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We numerically study the fractional quantum Hall effect at filling factors ν = 12/5 and 13/5 (the particle-hole
conjugate of 12/5) in high-quality two-dimensional GaAs heterostructures via exact diagonalization including
finite well width and Landau level mixing. We find that Landau level mixing suppresses ν = 13/5 fractional
quantum Hall effect relative to ν = 12/5. By contrast, we find both ν = 2/5 and (its particle-hole conjugate)
ν = 3/5 fractional quantum Hall effects in the lowest Landau level to be robust under Landau level mixing
and finite well-width corrections. Our results provide a possible explanation for the experimental absence of the
13/5 fractional quantum Hall state as caused by Landau level mixing effects.

PACS numbers: 71.10.Pm, 71.10.Ca, 73.43.-f

I. INTRODUCTION

There is interest across physics, mathematics, engineering,
materials research, and computer science in finding robust
experimental manifestations of topologically ordered phases
with non-Abelian anyonic low-energy excitations. Not only
are non-Abelian anyons (i.e., neither fermions nor bosons)
suitable for topological quantum computation, but they are
described by topological quantum field theories (TQFT) of
intrinsic fundamental interest1. The fractional quantum Hall
effect2–4 (FQHE) is the canonical example of a system sup-
porting topologically ordered phases and is widely thought to
support non-Abelian anyons in the second orbital electronic
Landau level (LL), most probably at filling factor ν = 5/25.
There is a possibility that the experimentally observed FQHE
at ν = 12/5 supports particularly exotic topologically or-
dered phases described by the Z3 parafermionic Read-Rezayi
states6–13, exemplifying an exotic SU(2)3 TQFT (in con-
trast to the 5/2 FQH state belonging to the SU(2)2 TQFT).
Since SU(2)3 TQFT supports a richer version of non-Abelian
anyons that can realize universal fault-tolerant quantum com-
putation1, there is a great deal of interest in the 12/5 FQHE.
In this work, we focus on the enigmatic FQHE at ν = 12/5.

Compared to the rather ubiquitous ν = 5/2 FQHE, the
experimental literature for ν = 12/5 (= 2 + 2/5 filling) is
sparse with only a few experimental reports of its observa-
tion. The 12/5 FQHE was observed in a 30 nm wide GaAs
quantum well with electron densities of n ∼ 3 × 1011cm−2

at magnetic field strengths of B ∼ 5 Tesla at temperatures
T ∼ 6-36 mK14–19. In addition to its fragility (the 12/5
FQHE is observed only in the highest quality samples with
little disorder), the real enigma is the corresponding particle-
hole conjugate FQHE at 13/5 (= 5 − 12/5) has never been
observed in spite of other FQHE in the second LL (e.g., 7/3
and 8/3, 11/5 and 14/5) showing both particle-hole conjugate
states with roughly equal strength. This discrepancy is puz-
zling because in the lowest LL the FQHE at ν = 2/5 and
3/5 are both routinely observed, are to good approximation

particle-hole conjugates of one another20–22, and are well-
described by the composite fermion (CF) theory4,23. Exotic,
rather than CF-like nature of the 12/5 state has been discussed
based on the analysis of the experimentally measured energy
gap15. Interestingly, the 12/5 and 13/5 FQHE (with roughly
equal strength) are observed in systems where two subbands
are occupied (e.g., bilayers, thick quantum wells) such that
the chemical potential is in the lowest LL (but in the higher
subband so two LLs are completely full)24–26. In this work we
provide a possible explanation for the absence (presence) of
13/5 (12/5) FQHE in the second LL as arising from the LL
mixing effect that explicitly breaks the particle-hole symme-
try.

Several candidate wave functions for ν = 12/5 have been
proposed and studied8–10 under idealized conditions, using the
Coulomb interaction without particle-hole symmetry break-
ing. Two recent numerical studies9,10 reinforced initial re-
sults6,7 that the ground state at ν = 12/5 is in the non-Abelian
Z3 Read-Rezayi (RR) phase. Both studies perturbed the inter-
action finding a finite region of stability around the Coulomb
point. All works considered particle-hole symmetric two-
body Hamiltonians so all conclusions made therein regarding
the ν = 12/5 state are equally valid for the particle-hole con-
jugate state at ν = 13/5. Thus, existing theories provide evi-
dence that the experimentally observed 12/5 and (unobserved)
13/5 FQHE are both in the RR Z3 phase but cannot explain
why one (i.e., 12/5) exists experimentally and the other (i.e.,
13/5) does not. We provide a plausible explanation for this
puzzle.

LL mixing breaks particle-hole symmetry through emer-
gent three-body (and higher) terms in an effective realistic
Hamiltonian27–30. The importance of LL mixing can be pa-
rameterized by the ratio κ of the Coulomb energy e2/εl0 to the
bare cyclotron energy ~ω (i.e., the LL gap): κ = (e2/εl0)/~ω
where ε is the background lattice dielectric constant, l0 =√
~c/eB is the magnetic length, e is the electron charge,

and ω = eB/mc is the cyclotron frequency. For GaAs,
κ ≈ 2.5/

√
B[T]. For most experiments in the second LL, κ
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is of order unity, making LL mixing an important correction.
One attempt at incorporating LL mixing at ν = 12/5 used
the approximation of including additional basis states within
exact diagonalization31, but did not investigate 13/5.

In the present work, we numerically study a realistic model
of the FQHE in the second LL using exact diagonalization,
systematically including LL mixing effects due to (the infi-
nite number of) all other LLs. We find that the LL mixing-
induced particle-hole symmetry breaking strongly favors the
ν = 12/5 FQHE over the 13/5 in the second LL, qualita-
tively in agreement with experimental observations. By con-
trast, in the lowest LL we do not find significant particle-hole
symmetry breaking between ν = 2/5 and 3/5 FQHE. Our
work gives a probable explanation for the presence (absence)
of 12/5 (13/5) in the second LL and the existence and equal
strength of 2/5 and 3/5 FQHE in the lowest LL. Our work
also strengthens the claim that at finite LL mixing 12/5 FQHE
arises from a RR parafermionic non-Abelian state (rather than
from Abelian composite fermion states as for the 2/5 and 3/5
FQHE).

II. EFFECTIVE HAMILTONIAN

Our realistic effective Hamiltonian describesNe interacting
electrons confined to the N th LL of a quasi-two-dimensional
quantum well (modelled as an infinitely deep square well
of width w) and incorporates LL and subband mixing. The
Coulomb interaction causes virtual electron/hole excitations
to higher/lower LLs and subbands included perturbatively to
lowest order in κ (note this involves coupling all LLs28). The
effective Hamiltonian is

H(w/`0, κ,N) =
∑
m

V
(N)
2body,m(w/`0, κ)

∑
i<j

P̂ij(m)

+
∑
m

V
(N)
3body,m(w/`0, κ)

∑
i<j<k

P̂ijk(m) (1)

where P̂ij(m) and P̂ijk(m) are two- and three-body pro-
jection operators onto pairs or triplets of electrons with
relative angular momentum m. V

(N)
2body,m(w/`0, κ) and

V
(N)
3body,m(w/`0, κ) are the two- and three-body effective

pseudopotentials32,33 in the N th LL. The full calculation of
the two- and three-body pseudopotentials is quite involved and
is given in detail in Ref. 28 for systems with finite-thickness,
in Ref. 29 for zero-thickness, and in Ref. 30 where the calcu-
lation is done numerically. Here we provide a brief outline of
the main details and encourage the reader to consult the above
references.

In the absence of Landau level (LL) mixing the planar pseu-
dopotentials V (N)

2body,m can be calculated as (see for instance
Ref. 4)

V
(N)
2body,m =

∫ ∞
0

qdqV (q)[LN (q2/2)]2Lm(q2)e−q
2

, (2)

where N is the LL index, LN are the Laguerre polynomials,

and

V (q) =
1

2π

∫
d2reiq·rV (r) (3)

is the Fourier-transform of the real-space interaction potential
V (r). For the case of finite width, V (q) can be written as

V (q) =
e2

εq

∫
dz1

∫
dz2|η(z1)|2|η(z2)|2e−q|z1−z2|, (4)

where η(z) is the electron wave function in the z-direction.
For a realistic experimental system, η(z) can be determined
from solving the Schrodinger and Poisson equations self-
consistently (see Ref. 4 for more details). In this work, we
consider an infinitely deep square well of width w to model
finite thickness, hence, η(z) =

√
2/w sin(πz/w).

Pseudopotentials describing the pure Coulomb interaction
can be derived in both the spherical and planar geometries.
Because the planar pseudopotentials do not depend on the sys-
tem size it is more convenient to compute the pseudopotentials
that include effects of finite thickness and Landau level mix-
ing in the planar geometry. The spherical pseudopotentials ex-
trapolate to the planar pseudopotentials in the limit of a sphere
of infinite radius, i.e., the thermodynamic limit. Further, it
has been demonstrated that using planar pseudopotentials in
the spherical geometry does not lead to qualitative differences
compared with using spherical pseudopotentials (see for ex-
ample Ref. 34).

Beyond renormalizing the two-body interactions, LL mix-
ing produces particle-hole symmetry breaking three-body
terms (cf. Ref. 28). Eq. (1) has a well-defined exact limit
as κ → 0, hence, we can determine the leading order ef-
fects of LL mixing on the FQHE. Most experimental obser-
vations of the 12/5 FQHE occur at fields of B ∼ 5.15 T (see
Ref. 15) giving a quantum well width (30 nm) of w/l0 ≈ 2.65
and κ ≈ 1.1. We estimate (an exact self-consistent calcu-
lation is possible for a particular device34) that an infinitely
deep quantum well of w/l0 ≈ 3 provides approximately the
same confinement as the real quantum well, and we con-
sider w/l0 ≤ 4 and κ 6= 0 to model realistic samples un-
der realistic conditions. We assume fully spin-polarized10

single-component states throughout this work. We consider
V

(1)
3body,m for 3 ≤ m ≤ 8– previous work demonstrated that
m > 9 terms are unlikely to produce qualitative effects34, es-
pecially for small κ.

We use the spherical geometry4,32 where the total magnetic
fluxNφ = Ne/f−S where f is the filling factor, asNe →∞,
of the N th LL and S is the shift35. The experimental fill-
ing factor is ν = f + 2N where 2N arises from completely
filling the lower N spin-up and down LLs. FQHE states are
gapped uniform density ground states with total angular mo-
mentum L = 0. The RR Z3 state describes f = 3/5 with
S = 3 while the particle-hole conjugate RR state, conj(Z3),
describes f = 2/5 with S = −2. The CF states for ν = 2/5
and 3/5 have shifts of S = 4 and −1, respectively. Although
the pairs of particle-hole conjugate states appear at different
shifts, in the absence of LL mixing (κ = 0) they have identi-
cal spectra and all eigenstates are particle-hole conjugates of
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FIG. 1. (Color online) (a) Wave function overlap between Z3 and
conj(Z3) and the exact ground state of Eq. (1) at ν = 13/5 and 12/5,
respectively, as a function of κ for Nφ = 37 (14 holes/electrons).
A finite well width increases the overlaps and κ breaks particle-hole
symmetry yielding higher overlaps with conj(Z3) for 12/5 compared
to Z3 for 13/5. The inset shows the overlaps in more detail. (b) Ex-
pectation values of the three-body terms per particleNp of Eq. (1) for
κ = 0.1 and w/l0 = 0, evaluated for the ideal Coulomb ground and
first excited states (both denoted |ψ0〉) at 12/5 and 13/5, respectively,
as a function of inverse LL degeneracy [1/(Nφ + 1)] extrapolated
to the thermodynamic limit. Nφ = 27 is aliased with ν = 1/3
and left out. (Inset) Expectation values for each three-body term
[H(3)

L = V
(N)
3body,L(w/`0, κ = 0.1)

∑
i<j<k P̂ijk(L)] for Nφ = 37.

Lines are a guide to the eye except in the main plot of (b) where they
represent linear extrapolations.

each other. Hence, by considering properties like energy gaps,
overlaps, and entanglement spectra we can isolate the effects
of LL mixing.

III. OVERLAP, PERTURBATION THEORY, AND
ENTANGLEMENT SPECTRA

We first investigate whether the system remains in the Z3

RR phase under realistic conditions. The ground state of
Eq. (1) is uniform with L = 0 for the RR shifts for all system
sizes up to Nφ = 37 for κ 6= 0 and Nφ = 42 for κ = 0 (we
have not studied κ 6= 0 for Nφ = 42). The ground states have
L 6= 0 for the CF shifts for zero and non-zero κ, for most sys-
tem sizes. The Bonderson-Slingerland (BS) non-Abelian state
for ν = 12/537 has L = 0 at κ = 0 but a smaller gap than the
RR state8–this behavior remains with κ 6= 0, see Appendix A.
Similar qualitative results were recently found in the κ = 0
limit9,10.

Fig. 1(a) presents the overlap between the exact ground
state |ψ〉 of Eq. (1) with the model wave functions [Z3 and
conj(Z3)]. For small κ the overlap remains relatively un-
changed but the 12/5 overlap with conj(Z3) is larger than the
overlap with Z3 at 13/5 for κ . 0.5 for all system sizes–
the overlap at 13/5 decreases monotonically with κ and both
overlaps are found to collapse to zero near κ ≈ 1 though some
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FIG. 2. (Color online) (a) Entanglement spectrum for the exact
ground state of Eq. (1) for w/l0 = 3 and κ = 0.1 at ν = 13/5
(shift S = 3) and (b) at ν = 12/5 (shift S = −2) for Nφ = 37.
The counting for the low-lying levels is 1, 1, 3, 6 up to ∆LzA = 5
agreeing with Z3 and conj(Z3). The orbital cuts, using the nota-
tion of Ref. 36, are P [0|0] for S = 3 and P [1|1] for S = −2.
∆LzA = LzA − (LzA)root where (a) (LzA)root = 120 and (b)
(LzA)root = 60.5. The topological gap is indicated by the green ar-
row and defined as the difference between the two lowest lying levels
at ∆LzA = 1 (see Section IV).

finite size effects are observed for larger κ.

Since the overlaps are relatively flat for small κ, we study
the eigenstates obtained in the absence of LL mixing, at
κ = 0 (denoted |ψ0〉). We calculate 〈ψ0|H(3)(κ = 0.1)|ψ0〉
where H(3)(κ) =

∑
m V

(N)
3body,m(w/`0, κ)

∑
i<j<k P̂ijk(m)

[shown in Fig. 1(b)]–this represents the lowest-order perturba-
tive contribution to particle-hole symmetry breaking induced
by LL mixing. The thermodynamic limit extrapolation of〈
ψ0|H(3)(κ = 0.1)|ψ0

〉
per particle for ν = 12/5 is more

than ten times smaller than for 13/5, indicating that LL mixing
more severely affects the energetics of 13/5 compared to 12/5.
While the ground state energies are lowered by the three-body
terms, the excited states are lowered as well, reducing the en-
ergy gap at 13/5 and increasing the gap at 12/5. In the inset of
Fig. 1(b) we show that V (1)

3body,3, V (1)
3body,5, and V (1)

3body,6 are the
three-body pseudopotentials that contribute most to particle-
hole symmetry breaking between ν = 12/5 and 13/5. The Z3

state has a relative abundance of three-body clustering by con-
struction6 and large expectation value ofH(3)(κ) (not shown),
similar to |ψ0〉 at ν = 13/5. In contrast, the three-body terms
have little effect on 12/5.

Overlaps may depend on short-range physics, so we inves-
tigate orbital entanglement spectra36,38–42. If the ground state
is in the RR phase, the counting of the low-lying levels of the
entanglement spectra will be related to the SU(2)3 TQFT de-
scribing the edge excitations36. The counting of the low-lying
levels for ν = 13/5 and 12/5 for w/l0 = 3 and κ = 0.1
(Fig. 2) matches the counting for Z3 and conj(Z3), respec-
tively, (including κ = 0, see Ref. 9).

The results above confirm that the ground state of Eq. (1)
remains in the RR phase under LL mixing. Further, LL mix-
ing affects ν = 13/5 more than 12/5 and introduces strong
particle-hole asymmetry.
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FIG. 3. (Color online) Energy gap for Nφ=37 at ν = 12/5 and
13/5 for w/l0 = 0-4 (a)-(e). Similar results are obtained for smaller
system sizes. (f) Width dependence of the gap for Ne =8, 12, 14,
and 16 for ν = 12/5 for w/l0 = 0, 2, and 3 and κ = 0. (Inset) The
gap as a function of w/l0 at κ = 0 for Ne = 16 (Nφ = 42). Finite
width reduces the gap by approximately 25% at w/l0 = 3 relative
w/l0 = 0 for the largest system size. Note the similarities in (f) to
Fig. 1(b) in Ref. 9.

IV. ENERGY GAP AND TOPOLOGICAL GAP

The neutral gap is related to the experimentally measured
activation gap and the physical robustness of the FQHE. It is
the difference between the two lowest energies at constantNφ,
if the ground state has L = 0, otherwise it is taken to be zero.

Fig. 3(a)-(e) show energy gaps for our largest system
(Nφ = 37) for w/l0 = 0-4. LL mixing breaks particle-hole
symmetry producing a larger energy gap for ν = 12/5 com-
pared to 13/5. The gap at w/l0 6= 0 for 12/5 increases with κ
while the 13/5 gap is suppressed (the suppression is found for
all non-aliased system sizes and values of w/l0, however an
increasing gap at ν = 12/5 for non-zero width is only found
for the two largest system sizes Nφ = 37 and 32). Hence, LL
mixing strengthens the 12/5 FQHE for finitew/l0 while weak-
ening 13/5 (strengthening of the FQHE gap with LL mixing
does not happen for ν = 5/234).

The thermodynamic extrapolation suffers from finite-size
effects (Nφ = 12 and 17) and aliasing (Nφ = 27). The energy
gaps at the remaining Nφ are shown in Fig. 3(f). Without LL
mixing, finite width decreases the gap from 0.012e2/εl0 at
w/l0 = 0 to 0.009e2/εl0 at w/l0 = 3 [values given are for
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FIG. 4. (Color online) Energy gap for ν = 12/5 and 13/5 as a
function of κ for w/l0 = 3 for Nφ = 32 and 37. Energy gap for
12 holes at 13/5 is put to 0 for κ ≥ 0.72 where the ground state has
gone through a phase transition into a non-homogeneous state with
L = 2. We note for κ & 0.6 the gap behavior is no longer consistent
between system sizes.

Nφ = 42 shown in the inset of Fig. 3(f)]. In the limit of small
LL mixing, (i.e., high magnetic fields) it should be possible to
observe more robust 12/5 states in narrow quantum wells.

We expect that the equivalence of various models of finite
width demonstrated for ν = 5/234 also holds here. Thus, to
determine the effective width w/l0 corresponding to a certain
experimental device one would first calculate (for instance us-
ing a Schrodinger-Poisson solver) or measure43 the square of
the absolute value of the electron wave function in the direc-
tion perpendicular to the 2DEG and determine its variance (as
defined in Ref. 34). Then w/l0 should be chosen such that
the variance in the ground state of an infinitely deep quantum
well of width w/l0 is the same as in the given experimental
sample.

Fig. 4 shows the energy gap as a function of κ for Nφ =
32 and 37 (12 and 14 electrons (holes) for ν = 12/5 (13/5),
respectively) to the experimental value of κ ∼ 1.1 for w/l0 =
3. All the sharp features in the κ-dependence are associated
with the change ofL in the first excited states. The behavior of
the different system sizes is consistent up to κ = 0.6−0.7 and
demonstrates a larger energy gap at 12/5 than at 13/5. Finite-
size effects are observed for larger κwhich could be a result of
our perturbative (in κ) approach to LL mixing breaking down
or the smallness of the energy gap.

Finally, we investigate the topological gap. Following
Ref. 36 we define the topological gap as the difference be-
tween the two lowest-lying levels in the entanglement spec-
trum at ∆LzA = 1 (see Fig. 2). It represents the “energy
difference” between the universal part of the entanglement
spectrum, describing the [non-Abelian in case of RR and
conj(RR)] modes and the generic continuum of states. In
Fig. 5 we identify two trends: first, the topological gap in-
creases with increased finite width, and second, Landau level
mixing leads to the suppression of the topological gap at 13/5
relative to 12/5 in the same way as observed for the energy
gap, giving support to the main conclusion of this work based
on a different measure.
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V. SECOND VERSUS LOWEST LANDAU LEVEL

Finally we compare the second with the lowest LL. In
Fig. 6(a) we show the relative energy gap difference induced
by LL mixing between ν = 12/5 and 13/5 and between
ν = 2/5 and 3/5 as a function of particle number. The LL
mixing induced difference is much larger in the second LL
than in the lowest LL (the sign is also different between the
two with 12/5 strongly favored in the second LL while 3/5
is slightly favored in the lowest LL). The LL mixing induced
gap difference between 12/5 and 13/5 grows with system size
and is likely a robust feature in the thermodynamic limit.

We can further quantify the particle-hole symmetry break-
ing by calculating the overlap between the exact ground state
|ψ〉 at ν = 12/5 (2/5) and the particle-hole conjugate of the
exact ground state |conj(ψ)〉 at ν = 13/5 (3/5). At κ = 0,
this overlap is unity since the two states are particle-hole con-
jugates. In Fig. 6(b) particle-hole symmetry is much more
strongly broken for the ν = 12/5 (13/5) FQHE than for
the ν = 2/5 (3/5) FQHE. In fact, particle-hole symmetry
is hardly broken at all in the lowest LL (in the lowest LL
〈ψ|conj(ψ)〉 & 0.9 up to κ ∼ 2.4). This apparent particle-
hole symmetry could be a property of the lowest LL or of the
CF-like states in any LL.

VI. CONCLUSION

LL mixing strongly breaks the particle-hole symmetry be-
tween ν = 12/5 and 13/5 FQHE in the second LL, but has
little effect on ν = 2/5 and 3/5 FQHE in the lowest LL. Our
work implies that the absence of 13/5 FQHE in the second LL
is likely a direct consequence of LL mixing effects. This is
mainly due to the suppression of the energy gap at ν = 13/5
– the FQHE might simply be too fragile (in terms of energy
gap) since LL mixing affects 13/5 more severely than 12/5,
and because in experimental measurements, at constant den-
sity, κ is larger at 13/5 compared to 12/5 (since the magnetic
field at 13/5 is smaller than at 12/5). The 12/5 ground state
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FIG. 6. (Color online) (a) Relative gap difference δ∆ν = (∆ν −
∆1−ν)/∆ν (induced by κ = 0.1) between particle-hole-conjugates
at 12/5 (13/5) and 2/5 (3/5). Np is the number of particles for ν =
12/5 and 2/5 or number of holes for ν = 13/5 and 3/5. (b) Particle-
hole symmetry breaking (quantified by 〈ψ|conj(ψ)〉) in the second
LL compared to the lowest LL for w/l0 = 0 and 3. The system sizes
are Nφ = 32 for ν = 12/5 (13/5) and Nφ = 31 for ν = 2/5 (3/5).

at shift S = −2 remains in the non-Abelian parafermionic
(conjugate) RR Z3 phase when finite-width and non-zero LL
mixing are taken into account extending the validity of pre-
vious conclusions6,7,9,10,31 obtained for idealized conditions.
We do not rule out the ν = 13/5 FQHE in the Z3 RR phase,
but establish that the 13/5 FQHE is always much weaker than
12/5. Future experiments with smaller κ could show a very
weak FQHE at ν = 13/5 in extremely high mobility samples
at ultra-low temperatures with a very small activation energy.

Appendix A: Energetics at the Bonderson-Slingerland shift

In this appendix we explore the perturbative change in the
FQHE gap Landau level mixing induces at the shifts corre-
sponding to the Bonderson-Slingerland (BS) state and it’s cor-
responding particle-hole conjugate. Shown in Fig. 7 are the
expectation values of the three-body terms of our effective
Hamiltonian [Eq. (1)] for the ground and first excited states
(the results are presented in the same way as in Fig. 1b).
Both the ground and excited states reduce their energy by ap-
proximately the same amount at 12/5. For 13/5 the energy of
the excited state is reduced significantly more than that of the
ground state meaning that the gap of 13/5 is reduced whereas
the gap of 12/5 remains relatively constant.

Appendix B: Robustness of the composite fermion states for the
2/5 and 3/5 FQHE under Landau level mixing

To further characterize the evolution of the states in the low-
est Landau level we approximate the CF-like states at 2/5 and
3/5 with the exact ground state of a “hardcore” model Hamil-
tonian with V1 6= 0 and all other Vm = 0 at Nφ = 5Ne/2− 4
and Nφ = 5Ne/3 + 1, respectively. This Hamiltonian
produces the 1/m Laughlin state exactly as the zero-energy
ground state forNφ = m(Ne−1) and produces ground states
with large overlaps (> 0.99) with CF wave functions for fill-
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ing factor ν = n/(2pn+ 1) at the appropriate flux as checked
via Monte Carlo. As shown in Fig. 8 the overlap remains sta-
ble under Landau level mixing and only starts to significantly
decrease around κ = 3 − 4, well beyond the typical experi-
mental values.

It is an open question whether the observed robustness of
the FQH states at 2/5 and 3/5 is due to their CF-like nature or
to the specific form of the effective interaction in the lowest
Landau level.
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