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We consider a superconductor proximity coupled to a two-dimensional ferromagnetic film with a
skyrmion texture. Using the T-matrix calculations and numerical modeling we calculate the spin-
polarized local density of states in the superconductor in the vicinity of the skyrmion. We predict the
skyrmion bound states that are induced in the superconductor, similar to the well-known Yu-Shiba-
Rusinov (YSR) states. The bound state wavefunctions have spatial power-law decay. It is suggested
that superconductivity could facilitate an effective long-range interaction between skyrmions when
bound state wavefunctions overlap.
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I. INTRODUCTION

Skyrmions, topological particle-like configurations of
a continuous vector field, were originally proposed in
the context of high-energy physics1. Nevertheless, it
was suggested theoretically2,3 and recently confirmed
experimentally4–8 that skyrmions exist in chiral ferro-
magnets in the presence of Dzyaloshinkii-Moriya interac-
tion. Due to non-trivial topological properties, skyrmions
manifest anomalous transport response to temperature
gradients9 and electric field10–12. Recently, Hamburg
group demonstrated a controllable writing and deleting
of single skyrmions on the surface of PdFe bilayer13–15.
Skyrmions hold a great promise in applications such as
spintronics, memory devices, etc16,17. For example, inter-
play of a magnetic skyrmion and a topological insulator
was recently considered in Ref.18. Coupling of magnetic
films with skyrmions to novel materials may produce new
functionalities in hybrid devices not available in the con-
stituent materials taken separately.

In parallel, there has been a significant interest in
superconductor-ferromagnet (SC-FM) heterostructures
aimed at engineering topological superconductors19,20.
Discovery of the topological superconductivity would en-
tail existence of the Majorana edge modes necessary for
realizing topological quantum computing21. Motivated
by the interest in skyrmions as well as SC-FM het-
erostructures we connect the two fields in the current
work.

Below, we consider a FM film with a skyrmion prox-
imity coupled to SC as shown in Fig. 1. We search for
the states in SC localized around a skyrmion in a se-
ries of approximations. First, consider a limit of a small
skyrmion, i.e. R � ξsc. In this case, the approxima-
tion of the skyrmion field as a point magnetic moment
is valid. Using this simplified model, we perform an an-
alytical T-matrix calculation and find that skyrmion in-
duces a bound state in the SC in a close analogy with the
well-known Yu-Shiba-Rusinov states22–25. The bound
state induces a resonance with a finite spectral width
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FIG. 1. (color online) (a,b) System under consideration: fer-
romagnetic (FM) film with a skyrmion proximity coupled to a
superconductor (SC). (a) Néel-type skyrmion. (b) Bloch-type
skyrmion. (c) Sketch of an approximation of a skyrmion as a
local magnetic moment floating in a “ferromagnetic sea”.

in a spin-polarized local density of states (SP LDOS).
In contrast with the conventional YSR states, which are
short-range, the skyrmion bound state is a long-range
state with a power law decay. Therefore, in the presence
of multiple skyrmions, the SC could mediate an effective
long-range interaction between the skyrmions26 when the
bound state wavefunctions overlap. Subsequently, we re-
lax the requirement R � ξsc and calculate the LDOS
and wavefunctions for R ∼ ξsc numerically. We find that
the bound state peak in the density of states is popu-
lated by the multiple quasilocalized states corresponding
to different angular momenta.

We also note that a few earlier papers have consid-
ered skyrmions in the context of superconductivity to
some extent. Reference27 studied the skyrmion-like soli-
tons in the multiband superfluids and SCs. Paper28 dis-
cussed a possibility of realizing a topological SC using a
skyrmion lattice. The Josephson current through a mag-
netic skyrmion structure was considered in Ref.29. None
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of the papers up-to-date have addressed the conceptually
simplest case of interaction between a single skyrmion
and SC. This is the subject of the present paper.

II. MODEL: S-WAVE SUPERCONDUCTOR
PROXIMITY COUPLED TO A

FERROMAGNETIC FILM WITH A SKYRMION

Consider a FM film with the magnetization described
by a three-dimensional vector S(r) = (Sx, Sy, Sz) depen-
dent on a two-dimensional (2D) spatial coordinate r =
(x, y). The topological configurations of the field S(r)
shown in Fig. 1(a) and (b) are referred to as skyrmions.
Depending on a specific FM material, two distinct types
of skyrmions are observed in experiment: the Néel
(hedgehog) skyrmion and Bloch (spiral) skyrmion shown
in Fig. 1(a) and (b), respectively. Although, the two
types of skyrmions differ significantly in the orientation
of the in-plane spins both are characterized by the same
topological charge

Q =
1

4π

∫
d2r Ŝ · (∇xŜ ×∇yŜ) = 1, Ŝ =

S

S
. (1)

Thus, one can transform a Neel skyrmion into a Bloch
skyrmion by a π/2 rotation30 of the FM vector around
the ẑ axis in the spin space without a change in the
topological charge (1).

Let us consider a heterostructure of a SC and FM with
a skyrmion as shown in Fig. 1(a) and (b). The SC is
described by the 4-by-4 Bogoliubov-de Gennes (BdG)
Hamiltonian

H = ξ(p)τz + ∆τx − S(r) · σ, (2)

ξ(p) =
p2

2m
− µ, p = −i(∇x,∇y). (3)

Here, ξ(p) describes the kinetic energy and ∆ - the self-
consistent superconducting gap, which we assume uni-
form in space; the term S(r) · σ describes the prox-
imity coupling between the FM film and SC. We as-
sume that the Zeeman splitting S(r) does not exceed the
Chandrasekhar-Clogston limit and S < ∆. We also ne-
glect the possible orbital effect of the magnetic field onto
the superconductor31. The Pauli matrices τ and σ act,
respectively, in the particle-hole and spin subspaces of the

four-component spinor Ψ = (ψ↑, ψ↓, ψ
†
↓,−ψ

†
↑)
T . At this

point, we do not include the effects of the spin-orbit cou-
pling or spin-triplet superconductivity30 in the model (2).
We consider a case with a single Néel skyrmion centered
at the origin, i.e. at r = 0, and, so, assume the following
profile of the FM vector

S(r) = S [cosφ(r) sin θ(r), sinφ(r) sin θ(r), cos θ(r)] ,

φ(r) = arctan(y/x), θ(r) = π

[
1− exp

(
− r

2

R2

)]
,

(4)

where R defines an effective radius of the skyrmion32.
Let us compare the relevant spatial scales of the prob-
lem: the SC coherence length ξsc ≈ vF /∆, the skyrmion
radius R, and the Fermi length p−1

F . Both the scales ξsc
and R can vary from tens of nanometers to a micron de-
pending on a specific material, whereas the Fermi length
p−1
F is typically smaller than the other two scales. In the

regime R � ξsc, the skyrmion can be viewed as a large
FM domain pointing in the direction opposite to the rest
of the system. Such a regime could be interesting in
the context of topological SC19. For instance, it was re-
cently shown33–35 that a helical texture of spins in a one-
dimensional (1D) chain of magnetic atoms on a surface
of a SC generates an effective Rashba-like spin-orbit in-
teraction responsible for the Majorana edge modes. Sim-
ilar effective spin-orbit interaction is generated near a
skyrmion and could give rise to non-trivial edge states
localized at the edge of the skyrmion. We leave the dis-
cussion of this case for future works36. In the current
paper, we focus on the case of relatively small skyrmions,
i.e. R . ξsc.

III. MULTIPOLE EXPANSION OF THE
SKYRMION TEXTURE

Let us first consider the case of a small skyrmion, i.e.
R � ξsc. In this limit, the superconductivity cannot
“resolve” the fine details of the field S(r). We perform
the multipole expansion of the skyrmion configuration (4)
and approximate it as a point magnetic moment floating
in a “ferromagnetic sea” as illustrated in Fig. 1(c)

Sapprox(r) = −Sẑ + S0ẑδ
2(r), (5)

where S0 is the zeroth moment of S(r)

S0 =

∫
d2r [S(r)− S(∞)]z ∼ SR2. (6)

The formal domain of validity of the multipole expan-
sion is R . p−1

F � ξsc
37. The multipole expansion gives

an elegant and physically transparent description of the
system, and, for this reason, we use it even beyond the
domain of validity. In the end of the paper, we present
an exact numerical modeling and find a close agreement
with a multipole analytical treatment.

By performing the T-matrix calculation, we solve the
model given by Eqs. (2) and (5), where we treat the lo-
cal term S0ẑδ

2(r) as a perturbation. We include the
constant background magnetization −Sẑ in the BdG
Hamiltonian h(p) = ξ(p)τz + ∆τx + Sσz and calculate
an on-site matrix element of the bare Green’s function
g(ω,p) = [ω − h(p)]−1

g0(ω) = −πρ0

∑
λ=±1

1 + λσz
2

ω − λS + ∆τx√
∆2 − (ω − λS)

2
, (7)

where ρ = m/2π is the density of states. This Green’s
function describes a SC subject to a uniform background
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FIG. 2. (color online) Spin-polarized local density of states
(SP LDOS) of SC away from the skyrmion (dashed) and at
the skyrmion core (solid). The color of the curves encodes
the spin polarization: blue for spin up and red for spin down
as indicated by the arrows. The figure is obtained by using a
model given by Eqs. (12) and (13) for the parameters 2S =
∆ = 0.1µ, R = 2.5/pF , S0 = 5SR2, and S1 = 0.5SR3.

magnetization −ẑS that shifts the spin subbands as
shown with the dashed lines in Fig. 2. The density of
states contains two interior and two exterior coherence
peaks at the energies ±(∆ − S) and ±(∆ + S) corre-
spondingly. Using Green’s function (7) we calculate the
T-matrix in the presence of a point magnetic moment
V (r) = −S0 σzδ

2(r) representing the skyrmion

T (ω) =
−S0σz

1 + S0σzg0(ω)
. (8)

The poles of T-matrix give the energies of the skyrmion-
induced bound states

E±SBS = ±

[
S + ∆

1− (πρS0)
2

1 + (πρS0)
2

]
. (9)

Let us trace the bound state energies as a function of
increasing S0, which is an implicit function of S and R
according to Eq. (6). For small S0, the bound states lie
at the outer coherence peaks at the energies ±(∆ + S).
With further increase of S0, the bound states energies
split from the outer coherence peak and move to the
inner coherence peaks38. The spin-polarization of the
bound states is determined by the spin-polarization of
the bulk bands that they split from: the positive (nega-
tive) state is “up” (“down”) spin-polarized. The bound
states closely resemble the well-known Yu-Shiba-Rusinov
(YSR) states22–25 localized around magnetic impurities
in SC. The main difference is that the YSR energies re-
side inside the actual spectral gap, whereas the bound
states energies lie in the window of energies ∆ + S >
|E±SBS| > ∆− S, which is also filled with a continuum of
delocalized states of the opposite spin polarization.

Now let us show that the bound states give resonances
of finite spectral width due to the coupling with the con-
tinuum of delocalized states. Indeed, the skyrmion has
in-plane spins at r ≈ R that couple the spin-up and spin-
down sectors of the Hamiltonian. In order to capture this

effect we append the multipole expansion (5) with a next
order term representing the radial in-plane spins of the
skyrmion.

Sapprox(r) = −Sẑ + S0ẑδ
2(r)− S1∇δ2(r), (10)

where ∇ = (∇x,∇y) and S1 is the first moment of the
original skyrmion configuration S(r)

S1 =
1

2

∫
d2r [S(r)− S(∞)] · r ∼ SR3. (11)

In Appendix A, we solve the Lippmann-Schwinger equa-
tion for the T-matrix for Eqs. (2) and (10)

T (ω) =
−S0σz + S2

1p
2
F ḡ0(ω)

1 + S0σzg0(ω)− S2
1p

2
F ḡ0(ω) g0(ω)

. (12)

Here, the Green’s function ḡ0(ω) = 1
2

∑
j=x,y σjg0(ω)σj

describes the bands with opposite spin polarization
σz → −σz. Using Eq. (12) we calculate SP LDOS

ρs(ω) = (13)

− 1

π
Im Tr

{
1 + τz

2

1 + σs
2

[g0(ω) + g0(ω)T (ω)g0(ω)]

}
,

where s = x, y, z denotes the spin projection axis. We
plot the LDOS (13) with solid lines in Fig. 2 and com-
pare it with LDOS away from the skyrmion shown with
dashed lines. We observe that the peaks corresponding to
the bound states have finite spectral width. Indeed, the
denominator of T-matrix (12) has an extra term com-
pared to that of Eq. (8). The first two terms in the
denominator of (12) give the bound states energies (9),
whereas the last term S2

1p
2
F ḡ0(ω) g0(ω) is imaginary and

defines the spectral width of the resonances observed in
Fig. 2.

IV. NUMERICAL ANALYSIS

So far we have analyzed the skyrmion using the ana-
lytical multipole approximation. Now let us present the
results of an exact numerical modeling. We set the BdG
Hamiltonian on the N-by-N tight-binding square lattice
with parameters: the lateral size of the system N =
200, nearest neighbor coupling t, on-site superconduct-
ing pairing and Zeeman coupling ∆ = 2S = 0.1t, and
chemical potential µ = −3t. This choice of parameters
corresponds to ξsc ≈ 17a in the units of the elementary
cell constant a. The skyrmion is described by the vector
S(r) given by Eq. (4) with the effective radius R = 6a,
so that 2R ∼ ξsc. From the numerical wavefunctions, we
calculate SP LDOS, apply the Gaussian smoothing ker-
nel and plot the resulting SP LDOS in Fig. 3(a). We use
the same plotting style as in Fig. 2: solid (dashed) line
represents LDOS at (away from) the skyrmion, whereas
colors encode spin polarizations. We observe that the
calculated LDOS is consistent with the results of the an-
alytical calculation. Away from the skyrmion, SP LDOS
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(a)

(b)

FIG. 3. (color online) Numerical modeling of a skyrmion. (a)
Spin-polarized LDOS at the skyrmion core (solid) and away
from the skyrmion (dashed). (b) The function Iψ charac-
terizing a degree of localization of each BdG wavefunctions ψ
versus eigenenergy ω. Few of the quasilocalized wavefunctions
emphasized by the red rectangle are shown in Fig. 4.

(a) (b)

(c) (d)

FIG. 4. (Color online) Spatial profile of the quasilocalized
wavefunctions obtained numerically, which are indicated in
Fig. 3(b). The wavefunctions are shown in the order of in-
creasing Iψ.

contains the shifted spin subbands. At the skyrmion core,
the skyrmion induces a strong resonance in the energy
window ∆ − S < |ω| < ∆ + S. In order to further ana-
lyze the numerical wavefunctions ψ(r), we also calculate

the following expression

Iψ =
1∑

r,j |ψj(r)|4
, (14)

where the sum is carried over all lattice sites r as well as
all components j = 1, . . . , 4 of the four-component BdG
wavefunction on each site. The function Iψ character-
izes a degree of a localization of the wavefunction ψ(r)39.
The function is small Iψ ∼ 1 for an extremely localized
wavefunction and large Iψ ∼ N2 for a delocalized wave-
function. For each numerical BdG wavefunction ψ(r), we
plot a map of Iψ versus the eigenenergy in Fig. 3(b). We
observe a number of distinct quasilocalized states that
stand out from the rest of states as emphasized by the
red rectangle in Fig. 3(b). These states have the energy
of the bound states peak. The number of the quasilocal-
ized states grows with skyrmion size. We visualize the
spatial profile of the electron part of the BdG wavefunc-
tion |Ψ(r)|2 = |u↑(r)|2 + |u↓(r)|2 for a few of these states
in Fig. 4. In contrast with the analytical results, we find
a wavefunction with multiple lobes corresponding to a
higher angular momentum state, shown in panel (a), as
well as a state with a single peak, shown in panel (d). It
is known that higher angular momentum states do form
bound states. Analytic solution presented above is based
on the on-site T matrix and is not sufficient to capture
the higher-angular-momentum bound states.

We also observe that all wavefunctions in Fig. 4
exhibit characteristic oscillations at the scale ξsc.
In order to understand this behavior, consider a
generic wavefunction of an impurity induced state

Ψλ(r) ∼ eipF r−r
√

∆2−(ω−λS)2/vF /
√
r, where λ denotes

the eigenvalues of σz operator. The terms in the ex-
ponent term describe behavior at two scales p−1

F as well
as ξsc. For clarity, let us focus on the positive bound
state, i.e. ω = E+

SBS. From the point of view of spin-

up subband, i.e. λ = 1, the E+
SBS state is subgap, i.e.

|ω−S| < ∆, and so the square root term in Ψ+(r) gives
an exponentially localized wavefunction. However from
the point of view of spin-down subband, i.e. λ = −1,
the E−SBS state is supragap, i.e. ω + S > ∆, and, so,
the square root in Ψ−(r) gives oscillations at the scale of
ξsc superimposed with a long-range 1/

√
r decay. These

oscillations as well the long-range behavior can be seen
in Fig. 4.

V. INTERACTION BETWEEN SKYRMIONS
MEDIATED BY A SUPERCONDUCTOR.

Reference40 reported the STM study of the YSR states
induced by the magnetic dopants in a quasi-2D super-
conductor. In contrast with the previous experiments,
which observed YSR states only on the atomic scale, it
was demonstrated the YSR wavefunction can extend over
the range of tens of nanometers, i.e. two orders of mag-
nitude greater than observed before. Theoretical paper26
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argued that superconductivity induces an effective inter-
action between the magnetic spins when the correspond-
ing YSR wavefunctions overlap. Thus, motivated by
Refs.26,40, we propose that superconductiviy could medi-
ate an effective interaction between the distinct magnetic
skyrmions when the corresponding long-range skyrmion
bounds states overlap.

Let us briefly sketch the argument given in Ap-
pendix B, where a perturbative in S1 derivation of the
skyrmion-skyrmion interaction is given. Consider two
skyrmions in the ferromagnetic film proximity coupled
to a superconductor. As was shown in the previous sec-
tions, each skyrmion induces a spin-polarized resonance
in the window of energies ∆ − S < |ESBS| < ∆ + S
also populated by the delocalized states of the opposite
spin-polarization. In the limit S1 = 0, the bound state
wavefunctions, being subgap states of the correspond-
ing spin-polarized sector of the Hamiltonian, are expo-
nentially localized. If S1 6= 0, the corresponding per-
turbation S1 (σ ·∇) δ2(r) contains in-plane Pauli matri-
ces (σx, σy), which mix the opposite spin sectors of the
Hamiltonian. Therefore, the skyrmion bound states cor-
responding to the distinct skyrmions can couple and hy-
bridize via the long-range delocalized states of the oppo-
site spin-polarization. This will have an energetic effect
leading to an effective long-range interaction between the
skyrmions.

VI. CONCLUSION AND OUTLOOK.

In this paper, we predict the new skyrmion bound
states in the superconductor proximity coupled to the
ferromagnetic film with a skyrmion texture. We calcu-
late spin-polarized local density of states and show the
signatures of the bound states in the tunneling spectrum
that could be measured by the spin-polarized scanning
tunneling microscopy. By using an analogy with the well-
known YSR states, we show that the skyrmion induces a
resonance in between the spin-split coherence peaks cor-
responding to the opposite spin polarizations. We show
that the corresponding wavefunction is long-range in con-
trast with the YSR states, which are short-range. Thus
in the case of the two skyrmions, the corresponding wave-
functions will overlap and induce a long-range interaction
between the skyrmions26,40.

After this manuscript was submitted, we learned about
further theoretical studies41,42 of the hybrid skyrmion-SC
heterostructures. Authors of Ref.41 found the Majorana
bound state solution in the vicinity of the skyrmions of
higher winding numbers. Authors of Ref.42 studied an
interaction between a skyrmion and vortex in a type-II
superconductor.

We thank R. Wiesendanger, S. Fujimoto, J. Wiebe,
J. Zang, A. Saxena, H. Hurst, Y. Tserkovnyak, S. Lin
and L. Bulaevskii for valuable discussions and comments.
This work was supported by US DOE BES E304 (S.S.P.
and A.V.B.) and by the Grant-in-Aid for Research Ac-
tivity Start-up (No. 15H06858) (S.N.).
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T-matrix

T
(
pout,pin

)
= V

(
pout − pin

)
+ (A2)∫

d2p′

(2π)
2 V

(
pout − p′

)
g(ω,p′)T

(
p′,pin

)
.

(A3)
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and nin the in-plane unit vectors. Then, we choose the
following ansatz for the T-matrix

T
(
nout,nin

)
= T 0 + T 1

i n
out
i + T 1

j
†
nin
j + T 2

ij n
out
i nin

j ,

(A4)

where T, T 1
i , T

2
ij are the 4-by-4 matrices in the σ⊗τ space,

which give the expansion of the T-matrix in vectors nout
i

and nin
j . We substitute the ansatz (A4) in Eq. (A3) and

rewrite the integral equation as

T
(
nout,nin

)
= −S0 σz + i S1pF σi

(
nout
i − nin

i

)
+∫

dn′
[
−S0 σz + i S1pF σi

(
nout
i − n′i

)]
g0(ω)×[

T 0 + T 1
j n
′
j + T 1

j
†
nin
j + T 2

kj n
′
kn

in
j

]
, (A5)

where after an integration in the radial variable p′ the
Green’s function in the momentum space g(ω,p′) trans-
formed into an on-site matrix of the Green’s functions
g0(ω). Next, we take an integral over the angular vari-
able n′, i.e.

∫
dn′ n′i = 0 and

∫
dn′ n′in

′
j = δij/2, and

obtain a closed set of equations for the unknown matrices

T 0 = −S0σz − S0σzg0 T
0 − 1

2
iS1pF σig0 T

1
i , (A6)

T 1
i = iS1pF σi

[
1 + g0(ω)T 0

]
, (A7)

T 2
ij = iS1pF σig0(ω)T 1

j
†
. (A8)

Solution of the Eqs. (A6)-(A8) gives

T 0 =
[
−S0σz + S2

1p
2
F ḡ0(ω)

]
D,

T 1
i = iS0pF σiD,

T 2
ij = S2

1p
2
F σig0Dσj , (A9)

whereD =
[
1 + S0σzg0 − S2

1p
2
F ḡ0(ω) g0(ω)

]−1
.

Note that the relative order of the matrices in Eq. (A9)
is important because the spin Pauli matrices do not
commute. For brevity, ḡ0(ω) = 1

2

∑
j=x,y σjg0(ω)σj de-

notes the Green’s function obtained from g0 by replacing
σz → −σz. So, in the presence of the skyrmion, the
Green’s function becomes

G(ω,p1,p2) =g(ω,p1) (2π)2δ(p1 − p2)+

g(ω,p1)T (p1,p2)g(ω,p2), (A10)

using which the spin-polarized local density of states (SP-
LDOS) can be expressed

ρs(ω, r) = (A11)

− 1

π
Im Tr

[
1 + τz

2

1 + σs
2

∫
d2p1 d2p2

(2π)
4 ei(p

1−p2)rG(ω,p1,p2)

]
(A12)

where s = x, y, z denotes the spin quantization axis. At
the skyrmion core, i.e. at r = 0, only the T 0 part of the

FIG. 5. (color online) Spin-polarized local density of states in
the absence of the in-plane spins, i.e. at S1 = 0. The localized
skyrmion bound states do not couple to the delocalized states
of the opposite spin-polarization and are described by the
sharp poles given by Eq. (B3). Blue and red colors encode
the up and down spin polarizaion.

T-matrix contributes to local density of states

ρs(ω, 0) = − 1

π
Im Tr

{
1 + τz

2

1 + σs
2

[g0(ω)+ (A13)

g0(ω)
−S0σz + S2

1p
2
F ḡ0(ω)

1 + S0σzg0(ω)− S2
1p

2
F ḡ0(ω) g0(ω)

g0(ω)

]}
whereas T 1 and T 2 drop out. Equation (A13) gives the
expression in Eq. (12).

Appendix B: Interaction between skyrmions

In order to estimate the superconductivity-induced in-
teraction between skyrmions we use the formalism of
TGTG formula usually discussed in the context of the
Casimir interaction. It was also recently used in the
condensed matter context to describe the interaction be-
tween impurities in graphene43 and topological insula-
tors44 mediated by electrons. At zero temperature T = 0,
the free energy interaction between the skyrmions can be
expressed as

Uint(r) =
1

π

∫ 0

−∞
dω Im Tr Log [1− gr(ω)T1(ω)g−r(ω)T2(ω)] ,

(B1)
where the integral is taken over all negative energies, i.e.
filled states, in the Bogolyubov-de Gennes formulation.
In Eq. (B1), T1 and T2 are the T-matrices corresponding
to individual skyrmions, and the Green’s function gr is
calculated in the real space for large r & ξsc � p−1

F
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gr(ω) = −
√

2π

pF r

∑
λ=±1

1 + λσz
2

τz cos
(
pF r +

π

4

)
+

ω − λS + ∆τx√
∆2 − (ω − λS)

2
sin
(
pF r +

π

4

) ρ0 e
−r
√

∆2−(ω−λS)2/vF .

(B2)

Here, the projector 1+λσz
2 selects the spin-up and down

sectors of the Hamiltonian, which are shifted in energy
due to the constant FM field −S ẑ as discussed in the pa-
per. Note a square root term in the exponent of Eq. (B2).
For |ω − λS| < ∆, the exponent produces an exponen-

tial decay at the scale of r ∼ vF /

√
∆2 − (ω − λS)

2
.

In contrast, the square root becomes purely imaginary

−i sgn(ω − λS)

√
(ω − λS)

2 −∆2 for |ω − λS| > ∆, and

so the exponential term gives periodic oscillations rather
than exponential decay. This observation motivates the
explanation of the long-range coupling: the skyrmion
bound states couple to the delocalized states of the oppo-
site spin polarization, for which the square root is imag-
inary. Then the Green’s function, which has a long-
range power-law behavior, can propagate between the
skyrmions at large distances r > ξ and, thus, couple
their bound states and generate an effective interaction
between skyrmions.

The T-matrix given in Eq. (A9) has a complicated
form. So, for simplicity, let us demonstrate the long-
range interaction between skyrmions perturbatively in
S1. First, at S1 = 0, i.e. where the in-plane scattering is
neglected, the T-matrix (A9) reduces to a simpler Eq. (8)
of the main text. The corresponding SP LDOS is shown
in Fig. (5). The skyrmion bound states are represented
by the sharp peaks in the density of states which lie in
the energy windows between the Zeeman split coherence

peaks, i.e. ∆ + S > |E±SBS| > ∆ − S. In this approx-
imation, the scattering by the in-plane spins is absent,
and, therefore, the localized states do not couple to the
delocalized states of the opposite spin-polarization. Now,
we consider the higher-order order terms of the T-matrix
expansion in S1. We look for the terms that would cou-
ple the skyrmion states to the delocalized states of the
opposite spin polarization. In the second-order in S1,
there is one such term generated by the contribution T 2

ij

in Eq. (A9). So, in the vicinity of the energy close to the
bound states energies, the relevant part of the T-matrix
can be written as

σin
out
i

[
S2

1

∑
λ=±1

1 + λτx
2

1 + λσz
2

α

ω − EλSBS

]
σjn

in
j

(B3)
where the terms 1+λτx

2 and 1+λσz
2 are the projectors in

the Nambu and spin space, whereas constant α gives a
strength of the bound state poles. Observe that Eq. (B3)
is dressed with the in-plane Pauli matrices σi on both
sides of the expression. The in-plane Pauli matrices
σi = (σx, σy) flip the spin σz and, thus, couple the bound
states poles to the background delocalized states. Then,
we substitute Eqs. (B2) and (B3) in Eq. (B1). The in-
tegral in Eq. (B1) is dominated by the poles in the T-
matrix, so we approximate the integrand as

Im Tr Log

[
1− β S4

1

pF r

∑
λ=±1

1 + λσz
2

1(
ω − E−λSBS

)2 e−iλr√(E−λ
SBS−λS)

2−∆2/vF

]
, (B4)

where β is a constant absorbing other parameters. Ob-
serve, that the argument in the exponent is imaginary.
Since the integral in Eq. (B1) runs over negative ener-
gies, λ = 1 dominates the integral and we focus only at
the vicinity of ω around E−SBS. So, after shifting the in-

tegration variable ω − E−SBS → ω, and reexpressing the
imaginary part of the logarithm, we rewrite the integral
as

Uint(r) =
1

π

∫ ∞
−∞

dω atan

[
sinκr

pF r
βS4

1
ω2 − cosκr

]
= S2

1

√
β

pF r
I(κr), ,

(B5)

where κ =

√(
E−SBS − S

)2 −∆2/vF , and I(r) =

1
π

∫∞
−∞ dx atan

[
sinκr

x2−cosκr

]
is a periodic function of κr:

I(κr) = 2 cos
(
κr
2

)
for 4πn + 2π > κr > 4πn, and

I(κr) = −2 cos
(
κr
2

)
for 4πn + 4π > κr > 4πn + 2π.

So, we find that interaction between skyrmions (B5) de-
cays as 1/

√
r and oscillates at a scale of 1/κ. In col-

loquial terms, the oscillating long-range wavefunctions
corresponding to distinct skyrmions determine the effec-
tive interaction between skyrmions. Note that, we have
calculated the contribution to the energy only due to the
subgap states, and neglected the supragap states. The
full analysis using Eqs. (A9) and (B1) will be given in a
subsequent work.
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