise to a slower decay of Re[σ (ω)] than the standard ω−2

Drude behavior [43].
In terms of the function K (s, t), the anisotropies in

the bare scattering rate and in the optical mass are given

by
(
∆τβ

)−1
= −ϕg̃2CβeffωReK (s, t→ 0) and ∆λβ =

ϕg̃2Cβeff ImK (s, 0), yielding the effective scattering rate
and plasma frequency anisotropies:(
∆τ̃β

)−1
= −ϕg′2Cβeff

[
ωReK (s, t→ 0) + τ−1

0 ImK (s, 0)
](

∆Ω̃βp

)2

= −ϕg̃2Cβeff

(
Ωβp,x

)2
ImK (s, 0) (6)

As it can be confirmed by explicit evaluation of Eq. (5),
the analytical properties of the complex function K (s, t)
enforce its real part to be positive and its imaginary
part to be negative. This is due to the origin of the
former from collisions of electrons by spin fluctuations
– the same process that causes a electronic lifetime via
the imaginary part of the self-energy – whereas the lat-
ter arises from the suppression of the electronic Fermi
velocity – the same process that enhances the electronic
mass via the real part of the self-energy (see Fig. 1).

Consequently, the two contributions to
(
∆τ̃β

)−1
in Eq.

(6) have opposite signs, resulting in a suppression of the
effective scattering rate compared to the bare scattering

rate
(
∆τβ

)−1
. Furthermore, because of their different

physical origins – inelastic collision versus Fermi velocity
renormalization – the two contributions to the effective
scattering rate

(
∆τ̃β

)−1
display a different temperature

dependency. Using Eq. (5), we find that at high temper-
atures (T � γξ−2) the behaviors ωReK (s, 0+) ∝ T and
ImK (s, 0) ∝ − 1

T , whereas at low temperatures (T �
γξ−2) we have ωReK (s, 0+) ∝ T 2 and ImK (s, 0) = − 1

2 .
Thus, while ReK > 0 dominates the high-temperature
regime, ImK < 0 governs the low-temperature regime.
This can be physically understood from the fact that
ReK arises from the collision between electrons and spin
fluctuations, which are completely suppressed at T = 0,
whereas ImK arises from the suppression of the Fermi
velocity, which persists down to T = 0.

Therefore, one expects that as temperature is lowered,
the anisotropy of the effective scattering rate changes
sign. Using characteristic values for BaFe2As2 (see sup-
plementary material and also [42]), τ−1

0 ∼ 300 meV
from the residual resistivity and γ ∼ 100 meV , ξ ∼ 5a
from neutron scattering [39], we find that the two con-
tributions become comparable at the temperature scale
T ∗ ∼ 100 K. Interestingly, recent optical conductivity
data in this compound [29] find such a behavior, with(
∆τ̃β

)−1
changing sign below the nematic transition at

Tnem ∼ 150 K. Although these compounds display also
long-range magnetic order, at these temperatures the
resulting reconstruction of the Fermi surface is incipi-
ent [44], suggesting that the mechanism discussed here
could be at play.

We emphasize that the sign change in the effective scat-

tering rate
(
∆τ̃β

)−1
does not cause a sign change in the

DC conductivity anisotropy – also in agreement with the
experiments. Indeed, as it is clear from Eq. (1), the DC
conductivity anisotropy depends only on the bare scat-

tering rate
(
∆τβ

)−1
, which in turn is solely determined

by ReK, ∆σ (ω = 0) = − 1
4π

∑
β

(
Ωβ0,x

)2

τ2
0

(
∆τβ

)−1
.

The main consequence of the reduction of the effective

scattering rate
(
∆τ̃β

)−1
is an accompanying enhance-

ment of the anisotropic Drude spectral weight ∆SW ≡´∞
0

∆σ (ω) dω, since ∆SW = 1
8

∑
β

(
∆Ω̃βp

)2

depends

only on ImK, as shown in Eq. (6). This means that
any suppression of the effective scattering rate is compen-
sated by an enhancement of the effective Drude weight,
keeping the DC anisotropy the same.

The global sign of ∆σ (ω = 0) and ∆SW depend on the

same parameters Cβeff via Eq. (6), which are determined
by the Fermi surface geometry. We calculate them explic-
itly in Fig. 4 for a toy model in which the hole pocket is

a circle, εΓ = ε0 − p2

2m , whereas the electron pockets are
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ellipses, εX/Y =
p2x

2m(1±δ) +
p2y

2m(1∓δ)−ε0 [12, 45]. By fixing

the ellipticity δ, we find that in general the weighted sum
of Cβeff is positive for electron-doped compounds (µ > 0)
and negative for hole-doped compounds (µ < 0). Con-
sequently, because ϕ > 0 for a detwinned sample with
tensile strain applied along the x direction [11], we find
∆σ > 0 and ∆SW > 0 for electron-doped compounds,
and ∆σ < 0 and ∆SW < 0 for hole-doped compounds.
This agrees with previous theoretical calculations using
the Boltzmann equation instead of the diagrammatic ap-
proach [12, 14], as well as with experiments [46, 47].

In summary, we studied the impact of anisotropic spin
fluctuations on the optical conductivity anisotropy of the
nematic phase of iron-based superconductors. Our main
result is that, while the DC conductivity anisotropy is
determined solely by the collision of electrons and spin
fluctuations, the electronic Fermi velocity renormaliza-
tion induced by spin fluctuations causes opposite changes
in the effective scattering rate and plasma frequencies
anisotropies that exactly compensate each other in the
DC limit. Our results qualitatively agree with recent op-
tical conductivity experiments in detwinned BaFe2As2.
Experimental optical studies of compounds that display
nematic order without magnetic order, such as FeSe,
would be desirable to further elucidate this unavoidable
entanglement between scattering rate and plasma fre-
quency anisotropies in these materials.
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