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Intensities of the first- and the second-order Raman spectra are calculated as a function of the
Fermi energy. We show that the Kohn anomaly effect, i.e., phonon frequency renormalization, in the
first-order Raman spectra originates from the phonon renormalization by the interband electron-
hole excitation, whereas in the second-order Raman spectra, a competition between the interband
and intraband electron-hole excitations takes place. By this calculation, we confirm the presence of
different dispersive behaviors of the Raman peak frequency as a function of the Fermi energy for the
first- and the second-order Raman spectra, as observed in some previous experiments. Moreover, the
calculated results of the Raman intensity sensitively depend on the Fermi energy for both the first-
and the second-order Raman spectra, indicating the presence of the quantum interference effect.
The electron-phonon matrix element plays an important role in the intensity increase (decrease) of
the combination (overtone) phonon modes as a function of the Fermi energy.

PACS numbers: 78.67.Ch, 73.22.-f, 42.65.Dr, 03.65.Nk

I. INTRODUCTION

Applying an electric gate voltage to graphene provides
exotic tuning of the electronic, vibrational, and optical
properties of graphene samples1–3. Since the beginning of
graphene’s discovery, electronic gating has played an im-
portant role in elucidating the room temperature quan-
tum Hall effect4–6, the Klein tunneling7–9, and many
body coupling effects10,11. Similar gating techniques
are extensively applied not only to monolayer, but also
to multilayer graphene to obtain tunable transport12, a
tunable band gap13,14, p-n junctions15, and photodetec-
tors16. All of these exciting phenomena could be ob-
served due to the ability to tune graphene’s Fermi energy
EF through the applied gate voltage.

A combination of electronic gating and inelastic scat-
tering of light, known as the gate modulated Raman
spectroscopy17, opens up a new possibility to understand
more thoroughly the interplay of the electron, photon
and phonon excitations in graphene. Several phenom-
ena have been probed by gate modulated Raman spec-
troscopy in graphene, such as the Kohn anomaly (KA)
effect or the phonon frequency renormalization18–22, the
quantum interference effect23,24, electron-electron inter-
action25, and the Fano resonance in the Raman spectra
of graphene26,27. Studying gate modulated Raman spec-
troscopy in graphene has also enriched our knowledge
of phonon spectra characterization28, experimental eval-
uation of electron-phonon coupling29, and various edge
characterization effects30,31.

Some theoretical works have been previously per-
formed to understand the Kohn anomaly (KA) effect
for the first-order Raman (G band) spectra with a Ra-
man shift of ∼1600 cm−1 in graphene, such as those by
Ando and the Mauri’s groups19,20,32. In the KA pro-
cess, phonon renormalization occurs through the exci-

tation of an electron-hole pair by the electron-phonon
interaction. As a result, the phonon energy is modified
and the phonon lifetime becomes shorter. The previ-
ous theories mention that the phonon frequency shows
a logarithmic singularity at T = 0 K when the abso-
lute value of the Fermi energy EF matches half of the
phonon energy |EF| = ~ωG/2. For |EF| > ~ωG/2, the
frequency shift is linearly proportional to |EF|. These
predictions were already confirmed by Raman measure-
ments17,21,22,29,33. Recently, additional experimental re-
sults allow us to study the KA effect in the second-order
Raman spectra, also.

In contrast to the first-order Raman spectra that con-
sist of only a single q = 0 value of the phonon momentum,
the second-order Raman spectra deals with the whole
range of phonon momenta in the Brillouin zone satisfying
the double resonance Raman condition34. Raman spec-
tral features such as the G′ or 2D band (∼ 2600 cm−1)
and the G∗ or D+D′′ band (∼ 2400 cm−1) are observed as
the second-order Raman spectra for q ≈ K. The nonzero
momentum phonon leads to a different KA effect com-
pared with that for the q = 0 phonon. Araujo et al. and
Mafra et al. have shown that the frequency shift of the
G′ band as a function of EF is monotonically decreas-
ing as a function of |EF| which is opposite to that of the
G band22,28. The other band at ∼ 2470 cm−1 is, how-
ever, dispersionless as a function of EF. Yan et al. show
opposite results, that the G′ band frequency as a func-
tion of EF has the same trends as that of the G band29.
Further, Das et al. show an asymmetric G′ band disper-
sion, i.e., a positive (negative) slope of frequency shift at
negative (positive) EF, which is inconsistent with a sym-
metric dispersion shown experimentally by Araujo et al.
21,22. Based on the controversies in experimental results,
we present calculated results of the second-order Raman
spectra as a function of EF from which we understand
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the origin of the controversial results.

Sasaki et al, attempted to understand why the fre-
quency shift of the G′ band KA has an opposite slope
when compared with that of the G band from the view-
point of the competition of interband and intraband
electron-hole excitation in phonon perturbation35. How-
ever, since the theory is done within the effective mass
approximation, it is not sufficient to explain the asymme-
try of the G′ band frequency shift at positive and negative
EF. Moreover, since the Raman intensity as a function of
EF is not calculated, different dispersion of Raman peaks
as a function of EF cannot be explained by that theory.

Observing the change of Raman intensity as a func-
tion of EF reveals the quantum interference effect. When
EF 6= 0, some Raman scattering paths are suppressed
due to the Pauli exclusion principle. Even with the
reduced number of scattering paths, the Raman inten-
sity surprisingly increases at a particular value of EF

when destructive Raman phases among various scatter-
ing paths are suppressed. Chen et al. show that the
G band Raman intensity gives a maximum value when
2|EF| = EL − ~ωG/2, where EL is the laser energy23.
However, the theoretical analysis in their work assumes a
constant matrix element, therefore neglecting the change
of the Raman phase due to the electron-phonon matrix
elements. Previous theoretical calculations show that the
electron-phonon matrix elements change sign along elec-
tronic equi-energy lines in graphene and therefore can
change the Raman phase36,37. A comprehensive calcula-
tion is, therefore, necessary to understand how the quan-
tum interference effect affects the first- and the second-
order Raman intensity.

In this work, we calculate the EF dependence of the
first-order and the second-order Raman spectra. The
calculated spectral quantities are the Raman peak shift,
spectral linewidth, and the Raman intensity as a function
of EF. The KA correction including both the phonon
frequency shift and the linewidth is modeled based on
second-order perturbation theory. The KA of the first-
order Raman spectra or of the q = 0 phonon is calcu-
lated so as to reproduce the existing theoretical and ex-
perimental results and to compare with the KA of the
q 6= 0 phonon.We now focus on the intervalley scatter-
ings which give three prominent peaks in the experimen-
tal spectra, namely, the G′, the G∗, and the iTA + iTO
bands, and are relevant to q ≈ K. The EL dependence
of those Raman peak positions is compared with experi-
mental results in order to justify the present calculation
methods. Finally, the EF dependences of those three
Raman spectra are analyzed and compared to the exper-
imental results.

The organization of this paper is as follows. Sec-
tion IIA shows the method for calculating the Raman
intensities for the first- and second-order Raman spec-
tra. Section II B explains the method for numerically
calculating the KA effect. Section IIIA presents the cal-
culated results of the KA effect for the q = 0 phonon and
the EF dependence of the G band intensity. Section III B

FIG. 1. (Color online) Schematics of (a) the first- and (b) the
second-order Raman process. In (b), ee means two consec-
utive electron-phonon interactions while eh means electron-
phonon interaction followed by hole-phonon interaction.

presents the calculation results of the KA effect for q 6= 0,
and the EL and EF dependence of the second-order Ra-
man spectra. Finally, the conclusion is given in Sect. IV.

II. CALCULATION METHODS

A. Raman Intensity

The first-order Raman process as shown in Fig.1(a)
consists of (1) excitation of an electron-hole pair by
the electron-photon interaction, (2) phonon emission
by means of the electron-phonon interaction, and (3)
electron-hole recombination and photoemission by the
electron-photon interaction. Based on the three subpro-
cesses, the Raman intensity formula for the first-order
Raman process is given by
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∑

ν

∣

∣

∣

∣

∣

∑

k

Mvc
op(k)M

ehν
ep (k,k)M cv

op(k) [f(E
v
k)− f(Ec

k)]

(EL − Ecv
k

− iγ)(EL − Ecv
k

− ων
0 − iγ)

∣

∣

∣

∣

∣

2

× δ(EL − ων
0 − Es), (1)

where EL is the laser excitation energy, Es is the scat-
tered photon energy, Ecv

k = Ec
k − Ev

k is the electron
energy difference between the conduction (c) and the
valence (v) bands at a wave vector k, γ = (37.6EL +
13.6E2

L) × 10−3 eV is the carrier scattering rate due
to the electron-phonon interaction38, and f(E) is the
Fermi distribution function which depends on temper-
ature. M cv

op(k) is the electron-photon matrix element
accounting for the optical transition of an electron in
a state k from a valence band to a conduction band,
M ehν

ep (q,p) = M ccν
ep (q,p) − Mvvν

ep (q,p) is the carrier-
phonon interaction considering an electron (e) in a con-
duction band or a hole (h) in a valence band making
a transition from a state p to a state q by emitting a
phonon with momentum q − p, mode ν, and frequency
ων
q−p. Hereafter, ~ = 1 is used, so that ων

q−p has units
of energy. For the case of a one phonon process, only
zero momentum or the Γ point phonon is relevant. The
summation over k in Eq. (1) is taken to occur in a uni-
form square mesh, with a mesh spacing ∆k = γ/2v, and
v = 6.46 eVÅ is the slope of the electron energy disper-
sion of graphene and ∆k2 is the weight of the integration.
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FIG. 2. (Color online) (a) Calculated (solid lines, this work)
and experimental (red dots, from Refs. 45 and 46) phonon
dispersion relations. (b) Fitting of Eq. (2) (blue line) to the
iTO branch from Ref. 47 (dots) near the K point.

We set a cutoff energy Ecut = 3.5 eV for Ecv
k so as to

reduce the number of mesh points in the Brillouin zone
integration. It is important to note that both the numer-
ator and denominator of Eq. (1) are complex numbers,
thus the summation of k before taking the square plays
an important role in the quantum interference effect39,40.
The electronic structure of graphene is calculated

within an extended tight binding method considering up
to 20 nearest neighbors and the four atomic orbitals (2px,
2py, 2pz, 2s)41,42. Calculation of the phonon disper-
sion relations is performed within a force constant model
with the interatomic potential including up to 20 nearest
neighbors which is fitted from a first-principles calcula-
tion43,44. Figure 2(a) shows the calculated results of the
phonon dispersion relations (solid lines) and the corre-
sponding experimental phonon dispersion relations (red
dots) for comparison from Refs. 45 and 46. Because of the
KA effect, the dispersion of the in-plane tangential optic
(iTO) branch near the K point is discontinuous along the
Γ−K−M path which cannot be reproduced by the force
constant model19. We fit the iTO frequency from the ex-
periment47 and use the following fitting formula for the

Raman spectra calculation [Fig. 2(b)]:

ωiTO
q =

{

− 424.81q2 + 534.47q+ 1215.95

+ (6.94q2 + 10.89q) cos(3θ)
}

cm−1, (2)

where q is defined using polar coordinates (q, θ) whose
center is at the K point and θ is measured from the KM
direction. Eq. (2) is valid only for q ≤ 0.4 Å−1, and when
q > 0.4 Å−1, we use the results from the force constant
model for ωiTO

q .
In the electron-photon interaction, we adopt a dipole

approximation, i.e., assuming a slowly varying electric
field in space because the laser wavelength is much
greater than the inter-atomic distance48. The electron-
phonon interaction is calculated using the tight binding
method with the deformation potential fitted from the
GW method for the K and Γ points38.
In the second-order Raman processes, phonons with

modes ν and µ and momenta q and −q, respectively,
are emitted [Fig. 1(b)]. Depending on the carriers taking
part in the scattering event, the Raman intensity formula
is given by:

I(2) =
∑

qνµ

∣

∣Aee
qνµ +Ahh

qνµ +Ahe
qνµ +Aeh

qνµ

+Aee
−qµν +Ahh
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−qµν +Aeh

−qµν

∣

∣

2

× δ(EL − ων − ωµ − Es), (3)

where Aeh
qνµ is a Raman amplitude for each process: (1)

an electron (e), first, emits a ν phonon with momentum
q and, (2) a hole (h) emits the µ phonon with momentum
−q. Here, Aeh

qνµ and Aeh
−qµν are not equivalent to each

other due to the different time order of the two phonon
emission. Next, we show examples of the Raman ampli-
tude formula for Aee

qνµ and Aeh
qνµ:

Aee
qνµ =

∑

k

Mvc
op(k)M

ccµ
ep (k,k + q)M ccν

ep (k+ q,k)M cv
op(k) [f(E

v
k)− f(Ec

k)]

(EL − Ecv
k − iγ)(EL − Ec

k+q + Ev
k − ων

−q − iγ)(EL − Ecv
k − ων

−q − ωµ
q − iγ)

, (4)

Aeh
qνµ = −

∑

k

Mvc
op(k+ q)Mvvµ

ep (k+ q,k)M ccν
ep (k+ q,k)M cv

op(k) [f(E
v
k)− f(Ec

k)]

(EL − Ecv
k − iγ)(EL − Ec

k+q + Ev
k − ων

−q − iγ)(EL − Ecv
k+q − ων

−q − ωµ
q − iγ)

. (5)

The minus sign in Eq. (5) corresponds to the opposite
charge of the hole from the electron in the hole-phonon
matrix elements49.

B. The Kohn Anomaly

Kohn mentions that conduction electrons are able to
screen phonons in a metal18. This screening leads to a

phonon frequency change, given by:

ων
q = ω(0),ν

q + ω(2),ν
q , (6)

where ω
(0),ν
q is the unperturbed phonon energy from the

phonon dispersion relation. Here, ω
(2),ν
q is the correc-

tion term taken from the second-order perturbation of
the electron-phonon interaction by the excitation and re-
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FIG. 3. (Color online) (a) A schematic of the q = 0 Kohn
anomaly process. A phonon with zero wave vector (q = 0)
and frequency ω0 vertically excites an electron-hole pair via
the electron-phonon interaction. The electron-hole pair then
recombines by emitting a phonon with frequency ω. (b) A
schematic of the q ≈ K Kohn anomaly process. An electron
exists at the K′ point leaving a hole behind at the K point with
a distance in reciprocal space of q = K+q′. If the K′ point is
then translated by a vector −(K+q′), we can then imagine a
virtual vertical transition of electron and hole. When EF 6= 0,
both interband (c) and intraband (d) transitions are expected.

combination of an electron-hole pair (Fig. 3):

ω(2),ν
q = 2

c,v
∑

s,s′

∑

k

|M ss′ν
ep (k,k + q)|2

[

f(Es
k)− f(Es′

k+q)
]

ω
(0),ν
q − Es′

k+q + Es
k + iη

,

(7)
where the prefactor 2 in Eq. (7) accounts for the spin de-
generacy, while the valley degeneracy is considered in the

summation over k. The value of ω
(2),ν
q is a complex num-

ber, in which Re(ω
(2),ν
q ) [ −Im(ω

(2),ν
q )] gives the phonon

frequency shift [phonon linewidth]. In Eq. (7), the con-
tribution of the interband (intraband) electron-hole pair
appears at s 6= s′ (s = s′).

In a conventional 2D electron gas, the KA effect occurs
at q = 2kF, where kF is the Fermi wave vector. In
graphene, due to its unique linear energy bands, the KA
occurs at q ≈ 0 and q ≈ K. The schematics of the KA
process for q = 0 and q ≈ K are shown in Figs. 3(a)
and (b), respectively. In the q = 0 KA, a phonon with
frequency ω0 vertically excites an electron-hole pair via
the electron-phonon interaction [Fig. 3(a)]. The electron-
hole pair then recombines by emitting a phonon with
frequency ω. In the q ≈ K KA, an electron exists at the
K′ point, leaving a hole behind at the K point with a
distance in reciprocal space q = K + q′ [Fig. 3(b)]. If
the K′ point is translated by a vector −(K+ q′), we can
imagine a virtually vertical excitation of an electron-hole
pair. When EF 6= 0, both the interband [Fig. 3(c)] and
intraband [Fig. 3(d)] transitions are expected.
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FIG. 4. (Color online) The calculated (dotted line) and ex-
perimental (open circles) results for the G band peak shift
(a) and the G band linewidth (b) as a function of the Fermi
energy, respectively, for T = 300 K.

III. RESULTS AND DISCUSSION

A. First-order Raman spectra

Employing Eq. (7) at q = 0, we can obtain the fre-
quency shift [Fig. 4(a)] and phonon linewidth [Fig. 4(b)]
for the G band as a function of the Fermi energy at
T = 300 K. In Fig. 4 we show the calculated (dotted
line) and experimental (open circles) results22 of the G
band peak shift and linewidth as a function of the Fermi
energy, respectively. The calculated results are in good
agreement with the experimental results. In Fig. 4(a),
we see dips when 2|EF| = ω0 ≈ 0.2 eV for the calcu-
lation, while the experimental results do not show such
dips. These dips are originated from the logarithmic sin-
gularities at T = 0 K and are related to interband reso-
nances20,32,50. For 2|EF| > ω0, the G band frequency in-
creases linearly as a function of the Fermi energy. At 0 K,
the phonon linewidth shows a step function θ(ω0−2|EF|).
The step function indicates that when 2|EF| > ω0, the
phonon linewidth from the KA effect becomes zero since
no excited electron-hole pair meets the resonance con-
dition of Eq. (7). At finite T , on the other hand, the
Fermi distribution function becomes a smooth function
and that is why we get a smooth function of the linewidth
as a function of EF. It is noted that we add an extrinsic
broadening of 10.3 cm−1 in our calculations in order to
fit with experimental results22 in Fig. 4(b).

Next, we calculate the Raman spectra of the G band
using Eq. (1). The G band consists of both the q = 0 lon-
gitudinal optic (LO) and in-plane-tangential optic (iTO)
modes. In order to understand their contributions to the
Raman amplitudes at each k point, we plot the real and
imaginary parts of the Raman amplitude in Eq. (1) for
LO and iTO phonons in Fig. 5(a) and (b), respectively.
Here we use EL = 2.33 eV and take Ecut = 3.5 eV so as
to reduce the total points of integration for saving com-
putational time. It will be clear that neglecting the con-
tributions from energies above Ecut in the integration is
reasonable since the Raman intensity is quickly decreas-
ing when 2|EF| > Ecut. In Fig. 5, deformed triangles near
the K and the K′ points indicate equi-energy lines that
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FIG. 5. (Color online) Calculated results of the real and imag-
inary parts of the first-order (a) LO and (b) iTO Raman am-
plitudes in a two dimensional Brillouin zone near the K and
K′ points with EL = 2.33 eV.

match the resonant conditions. The lower (higher) res-
onant condition corresponds to the scattered (incident)
resonance when Ecv

k = EL − ωG (Ecv
k = EL) which is

shown by a large amplitude at the inner (outer) line.
We see changes in the sign for both the real and imagi-
nary parts of the LO and iTO Raman amplitudes in both
the radial and azimuthal directions. The change of sign
at the radial direction is related to an opposite phase
between the scattered resonance and the incident reso-
nance. Meanwhile, the change of sign in the azimuthal
direction is related to the sign of the electron-phonon ma-
trix element as reported by Jiang et al36. The LO (iTO)
phonon has a zero matrix element at the 0 (π/2) phase.
The opposite phases between the scattered resonance

and the incident resonance are essential for calculating
the Raman intensity as both terms give destructive in-
terference. Therefore, only taking the resonant terms for
calculating the Raman intensity is not sufficient to re-
produce the experimental results. We need to at least
consider up to Ecv

k ≈ EL+ωG to get a realistic intensity.
Moreover, if we plot the Raman intensity as a function of
the Fermi energy as shown in Fig. 6(a), it becomes clear
that destructive interference between the scattered reso-

FIG. 6. (Color online) (a) Calculated results (black dots)
and experimental results (blue squares from Ref. 23 and red
squares from Ref. 24) of the G band Raman intensity as a
function of the reduced Fermi energy. (b) Schematic diagram
showing an opposite phase between the incident (i) and scat-
tered (s) resonances. When 2|EF| = EL−ωG/2, the scattered
resonance is suppressed, and therefore, the Raman intensity
gives a maximum value.

nance and the incident resonance can be suppressed when
we set the Fermi energy close to the laser excitation en-
ergy. When 2|EF| = EL −ωG/2, the scattered resonance
cannot occur due to the Pauli blocking effect [Fig. 6(b)].
Therefore, in Fig. 6(a) we see the largest G band inten-
sity at 2|EF| = EL − ωG/2 as pointed out by Chen et

al
23. The difference of the intensity at positive and neg-

ative EF which comes from the electron-hole asymmetry
has been confirmed by Liu et al

24. Anisotropy in the
azimuthal direction should give destructive interference,
but the effect is negligible.

B. Second-order Raman spectra

In Fig. 7, we show the calculated results of the q 6= 0
KA effect from Eq. (7). First, let us consider the case of
q = K in Figs. 7(b) and (e). If we compare respectively
Figs. 7(b) and (e) with Figs. 4(a) and (b), both the fre-
quency shift and phonon linewidth show the same trends
as that of q = 0 KA because both q = 0 and q = K
are dominated by the interband electron-hole excitation.
The reason why the interband excitation is dominant at
q = K, is that the K and K′ points coincide upon transla-
tion of the K′ point by a vector −K [ q′ = 0 in Fig. 3(c)].
Therefore, at the q = K KA, only virtually vertical inter-
band excitation, the same as at q = 0 KA, is possible51.
The previous work did not consider the interband contri-
bution, therefore assigning the q = K phonon frequency
shift to be dispersionless as a function of EF

22.

Next, if we shift by ξ = 0.14 Å−1 from q = K, com-
petition between the intraband and interband excita-
tions take place as shown in Figs. 7(a), (c), (d), and
(f). According to the analytical formula51, the intra-
band contribution to the frequency shift is proportional



6

FIG. 7. (Color online) The iTO phonon energy shift and linewidth as a function of the Fermi energy EF for (a), (d) q = K− ξ;
(b), (e) q = K; and (c), (f) q = K+ ξ, with ξ = 0.14 Å−1. We use T = 300 K.

to − sin−1 |2EF/vq| by assuming ω0 ≪ vq, where v is the
slope of the linear energy dispersion of graphene which
is ∼ 6.46 eVÅ. The phonon linewidth is increasing lin-
early with |EF| in the case of the intraband excitation
[Figs. 7(d) and (f)] because the electron-phonon scat-
tering rate is proportional to the carrier concentration.
The asymmetry at positive and negative EF is related
to electron-hole band asymmetry considered in the tight
binding calculation.

After considering the KA effect on the q 6= 0 phonon,
in Fig 8 we show the calculated Raman spectra from
Eq. (3). Figure 8(a) shows three bands, respectively, as-
signed as the G′ ∼ 2700 cm−1, G∗ ∼ 2500 cm−1, and
iTA + iTO ∼ 2240 cm−1 for EL = 1.53 eV. We confirm
the origin of the G′ bands from the overtone of the iTO
(2iTO) modes while the G∗ bands come from a combi-
nation of iTO and LA modes. The major contributions
to the G′ intensity come from the Aeh and Ahe terms as
shown by ab = (Aeh + Ahe) in Fig. 8(b). This confirms
the previous calculation that the Aee and Ahh terms are
negligible [aa = (Aee +Ahh) in Fig. 8(b)] because of the
quantum interference effect during the k integration38.

Figure 8(c) shows the second-order Raman intensities
for 1.53 eV ≤ EL ≤ 2.41 eV. The intensities of all these
Raman bands are inversely proportional to EL because of
the increase of the electron-phonon scattering rate γ as a
function of EL

38,55. Assuming that each band can be rep-
resented by a single peak, the G′, G∗, and iTA+iTO peak
dispersions as a function of EL are shown in Fig. 8(d).
The G′ band shows a positive slope as a function of EF,
i.e., 95 cm−1/ eV in this work, 90 cm−1/ eV in Ref. 52,

and 104 cm−1/ eV in Ref. 53. Meanwhile, the G∗ band
shows a negative slope, i.e., −33 cm−1/ eV in this work
and −33 cm−1/ eV in Ref. 52 and the iTA + iTO band
slope is −58 cm−1/ eV in this work, −56 cm−1/ eV in
Ref. 54, and −50 cm−1/ eV in Ref. 28 [not shown in
Fig. 8(d)]. Good agreement between theory and exper-
iment in the slope of the EL dispersion indicates the
reliability of our phonon dispersion used in the calcu-
lation. However, discrepancies with the experiments of
about 50 cm−1 in the G′ and the iTA + iTO bands for
a given EL show that the calculated electronic energy
dispersion underestimates the experimental results. This
can be seen insofar as the G′ and iTA + iTO peaks at
EL = 1.5 eV in theory give relatively the same value for
EL = 2.0 eV in the experiment, thus the present elec-
tronic energy dispersion near EL underestimate the real
value by ∼ 0.5 eV. This might be because we neglect the
many body effects in the band calculations. Neverthe-
less, the overall agreement is sufficient for us to proceed
and consider the EF dependence of the Raman intensity
for a particular EL.

Figure 9 shows the evolution of the second-order Ra-
man spectra for several values of EF. We use the same
EL = 2.33 eV as Araujo et al

22. In Figs. 9(a) and (b)
the intensities have been multiplied by two times as in-
dicated. Figures 9(a) and (d) show the decrease of the
G′ peak intensity as |EF| increases. In Fig. 9(d), the cal-
culated results shown black circles and the experimental
results (blue squares from Ref. 23 and red squares from
Ref. 24) reasonably agree with each other. However, the
Raman intensity of the iTA+iTO and G∗ bands dramati-
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cally increase at certain values of EF as shown in Fig. 9(b)
and (c), respectively. We find that the intensity increase
of the combination phonon modes (iTA + iTO and G∗

bands) originates from the electron-phonon matrix ele-
ments effect to the phase of Raman spectra. Products of
two electron-phonon matrix elements of the combination
phonon modes (see Eq. (3)) give complex values with ran-
dom phases as a function of q and k. The random phases
give destructive interference when integrating over k and
q at EF = 0. At a finite EF, some of these destructive
phases are suppressed due to the Pauli blocking, as a
result, the Raman intensity for the combination phonon
modes are enhanced. On the other hand, the overtone
mode (G′) does not provide such a destructive phase be-
cause the two electron-phonon matrix elements are re-
lated by a complex conjugation and the product of the
matrix elements gives only a real value. Therefore with
the increase of |EF|, the G′ intensity decreases.

Figure 10(a) shows the Lorentzian fitting results on
the second-order Raman spectra for EF = 0. The dot-
ted line is the calculated Raman intensity fitted by six
Lorentzians. We fit the G′ bands with two Lorentzians

labeled by G′

o (blue) and G′

i (red) which refer to G′ bands
from outer (q in KM direction) and inner (q in KΓ
direction) scattering processes, respectively38,53. Three
Lorentzians are needed to fit the G∗ band, labeled by G∗

1

(green), G∗

2 (blue), and G∗

3 (red). Finally, one Lorentzian
is used to fit the iTA + iTO band.

After Lorentzian fitting, we compare both the peak
shift and the spectral linewidth as a function of EF as
shown in Figs. 10(b)-(e). We do not show the G′

o and G∗

1

for simplicity because there is no experimental data avail-
able for comparison. The calculated results in Fig. 10(b)-
(e) cannot fit the experimental value of both the peak
position and the linewidth due to the underestimation of
the electronic energy dispersion as previously discussed
in the EL dependence of the second-order Raman spec-
tra [see Fig. 8(d)]. But we can discuss the change of both
quantities as a function of EF, where the KA effect takes
place. In Figs. 10(b)-(e), both the spectral peak posi-
tion and the linewidth as a function of EF are plotted in
the same range, comparing the theory and experiments.
Reasonable agreements between experiments and theory
are achieved. The three major peaks, i.e., the G′

i, G
∗

3,
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FIG. 10. (Color online) (a) Fitting of the second-order Raman spectra obtained in Fig. 9(a) at EF = 0 eV and EL = 2.33 eV.
The dotted line is the calculated Raman intensity fitted by six Lorentzians labeled by G′

o (blue), G′

i (red), G∗

1 (green), G∗

2

(blue), G∗

3 (red), and iTA + iTO bands. We show the peak shift and the spectral linewidth as a function of EF for (b) the G′

i,
(c) G∗

3, (d) G∗

2, and (e) iTA + iTO bands. Black open circles are the results in this work, red closed circles are experimental
results from Ref. 22, and blue triangles are experimental results from Ref. 28.

and iTA+ iTO bands show “Λ” (“V”) shapes of the Ra-
man peak shift (spectral linewidth) as a function of EF.
These behaviors exist because of the intraband electron-
hole excitation renormalization of phonons as shown in
Fig. 7. The G∗

2 band in Fig. 10(d) is relatively disper-
sionless in EF because it is located on the shoulder of the
G′ band where 2iTO q = K exists. Therefore, for these
bands, the competition between interband and intraband
electron-hole excitations are expected. The calculated re-
sults overestimate the experimental spectral linewidth of
all bands, which is related to the choice of ∆k in the
k integration. We can tackle this issue by reducing the
value of ∆k by ∆k/n; however, the computational bur-
den becomes en times larger.

In order to clarify different experimental results from
Ref. 21, Ref. 22, and Ref. 29, we show the G′ band peak
position as a function of EF in Fig. 11(a) with a range of
−1.2 eV up to 1.2 eV, which is about the same range of
measurement from Ref. 21. From Figs. 11(b) and 9(a),
we show that at EF = 0, the G′ band intensity origi-
nating from the inner process (G′

i) is larger than that
from the outer process (G′

o). However, at high dop-
ing (|EF| ≥ 0.5 eV), the G′

i intensity becomes smaller
than that of the (G′

o) as |EF| increases. The decrease
of the G′

i band intensity has been pointed out in Fig. 9
as a result of the quantum interference effect. Because
of the KA effect, the G′

i peak position is decreasing as
|EF| increases while the peak position of G′

o is shown to
be constant (this origin should be presented elsewhere).
The increased distance between G′

i and G′

o peak posi-
tions with the increase of |EF| confirms the experimental
results by Ref. 53. At |EF| ≥ 0.5 eV, the G′

o feature
cannot be fitted with a single Lorentzian, thus we add
an additional Lorentzian G′

m to better fit with the total
calculated spectra.

We compare the calculated results with the experimen-
tal results in Fig. 11(c). Since the G′ band peak position
is EL dependent and those three experiments use differ-
ent EL values (2.41 eV for Ref. 21, 2.54 eV for Ref. 29,

and 2.33 eV for Ref. 22 and this calculation), we com-
pare the G′ band peak position as a function of 2EF/EL

relative to the peak position at EF = 0 (ω0). The scal-
ing of 2EF/EL is considered because when 2EF = EL,
we expect the interference effect to be significant. Black
dots are from the present work, blue asterisks are taken
from Ref. 21, red dots are from Ref. 22, and green di-
amonds are from Ref. 29. We argue that for EF > 0,
the G′ band of Ref. 21 is explained by the KA effect,
therefore, it follows our trend of the G′

i band. However
for EF < 0, the G′ band of Ref. 21 is explained by the
quantum interference effect in which the G′

i intensity be-
comes smaller than the G′

m intensity. Thus the total G′

peak position increases when EF increases. The discrep-
ancy with Ref. 21 could not be well-explained because we
do not consider the static Kohn anomaly effect that was
involved in Ref. 21.

It is important to note that electron-electron interac-
tions might contribute to the Raman resonance window
or carrier scattering rate γ57. In this calculation, γ is
considered to be a function of EL only. By including the
electron-electron interaction, γ for the second-order Ra-
man spectra will increase proportionally to EF

57. The
second-order Raman intensity will be reduced even at a
low doping. Our prediction related to the intensity en-
hancement of the combination phonon modes (iTA+iTO
and G∗ bands) might not be observed experimentally
due to the electron-electron interactions. Therefore, ex-
perimental confirmations are necessary to understand
whether or not the electron-electron interaction is sig-
nificant to suppress the quantum interference effect.

IV. CONCLUSION

In conclusion, we calculated the first- and second-order
Raman spectra as a function of EF. The opposite effect of
the Kohn anomaly that is found experimentally between
the first- and the second-order Raman spectra occurs be-
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cause the KA effect on the first-order Raman spectra
is dominated by the renormalization of phonons by the
interband electron-hole excitation, while in the second-
order Raman spectra, the intraband electron-hole exci-
tation dominates over the KA effect. We also discussed
the quantum interference effect observed in the change
of the Raman intensity as a function of EF. Both the
first- and the second-order Raman spectra exhibit an im-
pact of the quantum interference effect, especially when
2|EF| ≈ EL. Present calculated results found that not
only is the resonance condition important, but also the
explicit consideration of the electron-phonon matrix ele-
ments are essential to determine the EF dependence of

the Raman intensity. The matrix element effect play an
important role in the intensity increase (decrease) of the
combination (overtone) phonon modes as a function of
EF.
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