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We report investigations of molybdenum nitride (MoN) thin films with different thickness and
disorder and with superconducting transition temperature 9.89 K ≥ Tc ≥ 2.78 K. Using terahertz
frequency-domain spectroscopy we explore the normal and superconducting charge carrier dynam-
ics for frequencies covering the range from 3 to 38 cm−1 (0.1 to 1.1 THz). The superconducting
energy scales, i.e. the critical temperature Tc, the pairing energy ∆, and the superfluid stiffness
J , and the superfluid density ns can be well described within the Bardeen-Cooper-Schrieffer the-
ory for conventional superconductors. At the same time, we find an anomalously large dissipa-
tive conductivity, which cannot be explained by thermally excited quasiparticles, but rather by a
temperature-dependent normal-conducting fraction, persisting deep into the superconducting state.
Our results on this disordered system constrain the regime, where discernible effects stemming from
the disorder-induced superconductor-insulator transition possibly become relevant, to MoN films
with a transition temperature lower than at least 2.78 K.

INTRODUCTION

The fundamental statement of the Anderson theorem
[1] that superconductivity is insensitive to non-magnetic
disorder has been contested in recent years: experiments
revealed that thin films of strongly disordered supercon-
ductors close to the mobility edge exhibit a massively
reduced superconducting transition temperature Tc com-
pared to modestly disordered or clean films, and Tc can
actually become zero at a critical disorder. Here, the sys-
tem undergoes a transition from a coherent many-body
ground state composed of delocalized Cooper pairs and
thermally activated quasiparticle states (a superconduc-
tor) to a ground state where the quasiparticle states are
incoherent and localized (an insulator) presumably with-
out an intermediate ground state of incoherent but delo-
calized quasiparticle states (a metal) [2, 3]. This transi-
tion from superconductor to insulator (SIT) has become
both a paradigm for a quantum phase transition [4] tuned
by a non-thermal control parameter such as disorder or
structural granularity and a rich host of intriguing phe-
nomena such as a spatially dependent energy gap [5, 6],
a notable peak in the magnetoresistance [7, 8], scaling [9]
and vortex-charge-duality behavior [10], enhanced fluc-
tuations at the resistive transition [11, 12], and a pecu-
liar gapped density of states above Tc [13–16]. Owing to
their unique properties such as a small electron diffusion
coefficient and a low charge carrier density, extremely
thin disordered superconductors also play a key role in
advanced applications such as superconducting nanowire
single photon detectors (SNSPDs) [17–19].

One of the most intriguing open and fundamental ques-
tions concerns the mechanism of the SIT: Is it the loss
of Cooper pairs or the loss of the coherent superfluid
that suppresses Tc towards the SIT? The answer to this

question is hidden in the disorder-evolution of the su-
perconducting energy scales, i.e. the pairing amplitude
∆ and the superfluid stiffness J , which is a measure for
the robustness of the superfluid phase-coherence against
fluctuations. The lesser of both scales determines Tc. In
order to address this question, we employ optical mea-
surements in the THz frequency range which have turned
out to be a powerful approach to access ∆ and J of thin-
film superconductors [21] as just one asset of optical spec-
troscopy in this context [22–26]. Our material of choice
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FIG. 1. Resistivity ρdc versus temperature for all MoN films
under study. With decreasing thickness, the superconducting
transition shifts to lower temperatures. The regime of super-
conducting fluctuations above Tc is well captured by quantum
corrections to conductivity (QCC, solid lines), most notably
the Aslamazov-Larkin paraconductivity. Note the resistivity
tails below Tc (defined as the temperature where the QCC fit
is zero), presumably due to structural inhomogeneity.
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TABLE I. Overview of the parameters characterizing structural (film thickness d, grain diameter δ), free-electron (room-
temperature dc-resistivity ρdc, Fermi wave-vector × electron mean free path kF `), and superconducting (critical temperature
Tc, zero-temperature estimates of the energy gap 2∆(0), superfluid density ns(0), superfluid stiffness J(0), penetration depth
λ(0), and the coupling ratio 2∆(0)/kBTc) properties of the MoN films under study. The number in the sample name represents
the amount of ALD cycles of the films. X-ray reflectivity was used to determine the thickness [20]. Tc was obtained from fits
of ρdc(T ) to QCC theory displayed in FIG. 1.

Name d
(nm)

δ
(nm)

ρdc

(µΩm)
kF ` T c

(K)
2∆(0)
(cm−1)

2∆(0)
kBTc

ns(0)(
1025m−3

) J (0)
(K)

λ(0)
(µm)

MoN120 8.4 3.1 3.20 2.02 2.78 7.21 3.73 0.76 14.0 1.93

MoN200 12.2 6.7 2.93 3.07 4.22 10.38 3.56 1.97 52.7 1.20

MoN300 15.1 9.7 1.61 6.99 7.50 16.44 3.15 5.79 192.0 0.70

MoN400 17.4 11.6 1.34 10.1 8.26 20.28 3.52 3.52 134.5 0.90

MoN800 29.6 15.7 1.26 13.04 9.89 23.24 3.41 9.57 621.9 0.54

for the present study are thin films of disordered molyb-
denum nitride (MoN), where the SIT has not yet been
observed, the suppression of Tc with decreasing thickness
d and increasing electrical resistivity ρdc, however, resem-
bles well-established SIT systems such as NbN, InO, or
TiN.

SAMPLES AND EXPERIMENT

Bulk MoN is a conventional superconductor with a
Tc up to 12 K [27, 28]. In this work, we study several
thin polycrystalline films of different thickness d rang-
ing from 8.4 to 29.6 nm with a roughness of less than
3 nm [20, 29, 30]. The average grain size δ increases
from 3.1 to 15.7 nm going from the thinnest (8.4 nm) to
the thickest (29.6 nm) film. The Crystal size were ex-
tracted from XRD measurement using the Scherrer for-
mula that relates the diffraction peak width to the crys-
tallite size. The films are grown by atomic layer deposi-
tion (ALD) on 5×5 mm2 (001)-silicon substrates covered
with a native oxide layer. The residue chlorine concen-
tration (from the MoCl5 precursor used) is negligible and
varies between 0.2 and 0.5% as found from Rutherford
back-scattering and x-ray photo-electron measurements,
respectively, and does not depend on d. With decreasing
d we observe an increase of dc-transport resistivity ρdc
and a concomitant reduction of Tc from 9.89 to 2.78 K,
see Table I. With decreasing thickness we found a reduc-
tion of the product of Fermi wave-vector and electron
mean free-path kF ` quantifying the effective degree of
disorder for films grown on quartz substrates, which are
from the structural and electronic point of view identical
with films grown on silicon as shown by X-ray diffrac-
tion and transport measurements. Consequently, one is
free to use decreasing values of Tc and d, or increasing
values for ρdc as descriptive measures of growing disor-
der. We note, however, that this selective assignment

is not assured a priori and may not apply for films be-
yond this work. Throughout this paper, we refer to the
samples as MoNx, where x is the number of ALD cy-
cles, which governs the film thickness. We measured the
dc-transport resistivity ρdc in four-point geometry, and
extract Tc as fit parameter within the theory of quantum
corrections to conductivity (QCC), capturing the super-
conducting fluctuations as it has been established pre-
viously [13, 31]. The resistive transitions of all samples
measured are plotted in Fig. 1. We observe a broadening
of the transition with decreasing thickness and Tc, which
suggests an increase of superconducting fluctuations as
expected for increasing disorder. Fluctuations of the
Aslamazov-Larkin type are most prominent, while the
other corrections [13, 31] play a minor role. A closer ex-
amination, however, reveals resistive tails, which cannot
be accounted for by QCC fluctuations, as shown in Fig. 1,
but may result from structural inhomogeneity [32], as dis-
cussed below. Apart from transport measurements, we
performed optical spectroscopy to measure the complex
transmission for frequencies 3 to 38 cm−1 (0.1 to 1.1 THz)
utilizing a Mach-Zehnder interferometer equipped with
backward-wave oscillators as tunable sources of continu-
ous and monochromatic THz radiation and a Golay-cell
or 4He-bolometer as detectors. With a home-built op-
tical 4He-cryostat we performed measurements down to
1.7 K [21, 33]. For more experimental details, see Ref.
[34–36].

METHODS

Typical spectra of transmission amplitude t and phase
shift normalized to frequency φ/ν (relative phase shift),
where ν = ω/2π is the frequency, of a MoN sample
measured in the normal and superconducting states are
shown in Fig. 2(a) and (b). The pronounced oscillation
pattern stems from multiple reflections inside the sub-
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strate, which acts as Fabry-Pérot resonator [36]. While
this pattern is constant in the normal state, it changes
drastically below Tc, which calls for a strong frequency
dependence of the optical properties of the film. To
model the particular behavior of t and φ/ν, we use
the Fresnel equations for multiple reflections, where the
thickness d and dielectric function ε̂(ν) = ε1(ν) + iε2(ν)
of substrate (s) and thin film (f) directly enter

t = t(ds, ε
s
1(ν), εs2(ν); df , ε

f
1(ν), εf2(ν)) (1)

φ/ν = φ(ds, ε
s
1(ν), εs2(ν); df , ε

f
1(ν), εf2(ν))/ν (2)

Equivalently, this can be expressed in terms of the dy-
namical conductivity σ̂(ν) = σ1(ν) + iσ2(ν), which is
directly related to ε̂ via

ε̂(ν) = 1 +
i

2π

σ̂(ν)

νε0
(3)

with ε0 the permittivity of the vacuum.
To disentangle the properties of substrate and film, a
bare substrate was measured beforehand and its optical
parameters were determined to be εs1 = 11.7 and εs2 = 0
independent of frequency and temperature in the range
studied in this work. In what follows, we will neglect the
superscripts in σf,s

1,2 and always refer to the conductivity
of the MoN film.

RESULTS

Anomalous dissipative conductivity

We first focus on the normal state at a temperature
slightly above Tc and the regime of superconducting fluc-
tuations. Here, we find t and φ/ν of all samples to be
well described by σ1(ν) and σ2(ν) of a normal metal, i.e.
by the Drude (D) formula [37]

σ1(ν) = σD
1 (ν) =

σdc

1 + (2πντ)2
(4)

σ2(ν) = σD
2 (ν) =

σdc 2πντ

1 + (2πντ)2
(5)

where σdc is the dc-transport conductivity, τ the scat-
tering time and γ = 1/τ the scattering rate. Fig. 2 dis-
plays the raw t and φ/ν of a representative sample with
Tc = 7.5 K. Apart from the pronounced Fabry-Pérot os-
cillations, both t and φ/ν at 8 K are dispersionless, which
is in agreement with a scattering rate γ at frequencies
much higher than the studied spectral range. The same
result is found for all samples and the corresponding val-
ues of ρdc = σ−1

dc are shown in Table I.
For a conventional BCS superconductor below Tc in the
dirty limit, σ̂(ν) follows the Mattis-Bardeen (MB) equa-
tions [38], which describe the dynamics of both the super-
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FIG. 2. (a) Raw transmission amplitude and (b) relative
phaseshift of a representative sample (MoN300) versus fre-
quency at various temperatures in the superconducting state
and above Tc = 7.5 K. The strong increase of t below Tc is
due to the opening of the SC gap and reduction of free elec-
trons with dissipative dynamics. Panels (c) and (d) display
t and φ/ν together with fits to MB Eqs. (6) and (7) solely
(orange curve) and to MB supplemented with an additional
Drude term Eqs. (4) and (5) (black curve). Clearly, only with
the additional dissipative contribution a proper fit is possible.
Panel (e) displays the real part σ1(ν) of the dynamical con-
ductivity at T = 4 K in the SC state calculated from t and
φ/ν with the corresponding fits to MB and MB+Drude.
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fluid condensate and the thermally excited quasiparticles

σMB
1 (ν)

σn
=
πe2ns
m∗σn

δ(ν) +
2

hν

∞∫
∆

dε g(ε) [fε − fε−hν ]

−Θ(hν − 2∆)

hν

−∆∫
∆−hν

dε g(ε)) [1− 2fε+hν ](6)

σMB
2 (ν)

σn
=

1

hν

∆∫
−∆,∆−hν

dε
(
g(ε) [1− 2fε+hν ]

× ε(ε+ hν) + ∆2

√
∆2 − ε2

√
(ε+ hν)2 −∆2

)
, (7)

where the function g(ε) and fε are

g(ε) =
ε(ε+ hν) + ∆2

√
ε2 −∆2

√
(ε+ hν)2 −∆2

(8)

fε =
1

exp
(
ε−µ
kBT

)
+ 1

(9)

and ∆ is the superconducting energy gap, m∗ and e are
the effective carrier mass and charge, Θ(ε) is the Heav-
iside step function, µ is the total chemical potential, ns
the superfluid density, and σn the dc-transport conduc-
tivity right above Tc. Usually, any finite dissipative con-
ductivity in the SC state is attributed to unpaired quasi-
particles and captured by the second term in Eq. (6), so
that σn = σdc using the notation from above. For the
MoN thin films under study, however, a model based on
Eq. (6) turns out to be insufficient. If we do not restrict
ourselves to weak-coupling SC, the only free parameter
in Eq. (6) is ∆, whose variation alone does not lead to
a reasonable fit, see the orange curve in Fig. 2. The
strongest deviation appears at frequencies around 2∆,
where the actual transmission amplitude is considerably
smaller than the fit. This implies that in addition to
the thermally excited quasiparticles another dissipative
channel is present. While various complex mechanisms
leading to finite in-gap absorption in disordered SC have
been recently addressed in both theory [39–41] and exper-
iment [42–44], here, we can model t and φ/ν reasonably
well by simply adding a Drude contribution to the MB
dynamics

σ1,2(ν) = σMB
1,2 (ν) + σD

1,2(ν) (10)

where the normal-state values of τ and σdc in Eqs. (4)
and (5) are replaced by τ̃ and σ̃dc. We note that for
a vanishing dc-transport resistance it is sufficient to
have a single percolative superconducting path bypass-
ing normal-conducting ones, whereas an optical measure-
ment is still sensitive to non-superconducting areas be-
cause here the dissipation integrated over the entire vol-
ume is probed. Fig. 2(c) and (d) exhibits t and φ/ν
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FIG. 3. Real part (upper panel) and imaginary parts of the
dynamical conductivity of a representative sample (MoN300)
in the normal state and at various temperatures below
Tc = 7.5 K. The solid lines are fits to Eq. (6) and (7).

exemplary at T = 4 K in the superconducting state to-
gether with a fit to Fresnel equations with charge car-
rier dynamics described by Eq. (10). In this particu-
lar case, a (frequency-independent) Drude behavior with
σ̃dc = 1.5 × 10−3 µΩcm and τ̃ → 0 (meaning that the
scattering rate Γ̃=1/τ̃ is considerable higher than the
spectral range of the present study, and σD

2 is negligibly
small) fits t and φ/ν very well. The conductivity offset is
more obvious when looking directly at σ1(ν) of the film
rather than t and φ/ν. To obtain σ1(ν) and σ2(ν), we
employ a single-peak analysis and fit t and φ/ν in a nar-
row window around each Fabry-Pérot resonance by the
Fresnel equations [36]. For each Fabry-Pérot resonance
located at a frequency νi we obtain a pair or ε1,2(νi) or,
equivalently, σ1,2(νi) with a frequency dependence that is
not restricted to any particular microscopic model such
as Eqs. (4)-(7). Fig. 3 displays σ1(ν) and σ2(ν) of the
same sample shown in Fig. 2 obtained from the single-
peak analysis for various temperatures T < Tc. The ad-
ditional Drude contribution is obvious in the dissipative
conductivity, where, in this particular case, the measured
σ1(ν) does not fall below 1.5×103 µΩcm even at our low-
est temperature of 2 K. This is in disagreement with a
conventional superconductor, where at T/Tc ≈ 0.25 one
would expect almost no dissipation inside the spectral
gap.
The behavior of charge carriers in a conventional super-
conductor is sketched in FIG. 4(a), where only Cooper-
pairs and thermally excited quasiparticles are present be-
low Tc. However, in our MoN films, we find charge carri-
ers with metallic properties even below Tc. Thus we sug-
gest a model for superconducting MoN featuring metallic
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states below Tc as it is sketched in FIG. 4(b).
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FIG. 4. Total amount of charge carriers distributed into
Cooper-pairs, thermally excited quasiparticles (qp.), and non-
condensing metallic electrons (e−), schematically shown for
(a) a normal BCS material and (b) a model for MoN, where
normal conducting (metallic) electrons are present in the glob-
ally superconducting state at all temperatures down to T = 0.
Above Tc, in the fluctuation regime (fl.) there is a small
amount of Cooper-pairs present. The temperature-dependent
dc resistivity is also shown schematically

It is important to stress that this phenomenon is not
restricted to a single film, but turns out to be a general
feature of all MoN films studied, and furthermore, the
temperature-dependence of σD can be fitted by a phe-
nomenological function

σD(T )

σdc
= a exp

{
b
T

Tc

}
(11)

Fig. 5 displays σD(T ) of all samples studied in this work
together with fits by Eq. (11). Values of the fit pa-
rameters a and b we listed in Table II. Neither a nor
b render a discernible thickness dependence. One con-
ceivable explanation attributes the dissipative contribu-
tion to intrinsic inhomogeneity. The assigned Tc is the
mean-field temperature, where superconducting perco-
lation across the sample sets in, while separate regions
may become superconducting already at a higher crit-
ical temperature. Similarly, some regions may remain
normal-conducting down to temperatures well below Tc.
As temperature drops, more and more regions eventu-
ally become superconducting, and the remaining dissi-
pative contribution shrinks. Indeed, thin films of TiN
and NbN with only marginal disorder and no structural

TABLE II. Parameters a, b obtained by fitting σD/σdc by
Eq. (11).

sample a b

MoN120 0.22 1.36

MoN200 0.14 1.67

MoN300 0.16 1.76

MoN400 0.21 1.33

MoN800 0.10 2.21

inhomogeneity do not show a finite σD contribution in
the superconducting state [36, 45]. Note, that this inho-
mogeneity does not necessarily require structural inho-
mogeneities, but may result from homogeneous disorder
leading to an electronically inhomogeneous state as it was
shown directly [5, 6] and indirectly [12, 13, 15] for similar
thin films of TiN and NbN. In addition [32], an inhomo-
geneous superfluid density, as it may result from either
structural or electronic inhomogeneity, causes anomalous
tails in the temperature dependence of the dc resistivity
that themselves cannot be attributed to superconducting
or Berezinskii-Kosterlitz–Thouless type fluctuations. As
shown in Fig. 1, we indeed observe such resistive tails
for all samples, which cannot be captured by fluctua-
tions. Given that this tail is present irrespective of thick-
ness calls for an intrinsic structural inhomogeneity rather
than emergent electronic inhomogeneity usually relevant
only at strong disorder near the superconductor-insulator
transition [5, 6, 12, 13, 15]. The ALD growth of MoN thin
films generally initiates with the growth of a 1-2 nm layer
of Mo2N before MoN growth sets in. The enhancement
of absolute dissipative conductivity σdc(T → 0) with in-
creasing MoN film thickness suggests that the ubiquitous
1-2 nm Mo2N layer does not serve as explanation for the
anomalous dissipation but may only contribute a small
universal offset.

Pairing amplitude, superfluid density, and
superfluid stiffness

We now turn to the superconducting contribution in
Eq. (10), and the energy scales, i.e. pairing energy ∆
and superfluid stiffness J , and the superfluid density ns,
which we extract from σ̂(ν) within Mattis-Bardeen the-
ory. We obtain ∆ by fitting σ1(ν) by Eq. (6) and (10),
where ∆ enters as threshold energy of pair-breaking, the
spectral gap 2∆. In Fig. 6(a) we plot the temperature
evolution of 2∆ for all samples together with a fit to the
universal BCS behavior of 2∆ obtained by solving the
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FIG. 5. Temperature dependence of the dissipative conduc-
tivity normalized to the normal-state conductivity, σD/σdc,
inside the globally superconducting state (white background).
The dc-conductivity σdc(T ) = ρ−1

dc measured in transport is
shown in each panel as thick lines, while the open symbols are
obtained from fits of the the optical measurements according
to Eq. (10). The thin solid lines are fits according to the
phenomenological function (11).

self-consistency equation[46]

ln
Tc
T

= 2πkBT
∑
ωn

[
1

~ωn
− 1√

(~ωn)2 + ∆2

]
(12)

where ωn = πkBT (2n + 1) with n ∈ N are the Matsub-
ara frequencies. The good agreement between theory and
experiment allows to extrapolate 2∆(T = 0) and calcu-
late the ratio 2∆(0)/kBTc , see Table I, which is close to
the weak-coupling prediction of 3.53 for all samples. The
second energy scale, J , is closely related to ns, which,
on the one hand, withdraws from direct access being the
weight of the δ(0) function in the superfluid response of
Eq. (6). On the other hand, the superfluid condensate

dominates [σ1(ν ≈ 0) ≈ δ(ν)] and therefore, following
Kramers-Kronig relations, also determines σ2 at small,
but finite frequencies. Considering the Kramers-Kronig
transform for the superfluid contribution to σ̂

σ2(ω ≈ 0) = − 2

π
P

∞∫
0

dω′ω

ω′2 − ω2

πnse
2δ(ω′)

2m∗
(13)

one finds the relation

ns =
2πm∗

e2
νσ2(ν)

∣∣∣
ν=0

(14)

using ω = 2πν and δ(ω) = 1
2π δ(ν). Fig. 6(b) dis-

plays ns of all samples versus temperature obtained from
Eq. (14). The dashed lines are fits to the two-fluid
approximation[37], and also here the good agreement
between theory and experiment allows to reliably ex-
trapolate ns(0) at zero temperature. Starting with the
thinnest film, ns rises as thickness increases. With the
BCS temperature-dependence of σ2(T ),

σ2(T, ν) =
π∆(T )

ρdchν
tanh

{
∆(T )

2kBT

}
(15)
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due to the dissipative conductivity σD.
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inserted into Eq. (14) one readily obtains

ns(T ) =
2π2m

ρdce2h
∆(T ) tanh

{
∆(T )

2kBT

}
(16)

which explains the rise of ns with increasing thickness by
the simultaneous increase of ∆ and decrease of ρdc. A cal-
culation of ns(T ) via Eq. (16) and ∆(0) as obtained from
σ1(ν), leads to the solid lines in Fig. 6(b) and an overesti-
mation of the superfluid density. This can be understood
as natural consequence of the dissipative offset: While a
constant value of σD below Tc does not change the loca-
tion of the pair-breaking absorption threshold in σ1(ν)
and consequently leaves ∆ unaffected, the actual super-
fluid density is reduced by the number of metallic elec-
trons not participating in the superfluid state. Therefore,
considering the preservation of the spectral weight, the
value of ns obtained directly from σ2 should be smaller
than the one calculated from ∆.
Fig. 6(c) displays the superfluid stiffness as calculated
from ns via [32]

J(T ) =
~2ns(T )d

4m
= 0.62× d[Å]

λ2[(µm)2]
K. (17)

with λ ∝ 1/
√
ns the superconducting penetration depth

and d the film thickness. While the temperature depen-
dence of ns and J is identical up to a numerical factor, the
latter quantity has the dimension of energy and can be
compared to the other relevant energy scales. The good
agreement of ∆(T ), ns(T ), and J(T ) with the BCS theory
and extensions thereof down to our most-disordered sam-
ple constrains the regime where effects stemming from
the SIT become relevant to samples with even lower Tc <
2.78 K. Fig. 7 displays the zero-temperature extrapola-
tions of the superconducting energy scales, J(0), ∆(0),
and Tc as function of resistivity ρdc (film thickness). For
better comparison, all scales are expressed in units of
temperature. With increasing ρdc, all energy scales show
a clear decrease, which is strongest for J(0). This be-
havior is in agreement with the Mattis-Bardeen theory,
where J(0) is related to ∆(0) via

J∆(0) =
~d
e2ρdc

π∆(0)

4
(18)

where the additional factor d/ρdc causes the stronger re-
duction. Nevertheless, we find ∆(0) < J(0) for all films
in agreement with an amplitude-driven transition, where
superconductivity ceases when the pairing amplitude ∆
becomes zero at Tc, i.e. due to the loss of pairing rather
than phase-coherence. The mismatch between J(0) as
calculated from σ2(ν) and J∆(0), see Fig. 7, is a direct
consequence of the dissipative conductivity σD.
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FIG. 7. Superconducting energy scales Tc, ∆(0), and J(0)
extrapolated to zero-temperature as described in the text ver-
sus resistivity ρdc for all MoN samples under study. Tc and
∆(0) decrease in the same fashion with increasing ρdc giving
a nearly constant weak-coupling ratio, see Table I. J(0) de-
creases by nearly two orders of magnitude in the examined
ρdc range but does not fall below ∆(0), signaling amplitude-
driven superconductivity for all our MoN thin-films.

CONCLUSION

We studied the dynamical conductivity σ̂(ν) = σ1(ν)+
iσ2(ν) of a series of disordered MoN thin films with dif-
ferent thickness (and resistivity ρdc) ranging from 8.4 to
29.6 nm by means of THz spectroscopy and electrical
transport, and extracted the pairing amplitude ∆, the su-
perfluid density ns, and the superfluid stiffness J within
BCS theory. The temperature dependence of ∆, ns, and
J is well described within the conventional theory and the
evolution with ρdc suggests superconductivity to cease at
Tc due to the loss of pairing rather than phase coher-
ence. The real part σ1(ν) shows an anomalous dissipative
contribution σD in the superconducting state that can-
not be accounted for by ordinary quasiparticle dynamics
within the Mattis-Bardeen (MB) theory. This frequency-
independent contribution is found for all MoN samples
under study and is suppressed with decreasing temper-
ature. In addition, the superfluid density ns calculated
from σ2(ν) is smaller than predicted by MB theory for
corresponding pairing amplitude. Together with tails in
the resistivity curves below Tc, all these findings sug-
gest the presence of normal-conducting regions surviving
into the globally superconducting state, possibly due to
structural inhomogeneity, as explanation of the anoma-
lous optical properties. The agreement of the supercon-
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ducting properties with the BCS and MB theory holds
for all samples, which restricts effects stemming from the
SIT to samples with Tc lower than at least 2.78 K. Our
characterization of superconducting MoN thin films is of
interest for the development of applications such as mi-
crowave resonators [47–50] or ultra-sensitive photon de-
tection [17, 51, 52] and it can serve as reference for studies
on other superconductors where the role of inhomogene-
ity is presently discussed [2, 3, 53–56]. At the same time,
further studies using local probes, e.g. scanning tunnel-
ing microscopy, are highly desirable to test the idea of
inhomogeneous superconductivity on MoN thin films.
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[9] G. Lemarié, A. Kamlapure, D. Bucheli, L. Benfatto,
J. Lorenzana, G. Seibold, S. C. Ganguli, P. Raychaud-
huri, and C. Castellani, Phys. Rev. B 87, 184509 (2013).

[10] M. Ovadia, D. Kalok, B. Sacépé, B., and D. Shahar,
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