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Heat transport in nonuniform superconductors

Caroline Richard and Anton B. Vorontsov
Department of Physics, Montana State University, Bozeman, Montana 59717, USA

We calculate electronic energy transport in inhomogeneous superconductors using a fully self-
consistent non-equilibrium quasiclassical Keldysh approach. We develop a general theory and apply
it a superconductor with an order parameter that forms domain walls, of the type encountered
in Fulde-Ferrell-Larkin-Ovchinnikov state. The heat transport in the presence of a domain wall is
inherently anisotropic and non-local. Bound states in the nonuniform region play a crucial role and
control heat transport in several ways: (i) they modify the spectrum of quasiparticle states and
result in Andreev reflection processes, and (ii) they hybridize with impurity band and produce local
transport environment with properties very different from those in uniform superconductor. As a
result of this interplay, heat transport becomes highly sensitive to temperature, magnetic field and
disorder. For strongly scattering impurities we find that the transport across domain walls at low
temperatures is considerably more efficient than in the uniform superconducting state.

PACS numbers: 74.25.fc, 74.45.+c

I. INTRODUCTION

Electronic heat transport is a powerful tool to ex-
plore properties of the superconducting state. It is a
bulk probe, that encodes information about both density
of electronic states and quasiparticle relaxation times.
Heat conductivity experiments have been used exten-
sively to study structure and symmetries of the supercon-
ducting order parameter in many different compounds.1

The low-temperature behavior of thermal conductivity
is a signature of either the absence or presence of low-
energy excitations.2 It can also be used as a directional
probe of the gap structure, since it depends on the ve-
locity of the low-energy excitations. One can measure
the anisotropy of thermal conductivity along different di-
rections and identify the Fermi velocity vectors of nodal
quasiparticles.3–5 Another way to study the nodal struc-
ture is to observe the response of nodal excitations to
a rotated magnetic field.1 The external magnetic field
modifies the density of states6,7 and the quasiparticles
scattering times.8–10 The magnitude of these effects de-
pends on the orientation of the magnetic field relative to
the nodes of the order parameter and the direction of the
heat flow.1

The power of this technique, however, is also the rea-
son why the interpretation of thermal transport measure-
ments is a difficult task, since density of states and trans-
port time of quasiparticles may not be independently
available. In this respect, experiment and theory must be
employed together in the analysis of data for reaching def-
inite conclusions. In uniform superconductors heat con-
ductivity has been investigated in great details, using sev-
eral approaches: Boltzmann transport theory,11 Green’s
functions technique,12 and quasiclassical methods,2 that
prompted rapid development on the experimental side.

There is growing interest in using thermal transport
to study nonuniform superconductors13 and topological
surface states.14–16 However, from the theory side, little
is known about heat flow in the presence of a spatially-
varying order parameter. The challenge here is to under-

stand how quasiparticles transport energy from one point
to another when both the quasiparticle density of states
and scattering mean free path depend on both energy
and position. Under these conditions it is important to
treat on the same footing Andreev particle-hole conver-
sion processes in inhomogeneous regions17 and scattering
processes on impurities.

As a result, in nonuniform superconductors calcula-
tion of heat transport is difficult and so far has been
carried out only in two different approximations. In the
strongly inhomogeneous situation, as in the case of peri-
odic and moderately dense Abrikosov vortex lattice near
Hc2, one can average over vortex lattice unit cell,18,19

assuming local formula relating heat current to the tem-
perature gradient, jh(R) = −κ̂ ∇T (R), to hold every-
where. In this approach one can analyze the effects of dis-
order and magnetic field on density of states, lifetime and
heat transport of spatially extended quasiparticles out-
side vortex cores.9,10 In a very different setting, the heat
transport through a pinhole supporting Andreev bound
states (ABS) was investigated20. When a phase bias ϕ
applied across the pinhole, highly degenerate Andreev
bound states17 appear at subgap energies controlled by
both ϕ and the transparency of the pinhole. The sudden
temperature drop across the pinhole produces local heat
current that depends on the phase bias, jh = −κ(ϕ)δT .
The bound states lying at subgap energy do not directly
couple to the continuum of quasiparticles to transport
heat. Nevertheless, their presence modifies the effec-
tive transparency of the pinhole for quasiparticles above
the gap. In particular, for a pinhole with perfect trans-
parency, the subgap bound states reduce locally the spec-
tral weight of continuum states which suppresses the heat
flow, κ(ϕ) < κ(0). By contrast, at low transparency,
the ABS lie just below the gap edge and enhance heat
conductivity, κ(ϕ) > κ(0), due to a resonance with the
continuum.20 However, in topological insulator junctions,
the zero energy ABS are topologically protected, prevent-
ing such resonance.16

Both of these approaches have limited applicability. In
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the pinhole calculation the sudden drop approximation
means point-localized ABS and lack of impurity scatter-
ing effects. The averaging procedure, on the other hand,
works well for high temperature and fields where vor-
tices are dense, but less well at low temperatures and
fields, and even worse with fully gapped superconduc-
tors. It relies on a presence of significant number of
spatially extended low-energy quasiparticles, but has no
way of including the contribution of localized vortex core
states. An exact theoretical treatment of the thermal
transport that simultaneously takes into account impu-
rity scattering in spatially varying order parameter land-
scape, effects of spatially localized Andreev bound states,
and position-dependent density of states, is lacking. In
this direction, we provide, in this paper, a basis for fu-
ture explorations of general nonuniform superconducting
configurations.

There are several important details that we include in
complete treatment of the problem. First, effects of the
Andreev states localized in the inhomogeneous region is
taken into account on the same footing with the effects of
the impurities that also produce midgap Andreev states
distributed throughout the sample. Both kind of bound
states result in modifications in the quasiparticle spec-
trum and scattering time, and their interaction is im-
portant. Second, the broken translation and rotation
symmetry that appear in systems with a spatially modu-
lated order parameter in general result in additional ‘ver-
tex corrections’ to the transport lifetime.21,22 Third, the
mean free paths of the quasiparticles can be longer than
the coherence-length scale of the order parameter varia-
tions, thus invalidating the picture of a local equilibrium
and local response even for small temperature gradients.

As a particular model for the inhomogeneous phase we
consider a domain wall between two degenerate configu-
ration of the order parameter that changes sign across the
wall, ∆(−∞) = −∆(+∞). We also consider a more com-
plicated configurations with periodic collection of mul-
tiple domain walls. We enforce the order parameter
modulation through boundary conditions on the edges of
the sample, and self-consistently compute the profile of
the domain walls and spatially-dependent impurity self-
energies. The domain walls have width of several co-
herence lengths, and host highly degenerate zero-energy
Andreev bound states. Such profile of the order pa-
rameter is a realization of Larkin-Ovchinnikov configura-
tion of the speculative Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) phase.23–25 Building a theoretical understanding
of the thermal conductivity in this phase is important for
experimental attempts to detect spatial modulations of
the order parameter using heat transport.13 At this point
it is not known how anisotropic is the heat flow in the
presence of the hypothetical FFLO domain wall struc-
tures in the order parameter. For example, the typical
assumption is that the heat flow across the domains is
strongly constricted due to the presence of the ABS that
do not carry heat. We find that this is not, in fact, true,
and the combination of impurity scattering effects with
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FIG. 1. A typical experimental setup for heat conductivity
measurement involves establishing a steady state current in
the sample and measuring the effective local temperature T1

and T2. Heat conductivity is defined κ = Ih/(T1 − T2). We
set a two-dimensional superconductor in the xy plane and for
a given heat current Ih along the x-axis we calculate temper-
ature difference between points TH #1 and #2 at x = ±L.
The sin line is a schematic representation of an FFLO modula-
tion of the order parameter with shaded regions representing
domain walls.

spatially-extended range of the bound states can produce
both suppression and enhancement of thermal transport
compared to the uniform state.

The organization of the paper is as follows. In sec-
tion II we describe our model and relate it to the ex-
perimental measurement technique. In section III we
develop the formalism to compute thermal transport in
nonuniform superconductor using Keldysh quasiclassical
approach and t-matrix treatment of disorder. The linear
response is discussed in section III A; in III B we formu-
late the boundary conditions for the quasiclassical prop-
agator amplitudes. We apply this technique to compute
heat flow across a single domain wall in section IV A,
and in IV B we generalize it to the case of multiple do-
main walls and investigate heat transport dependence on
number of domains, temperature, disorder and spacing
of domain walls. Finally, in section IV C, we address the
modifications arising from the Zeeman shifts of quasipar-
ticle energies.

II. MODEL

We consider a spin-singlet superconductor with quasi
two-dimensional cylindrical Fermi surface. Our model
can be applied to both s- and d-wave superconductors,
but we will focus on the case of a d-wave symmetry,
for several reasons. First, most of the recent investiga-
tions of FFLO state have been done on materials with d-
wave pairing, such as heavy-fermion26 or organic27 super-
conductors. Also, unconventional superconductors have
more general order parameter structure with low-lying
nodal quasiparticles and are sensitive to disorder. We
consider ∆(p̂) ∝ cos 2(φp̂ − α) and present results for
α = 0, since we find that the particular value of α is not
important.
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Impurities are randomly distributed throughout the
sample with concentration cimp. The impurity scattering
potential is assumed point-like and isotropic with ampli-
tude u. System is set out of equilibrium by introducing a
thermal current flowing along the x-axis. As the station-
ary state is reached a temperature gradient builds up.
We define the heat conductivity between two points as
κ = Ih × 2L/(T1 − T2) where Ih is the stationary-state
heat flow, and T1 and T2 are the local temperatures as
if measured by two distant thermometers positioned at
x = ±L. Our goal is to compute the effective tempera-
ture bias dT = T1 − T2 for a given Ih, in the presence of
spatially modulated order parameter as shown in Fig. 1.

III. THEORY

A convenient approach to study nonuniform supercon-
ductors out of equilibrium is the quasiclassical formu-
lation of the Keldysh technique.28 It is formulated in
terms of the Green function ĝ(R, p̂, ε), which for station-
ary states depends on the center of mass coordinate R,
direction of the relative momentum on the Fermi surface
p̂, and the energy ε. It is a 8× 8 matrix in particle-hole
(Nambu), spin, and Keldysh space. In the Keldysh space,
it is given by

ĝ =

(
gR gK

0 gA

)
, (1)

where the superscripts R/A/K stand for Retarded, Ad-
vanced and Keldysh. The Retarded and Advanced com-
ponents gR/A carry information about density of states
and correlations, while gK encodes the quasiparticles’
dynamics and distribution function. Each of the three
components are 4 × 4 matrices, parametrized by outer
products of 2×2 Pauli matrices in spin and particle-hole
spaces σi ⊗ τj (i, j = x, y, z).

We use the quasi-classical propagator to compute the
density of electronic states (DoS) N(R, p̂, ε)

N(R, p̂, ε)

NF
= − 1

π
Im

[
1

4
Tr
[
τzg

R(R, p̂, ε)
]]
, (2)

and local heat current jh(R), and its spectral density
jh(R, ε),

jh(R) = 2NF vF

+∞∫

−∞

dε

4πi

∫
dp̂ [ε p̂]

1

4
Tr
[
gK(R, p̂, ε)

]

≡
+∞∫

−∞

dε jh(R, ε) .

(3)

Here NF is density of state at Fermi energy per spin in
the normal metallic state, vF is the Fermi velocity, and
Tr = Tr4 is the trace operator over spin and Nambu

space.
∫
dp̂ · · · = 〈. . . 〉p̂ =

∫ dφp̂

2π . . . is the normal-
ized Fermi surface integral. We note that to write the
heat current as 4-trace over spin and particle-hole space
instead of usual spin-trace over just upper left compo-
nent of gK we used symmetry of the Keldysh component
gK(R, p̂, ε)tr = τyg

K(R,−p̂,−ε)τy.28

The quasiclassical Green function ĝ is normalized

ĝ2(R, p̂, ε) = −π2 , Tr[gR,A] = 0 , (4)

and satisfies the Eilenberger equation

[ετ̂z − σ̂, ĝ] + ivF p̂ ·∇ĝ = 0 , (5)

where 8× 8 self-energy σ̂(R, p̂, ε) has the same structure
in Keldysh space as Eq. (1) and τ̂z = diag(τz, τz). The
retarded and advanced components for singlet supercon-
ductor are parametrized as follows (x = R,A):

σx =

(
Σx ∆x(iσy)

(iσy)∆̃x Σ̃x

)
, (6)

and the Keldysh part is

σK =

(
ΣK ∆K(iσy)

−(iσy)∆̃K −Σ̃K

)
. (7)

Components of these matrices are related to each other
through symmetries28 defined by the -̃operation that
reverses momentum and energy of complex-conjugated
quantities, e.g. ∆̃x(R, p̂, ε) = ∆x(R,−p̂,−ε)∗. Diago-

nal self-energy terms Σ, Σ̃ are due to impurity scattering
effects. The off-diagonal terms contain the mean field
order parameter and impurity contributions:

∆R/A(R, p̂, ε) = ∆(R, p̂) + ∆
R/A
imp (R, ε)

while the Keldysh mean fields identically zeros, leaving
only impurity contributions

∆K(R, ε) = ∆K
imp(R, ε) .

The mean-field order parameter is computed self-
consistently from

∆(R, p̂) =

+εc∫

−εc

dε

4πi

∫
dp̂′ V (p̂, p̂′) fK(R, p̂, ε) . (8)

We consider the pairing interaction V (p̂, p̂′) =

V0 Y(p̂)Y∗(p̂′) and fK = 1
4Tr[

τx+iτy
2 (−iσy)gK ] is the

upper-right singlet component of the Keldysh Green’s
function. The momentum space basis functions are
Y(p̂) = 1 for s-wave, and Y(p̂) = cos 2(φp̂ − α) for d-
wave. The cut-off energy εc and the interaction ampli-
tude V0 are eliminated, in the usual manner, in favor of
clean-case transition temperature Tc.

The impurity self-energy part is self-consistently deter-
mined within the t̂-matrix approximation. For randomly
distributed isotropic scattering centers, the 8×8 t̂-matrix
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equation is t̂ = u1̂ + u 〈ĝ〉p̂ t̂, and the self-energy is de-

fined as σ̂imp = cimpt̂. Using traditional definitions of
impurity scattering rate Γ = cimp/πNF and phase shift
tan δ = uπNF in terms of impurity concentration cimp

and amplitude u of the point-like scattering potential, the
4×4 self-energy matrices are determined from (x = R,A)

σx
imp(R, ε) = Γ tan δ + tan δ

〈
gx(R, p̂, ε)

π

〉

p̂

σx
imp(R, ε) ,

σKimp(R, ε) =
1

Γ
σRimp(R, ε)

〈
gK(R, p̂, ε)

π

〉

p̂

σAimp(R, ε) .

(9)

Impurity scattering suppresses the amplitude of d-wave
order parameter (completly, when Tc . Γ sin2[δ]), how-
ever the more important effects come in through the den-
sity of states and self-energies. In the following, we will
mainly make comparison between the Born (δ → 0) and
Unitary (δ = π/2) limits. In the absence of inelastic scat-
tering, the self-consistent calculation of impurity σimp

and order parameter ∆ that includes non-equilibrium ef-
fects, guarantees conservation of energy and charge. In
particular, self-consistent calculation of self-energies in-
cluding corrections due to the heat flow will automat-
ically satisfy divjh(R, ε) = 0 - condition of no energy
accumulation, see Appendix A.

The solution of the self-consistent system of coupled
equations for nonuniform states is most conveniently ob-
tained using Riccati parametrization29. The retarded (−
sign) and advanced (+ sign) Green’s functions are given
by

gx =
∓iπ

1 + γxγ̃x

(
1− γxγ̃x 2γx(iσy)
−2γ̃x(iσy) −(1− γ̃xγx)

)
, (10)

where γx(R, p̂, ε) are retarded/advanced scalar coher-
ence functions that are zeros in bulk normal state. The
Keldysh component takes the form

gK =
−2πi

(1 + γRγ̃R)(1 + γAγ̃A)
×

(
xK + γRx̃K γ̃A −(γRx̃K − xKγA)iσy

−iσy(γ̃RxK − x̃K γ̃A) x̃K + γ̃RxKγA

)
,

(11)

where xK(R, p̂, ε) is the (scalar) distribution function.
We explicitly took out the singlet spin dependence of
coherence amplitudes, compared with Ref. 29, where the
coherence functions are spin matrices. Coherence and
distribution amplitudes are related to each other through
-̃relation, as well as29

γA(R, p̂, ε) = −γ̃R(R, p̂, ε)∗ ,

xK(R, p̂, ε) = xK(R, p̂, ε)∗ .
(12)

The distribution function is not unique, and the usual
choice in equilibrium is

xK0 = Φ0(ε/T )(1 + γRγ̃A) , (13)
where

Φ0 (ε/T ) = tanh(ε/2T ) = 1− 2f(ε/T )

and f(ε/T ) = [exp(ε/T ) + 1]
−1

is the Fermi distribution
at temperature T . Transport-like equations for coherence
and distribution functions follow from Eq. (5)

ivF p̂ ·∇γx + (2ε− Σx + Σ̃x)γx + ∆̃x (γx)2 + ∆x = 0 ,

ivF p̂ ·∇xK + (γR∆̃R − ΣR + ∆Aγ̃A + ΣA)xK =

γRΣ̃K γ̃A −∆K γ̃A − γR∆̃K − ΣK .

(14)

A. Linear response

In the absence of heat current, jh = 0, the system is
assumed in global equilibrium at temperature T , with
xK = xK0 (R, p̂, ε) given by Eq. (13), and equilibrium co-
herence functions γx = γx

0 (R, p̂, ε) found from

ivF p̂ ·∇γx
0 +(2ε−Σx

0 +Σ̃x
0)γx

0 +∆̃x
0 (γx

0 )2 +∆x
0 = 0 . (15)

In uniform superconductors, ∇γx
0 (R, p̂, ε) = 0 and the

solution of Eq. (15) for the retarded coherence function
is

γRu (p̂, ε) = − ∆R
u

ε̄R + i
√

∆R
u ∆̃R

u − (ε̄R)2

, (16)

with ε̄ = ε− (ΣRu − Σ̃Ru )/2. In the following, the subscript
“u” stands for ‘uniform’, and subscript “0” will refer to
the equilibrium solution.

In the presence of a small heat current jh 6= 0 that is
assumed to be time-independent (stationary state), the
system is out-of-equilibrium. In linear response, we ex-
pand coherence and distribution functions around their
equilibrium values

γx(R, p̂, ε) =γx
0 (R, p̂, ε) + γx

1 (R, p̂, ε) ,

xK(R, p̂, ε) =Φ0(ε)(1 + γR0 γ̃
A
0 )

+ Φ0(ε) (γR0 γ̃
A
1 + γR0 γ̃

A
1 ) + xa .

(17)

The deviation of the distribution function from equilib-
rium, xK − xK0 , is described by two terms. The first
accounts for change in the density of states through cor-
rections to the retarded and advanced functions, it is
weighted by the equilibrium Fermi distribution Φ0(ε).
The second term, xa(R, p̂, ε), is the anomalous, or dy-
namical distribution function. It determines the dynam-
ical part of the Keldysh Green’s function ĝa = ĝK− ĝK0 −
Φ0(ĝR1 − ĝA1 ),
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ĝa =
−2πi

(1 + γR0 γ̃
R
0 )(1 + γA0 γ̃

A
0 )

(
xa + x̃aγR0 γ̃

A
0 (xaγA0 − x̃aγR0 )iσy

−iσy(xaγ̃R0 − x̃aγ̃A0 ) x̃a + xaγ̃R0 γ
A
0

)
. (18)

In linear response the heat current depends only on the equilibrium spectral properties through coherence amplitudes

γR,A0 , and the dynamical part of distribution function, xa:

jh = −2NF vF

+∞∫

−∞

dε

〈
εp̂
xa(1 + γ̃R0 γ

A
0 ) + x̃a(1 + γR0 γ̃

A
0 )

4(1 + γR0 γ̃
R
0 )(1 + γA0 γ̃

A
0 )

〉

p̂

. (19)

To obtain equation for xa we linearize Eq. (14). We linearize with respect to the global equilibrium at temperature
T , where Φ0(ε/2T ) in Eq. (17) is position-independent - in this case the linearized equation reads29

ivF p̂ ·∇xa +
ivF

`(R, p̂, ε)
xa = γR0 γ̃

A
0 Σ̃a − (∆aγ̃A0 + ∆̃aγR0 + Σa) , (20)

with equation for the x̃a-function obtained from this one by employing the definition of -̃operation. In the above
equations we introduced parameter

`(R, p̂, ε) = ivF /(γ
R
0 ∆̃R

0 − ΣR0 + γ̃A0 ∆A
0 + ΣA0 ) , (21)

that is purely real, as follows from the symmetries of the coherence functions and self-energies, and has dimension of
length. In the normal metallic phase ` = vF /2Γ sin2 δ = vF τN = `N matches with the elastic mean free path. The
dynamical self-energy entering Eq. (20) as the source term is self-consistently computed from xa and γx

0 :

σa(R, ε) ≡ σaimp ≡
(

Σa (iσy)∆a

−(iσy)∆̃a −Σ̃a

)
=

1

Γ
σR0,imp(R, ε)

〈
ga(R, p̂, ε)

π

〉

p̂

σA0,imp(R, ε) . (22)

Note that the linearization scheme in Eq. (17) is very
convenient because the calculation of jh only requires
the knowledge of the anomalous xa, which itself does not
depend on spectrum corrections, γx

1 .

B. Boundary conditions

To solve the transport equation Eq. (20) for the distri-
bution function, one needs to provide suitable boundary
conditions for initial values of xa at the beginning of a
trajectory vF p̂, and for final value of x̃a at the end of this
trajectory.

For weak links, as in reference 20, one can assume that
the system of interest is connected to large reservoirs
in equilibrium at temperatures T1,2. Then, for a given
quasiparticle trajectory, one can take equilibrium values
of the coherence and dynamical amplitudes in those reser-
voirs as initial values.

Such assumption seems inadequate to compute heat
transport in bulk samples. Instead, given a stationary
conserved heat flow in the entire sample, we will con-
struct the Riccati amplitudes at x = ±L in a way that is
consistent with Eq. (20), and would give a fixed thermal
current

jh(±L) = jh = jBC
h (23)

in a uniform superconducting state, away from the inho-
mogeneous region.

+L−L

T(x)  local
+dT

−dT

T  global

jh

FIG. 2. Local versus global equilibrium picture. The sys-
tem is driven out of equilibrium by a steady uniform heat
current jh. The local equilibrium picture assumes that, when
heat flows, a local temperature, T (x), can be defined, and
its gradient determines the magnitude of jh. It is typi-
cally used in uniform-state problems, and we use it here to
define boundary conditions for distribution functions away
from the nonuniform (shaded) region of the order parameter.
Our main approach, however, is to expand the propagators
around some global equilibrium value of the temperature T :
g(x) = geq(T ) + gc(x) where gc(x) determines current jh.

To write such boundary condition we start by making
a trivial observation that the linearization procedure that
we followed, can be used to find equilibrium functions at
slightly different temperature T + δT . For example, the
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distribution function can be written as

xKeq(T+δT ) = [1+γR0 (T+δT )γ̃A0 (T+δT )]Φ0

(
ε

2(T + δT )

)

where we show only the temperature argument explicitly.
Decomposition Eq. (17) in this case gives the anomalous
contribution as

xaeq(T + δT ) = [1 + γR0 (T )γ̃A0 (T )]
∂Φ0

∂T
δT , (24)

with ∂Φ0/∂T = −ε/[2T 2 cosh2(ε/2T )]. This xaeq
distribution function, on the other hand, also satis-
fies Eq. (20) with appropriately determined self-energy
through Eq. (22) that can be brought to the form
σa(T ) = (σR0,imp − σA0,imp)(∂Φ0/∂T )δT . Far from the re-
gion of spatially varying order parameter, the equilibrium

functions, γ
R/A
0 (p̂, ε) and xK0 (p̂, ε) take their uniform val-

ues γx
0 = γx

u, that determine the scattering length `u
through Eq. (21), and in equilibrium ∇xaeq ∝∇T = 0.

When a stationary thermal current flows, a local tem-
perature gradient builds up and δT (R) = T (R)− T is a
function of position, see Fig. 2. As a result, Eq. (24) with
local δT (R) is no longer a solution to Eq. (20). However,
one can modify xaeq to include the temperature gradient:

xau(R, p̂, ε) =
[
1 + γRu (p̂, ε)γ̃Au (p̂, ε)

] ∂Φ0

∂T
×

× [δT (R)− `u(p̂, ε)p̂ ·∇T ] .
(25)

This expression with uniform gradient ∇T = const sat-
isfies Eq. (20). The ∇T term in Eq. (25) is odd in
momentum, and after angular integration in Eq. (22) it
does not contribute to self-energy σa in even-p̂ super-
conductor. Consequently, only the first term, ∝ δT (R),
determines the dynamical self-energy. In entirely uni-
form superconductor, xa and x̃a would be trivially re-
lated and result in local equilibrium self-energy σau =
(σR0,imp − σA0,imp)(∂Φ0/∂T ) δT (R). This is important
since after substitution of this expression together with
Eq. (25) into Eq. (20) the arbitrary δT (R) drops out.
Non-uniform order parameter means different history for
xa(p̂) and x̃a(p̂) along a trajectory and the self-energy
σa even in uniform part does not fully recover the local
equilibrium dependence on δT .

On the other hand, by similar symmetry arguments,
the heat current in the uniform part of the superconduc-
tor is independent of δT and is completely determined
by the ∇T term of xau. We use it to set the value of the
temperature gradient from fixed jBC

h . Inserting Eq. (25)
into Eq. (19), and using γ-symmetries Eq. (12), we obtain
uniform-state current

jBC
h = −κu∇T , κu =

+∞∫

−∞

dε κu(ε) , (26)

where the thermal conductivity has this Boltzmann-like

.
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VI. CONCLUSIONS

We have presented a theoretical study of thermal trans-
port in non-uniform superconductors. Using fully self-
consistent non-equilibrium approach based on quasiclas-
sical Eilenberger-Keldysh technique we computed ther-
mal current across ±� amplitude domain wall(s) in a
superconductor with d-wave pairing. In linear response
we investigated, on the same footing, combined e⇥ects
of impurity scattering, spatial variations of the quasipar-
ticle states and presence of highly degenerate Andreev
bound states inside the domain wall regions.

In a clean superconductor, heat transport across the
domain wall is reduced due to formation of the bound
states that ‘trap’ quasiparticles. When disorder is
present, then bound states at the domain wall couple to
low-energy states arising from scattering on impurities.
In the unitary scattering limit when the band of impurity
states is broad and bound states have very long lifetime,
heat is transported through the domain wall in a more
e⇤cient way that in uniform state. In Born limit such
e⇥ect is absent due to ....

Presence of domain walls in the order parameter
is clearly visible in the non-monotonous temperature
dependence of heat conductivity in unitary scattering
regime. As temperature is lowered, thermal conductivity
drops, but below about T/Tc � 0.3 the influence of bound

states result in inflection of this trend and ⇤(T ) starts
growing. When spin-dependent bound states are split
by the Zeeman interaction, di⇥erence in thermal trans-
port between uniform and non-uniform configurations of
the order parameter is softened, but the non-monotonic
behavior appears even in the Born limit, with inflection
temperature T ⇥ µH/2.5.

A periodic structure of domain walls also results in
the amplification of the transport properties of a single
domain wall, but this amplification does not necessarily
scales linearly with the number of domain walls.

These results show that thermal transport can be a
useful probe of non-uniform states, and it can help in
detection of Andreev bound states. It can o⇥er an-
other path to inferring the presence of FFLO phase,
beside NMR technique recently used on organics? or
detection of resonances from its characteristic periodic
structures.?

VII. APPENDIX

A. conservation of heat

In absence of any inelastic processes, we show that
Eqs. (6) and (9) yields ⌅.jh(R, ⇥) = 0, i.e. it ensures
heat conservation through the sample.

⇧⌅.jh(R, ⇥) ⇤
�
p̂ Tr⌅ · gK

⇥
p̂

(45)

= �Tr
⇧�

[⇥� ⌅�, gK ]
⇥

p̂

⌃
+ Tr

⇧
(⌅R

imp

�
gK

⇥
p̂
�
�
gK

⇥
p̂
⌅A

imp + ⌅K
imp

�
gA

⇥
p̂
�

�
gR

⇥
p̂
⌅K

imp)]
⌃

= 0 + 0, (46)

where the first term is null due to the traceless property of a commutator while the second term is the result of the
self-consistent equation for impurity scattering in Eq. (9).

xa
u(�L, p̂x > 0, ⇥)

�R
u,+�0

(p̂x > 0, ⇥)

⌅
(47)

⇤
xa

u(L, p̂x > 0, ⇥)
�R

u,��0
(p̂x < 0, ⇥)

(48)

T + dT (49)

T � dT (50)
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with �imp = 0. At boundaries, �(±L,7 p̂x, ✏) given by
Eq. (27) and we take

xa(±L, p̂x 7 0, ✏) = ⌥@T�0 dT (1 + �R
u �̃A

u ). (49)

which to conveniently describes junctions. As a compar-
ison, the boundary condition (30) aims at describing a
continuous flow of heat; it assumes the existence of some
local temperature gradient not defined in absence of mo-
mentum or energy relaxation (u ! 1).

The order parameter �(x) and �0(x, p̂, ✏) are numer-
ically self-consistently determined. Accordingly, we can
easily show that the dynamical function in the constric-
tion writes

xa(x, p̂x 7 0, ✏) = ⌥@T�0

�
1 + �R

0 (x, p̂, ✏)�̃A
0 (x, p̂, ✏

�
dT.
(50)

In the uniform configuration (no DW),|xa(⌥L, p̂, ✏)| =
|xa(±L, p̂, ✏)|, energy is perfectly transmitted. However,
in the presence of domain walls, it yields

|xa(⌥L, p̂x ? 0, ✏)| > |xa(±L, p̂x ? 0, ✏)|, (51)

meaning that the energy is not perfectly transmitted. We
interpret the latter result as a partial Andreev reflection
of quasiparticle due to both a suppression of spectral
weight and a change of superconducting phase. Clas-
sically, we can illustrate it as the result of a tra�c jam.
Using Eq. (??), we maybe expressed the heat conductiv-
ity in terms of a kernel k(✏, p̂) as

̂ =

Z
d✏ ✏ @T�0 hp̂ k(✏, p̂)ip̂ . (52)

As shown in Fig. 6, the amplitude of k(✏, p̂) is suppressed
in the presence of inhomogeneities. In the clean limit, the
heat conductivity is reduced in the presence of a single
domain wall, alike the pinhole of perfect transparency? .

We now turn to the transport across a comb of NDW

domain walls. Each domain wall hosts degenerate ABS,
that can overlap if the domain wall interspacing, XFFLO,
gets smaller than the ABS spatial extent XABS. Since
XABS(p̂) / vF /�(p̂), the bound states with momen-
tum direction around nodal direction will overlap first.
Our goal is to provide a numerical fit for the conduc-
tivity based on our understanding of the physics in the

case of a single domain. Our idea is that qualitatively
quasiparticles carrying heat undergo either NDW succes-
sive and distinct Andreev reflections (XFFLO > XABS(p̂),
antinodal direction) or only one due to to the hybridiza-
tion of underlying ABS (XFFLO < XABS(p̂), nodal di-
rection) wether underlying ABS do or do not overlap.
Accordingly, we write Ih = (Gn + Ga.n)dT with 1/Gn =
RS,n + (RA,n)NDW and 1/Ga.n = RS,a.n + RA,a.n, where
RS,n/a.n are the Sharvin/contact resistances and RA,n is
the average Andreev reflection coe�cient.

We like to relate the Andreev reflection in the clean
limit to RL1/2 ⇡ h||[xa(L, p̂)/xa(�L, p̂)||iQP2L1/2? Note

that RA,n is an average Andreev reflection coe�cient
for quasiparticle present at T , as T is increased, excited
quasi-particle are quasi-normal, hence RA ! 0. As NDW

is increased the contribution from non-overlap ABS is
exponentially reduced. The Sharvin resistance should
vary roughly as

R
d✏ 1/N(✏), it is inversely proportional to

the number of conducting channels. downsizing XFFLO

enlarges the overlaping group

xa
u(�L, p̂x > 0, ✏)

�R
u,+�0

(p̂x > 0, ✏)

�
(53)

⇢
xa

u(L, p̂x < 0, ✏)
�R

u,��0
(p̂x < 0, ✏)

(54)

T + dT (55)

T � dT (56)

RN (57)

RL
u (58)

RA
u (59)

RL
DW (60)

RA
DW (61)

✏ (62)

� (63)

Wimp (64)

FIG. 3. Numerical integrations of Eqs. (15) and (20), in
the shaded region, performed from x = ∓L to x = ±L for
right/left going (p̂x ≶ 0) trajectories along p̂. We start the
numerical integration at the white/black circles with the uni-
form Riccati amplitude given by Eqs. (30) and (31), see main
text. The (half-) temperature bias dT is the unknown that
we numerically determine to satisfy Eq. (23).

representation

κu(ε) =
vF ε

2

2T 2 cosh2(ε/2T )

〈
p̂2
xN(p̂, ε)v(p̂, ε)τ̄(p̂, ε)

〉
p̂
.

(27)
Here N(p̂, ε) is the density of states, τ̄(p̂, ε) = [`(p̂, ε) +
˜̀(p̂, ε)]/2vF is a scattering time defined using relaxation

length (21) (in Unitary or Born limits `(p̂, ε) = ˜̀(p̂, ε) ≡
`(−p̂,−ε)). The group velocity for quasiparticles (QPs)
with momentum p̂ and energy ε is given by

v(ε, p̂) = vF
1− |γRu (p̂, ε)|2
1 + |γRu (p̂, ε)|2 . (28)

From this, the velocity of QPs in superconductor is al-
ways smaller than vF ; also in the clean limit one recovers
the well-known result v(p̂, ε) = vF

√
ε2 −∆2(p̂)/|ε|. Typ-

ically, heat transport in uniform superconductors is an-
alyzed as interplay between the density of states N(p̂, ε)
and effective elastic mean free path

`e ≡ τ̄(p̂, ε)v(p̂, ε) , (29)

where the latter plays a more dominant role. This dis-
cussion is moved to Appendix B, with the main result
presented in Figs. 11 and 12 there.

We are now ready to write the initial values of coher-
ence and distribution functions for numerical integration
Eqs. (15) and (20) along quasiclassical trajectories. We
start the integration well away from any domain walls,
inside the uniform part of superconductor, at x = ±L,
Fig. 2. The distance between the initial point on the tra-
jectory and the first domain wall should be much greater
than `(p̂, ε), which might be difficult to satisfy for all en-
ergies and momenta, especially in clean superconductor.

The equilibrium coherence functions at x = ±L arrive
from infinity with the uniform bulk values, Fig. 3:

γR0 (−L, p̂x > 0, ε) = γRu,0(∆(x = −∞, p̂), p̂, ε) ,
γR0 (+L, p̂x < 0, ε) = γRu,0(∆(x = +∞, p̂), p̂, ε) .

(30)

We will position the center of domain walls symmetrically
around x = 0, ensuring equivalent temperature drops dT
on the left and right, to accelerate numerical integration.
The initial values for the anomalous distribution xa(±L)
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is given by Eq. (25) with temperature gradient fixed by
the heat current in uniform region:

∇T = −j
BC
h

κu
x̂ ,

xa(−L, p̂x > 0, ε) = (1 + γRu γ̃
A
u )
∂Φ0

∂T
[dT + ` p̂ ·∇T ] ,

xa(L, p̂x < 0, ε) = (1 + γRu γ̃
A
u )
∂Φ0

∂T
[−dT + ` p̂ ·∇T ] .

(31)

The unknown temperature drop dT is determined, for
a given jh, through self-consistent calculation of anoma-
lous self-energies σa(x, ε) at each ε. Starting with some
guess for σa(x, ε) we solve Eq. (20) for xa(x, p̂, ε) with
boundary conditions (31). From distribution function
we find ga(x, p̂, ε), Eq. (18), and then obtain new val-
ues for σa(x, ε), Eq. (22). This process is repeated until
self-energy has converged. The linearity of all equations
assures that all the parameters are linear combinations
of dT and ∇T terms:

xa(x, p̂, ε) = xa1(x, p̂, ε)dT + xa2(x, p̂, ε)∇T ,
ga(x, p̂, ε) = ga1 (x, p̂, ε)dT + ga2 (x, p̂, ε)∇T ,

σa(x, ε) = σa1 (x, ε)dT + σa2 (x, ε)∇T ,
(32)

and similarly the current, jh(x) = κ1dT + κ2∇T =
const = κu∇T , that is equal to the input current at the
boundary. After self-consistent determination of the co-
efficients κ1,2 through the above procedure we determine
the temperature drop

dT =
κu − κ2

κ1
∇T .

In the uniform case one has dT = LjBCh /κu.
Here we also want to note that the presence of topo-

logical domain walls in the order parameter is reflected
in features of the heat current arbitrarily far from the
nonuniform region, and is indirectly encoded in the choice
(31) for xa at the integration boundaries. For exam-
ple, in a uniform superconductor the spectral current is
given by κu(ε)|∇T |, whereas in nonuniform supercon-
ductor we have jh(ε) 6= κu(ε)|∇T |, which is obvious if
we are right at the domain wall, and thus everywhere
else due to the conservation of the spectral current, as
shown in Appendix A. To recover the heat current spec-
trum of the uniform state far from the nonuniform region,
one requires presence of nonelastic collisions that are not
included in the theory. By contrast, the local equilib-
rium picture includes the nonelastic collisions implicitly
in the definition of the local temperature T (x) in Fermi
distribution.

IV. HEAT FLOW ACROSS DOMAIN WALLS

We now apply the developed formalism to nonuniform
d-wave superconductor, and investigate heat transport

0 1 2 3 4
ϵ/Tc

0.5

1.0

1.5

2.0
N/NF

FIG. 4. Upper panel: self-consistent OP profile ∆(x) for
a single DW (solid line). This solution is used to construct
a non-self-consistent profile with NDW , case of 4 DWs with
separation XFFLO ≈ 20ξ is shown by the dashed line. Lower
panel: local density of states (DoS) in Born (orange) and
unitary (blue) limits for `N = πξ/0.3. At the domain (solid
lines), the peak at zero energy indicates the Andreev bound
states (ABS).

across an array of NDW domains walls equally spaced
with a period XFFLO along the x̂-axis. Each domain wall
has a width of several coherence lengths that we define
as

ξ =
~vF

2πkBTc

(Tc is the transition temperature of clean supercnduc-
tor). The uniform heat current flows from left to right
jh = jhx̂, and we consider translationally invariant sys-
tem along the ŷ-direction, so that all functions depend
only on x-coordinate.

For convenience, we now set a unit gradient at the
boundaries ∇T = −x̂ in Eq. (31), giving jh = κu × 1.

Due to the factor |ε ∂TΦ0| = ε2/[2T 2 cosh2(ε/2T )] the
heat current is mainly determined by quasiparticles with
energies in the window [T, 5T ]. We introduce εT = 2.5T
as a characteristic quasiparticle energy at a given tem-
perature T .

A. Single domain wall

We first look at the heat transport across a single do-
main wall (DW) centered at x = 0 (NDW = 1). The
domain wall is enforced through the boundary condition
∆0(±L) = ±∆u. It is self-consistently computed to-
gether with the local impurity self-energy σimp(x, ε) via
Eqs. (8) and (9).

With the domain wall centered at x = 0, we use sym-
metry ∆(−x) = −∆(x) to speed up numerical calcula-
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FIG. 5. Effective change in thermal length dL′ (in units of
ξ) across a single domain wall relative to the uniform case, as
function of temperature. Numerical system size is 2L = 16πξ.
Different colors correspond to unitary limit (U, blue), Born
(B, orange) and intermediate phase shift δ = π/4 (I, green).
Solid lines are for scattering rate 2Γ sin2 δ = 1/τN = 0.6Tc,
dashed lines are for a cleaner case 1/τN = 0.2Tc. In the
unitary limit, dL′ is non-monotonous, and at low temperature
T < Wimp, the heat conductance through a domain wall is
larger than in uniform case.

tions through relations:

γR0 (x, p̂, ε) = −γR0 (−x,−p̂, ε),
γR0 (x, p̂, ε) = −γ̃R0 (x,−p̂, ε),

(33)

and similar ones for self-energies,

σR(x, p̂, ε) = τzσ
R(−x, p̂, ε)τz,

σR(x, p̂, ε) = [σR(x, p̂, ε)]tr,

σa(x, ε) = −τzσa(−x, ε)τz .
(34)

Technically we proceed as follows. First, we obtain the
order parameter profile ∆0(x), shown in Fig. 4(a), using
Matsubara technique. With the known mean field profile,
we integrate Eq. (15) for real energies to determine the

equilibrium values of γR0 (x, p̂, ε) and impurity σ
R/A
0,imp(x, ε).

They are then used as input parameters in equation (20)
for the anomalous amplitude xa. The last step is the
self-consistent calculation of the temperature drop dT
together with anomalous self-energy σa.

We compare the temperature drop dT with the drop
dTu = (jh/κu)L = |∇T |uL that would appear if the su-
perconductor was uniform. Then dT > dTu corresponds
to a suppression of ability to transport heat across do-
main walls, while dT − dTu < 0 represents an enhance-
ment of heat conductivity. The numerical results for
transport across the domain wall are presented in Fig.
5, where we plot the temperature drop across a domain
wall for a given heat current, relative to the uniform con-
figuration. We define the parameter dL′ with dimension
of length

dL′ =
dT − dTu
jh/κu

,

FIG. 6. Energy dependence of the heat current kernel at
T = 0.3Tc for transport across a domain wall (solid lines) and
the uniform superconductor (dashed lines) for `N = πξ/0.3.
In Born or clean limit (orange lines) the ability to transport
heat at low energy is suppressed by the presence of a do-
main: at low energy KDW(ε) < Ku(ε). By contrast, in uni-
tary limit (blue lines) the coupling between impurity band
and Andreev bound states enhances energy transport: at low
energy KDW(ε) > Ku(ε).

that can be interpreted as effective “thermal length” of
the domain wall, in units of coherence length ξ.

At high temperatures the behavior of the thermal
transport is the same for all impurities, with a loss of
effectiveness in energy transport. At low temperatures,
however, the behavior is remarkably different in Born
and Unitary limits. For weak impurity scattering poten-
tial the domain wall presents a barrier for heat transport
resulting in a larger temperature drop required to main-
tain current jh. The strong scatterers have the opposite
effect - the heat current flows through a domain wall more
efficiently than in the uniform case.

The origin of such peculiar behavior is in the interplay
between two effects of the Andreev bound states at the
domain wall: the change of spectrum and the hybridiza-
tion of the bound states with the impurity band states.

The spectral effect is a result of Andreev bound states
‘stealing’ spectral weight from continuum quasiparticles
states above the energy gap. In bulk, the only avail-
able quasiparticles with ε > |∆(p̂)| participate in the
energy transport. As these quasiparticles enter the do-
main wall region with fewer available states they experi-
ence Andreev reflection that leads to suppression of the
heat conductivity. This effect can be quantified by look-
ing at a clean superconductor. In this case equation for
the distribution function (20) has no impurity-generated
right-hand-side, and the relaxation length (mean free

path) 1/`∆ = 2 Im[γR∆̃]/vF is determined purely by the
density-of-states effects. Details of this analysis are pre-
sented in Appendix C. Effects of the spectral weight re-
duction and Andreev reflection processes appear in the
heat current kernel K(ε, p̂) = jh(p̂, ε)/(ε ∂TΦ0), shown in
Fig. 6, at energies ε ∼ ∆ and play the most important
role at higher temperatures.

At very low temperatures T � Tc, the interaction of
low-energy bound states with impurities comes out to the
front stage, while we find that `∆ is only slightly modified
by impurities. The impurity scattering effects appear in
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FIG. 7. Inverse local impurity scattering length
`N/`imp(x, p̂, ε) ≈ `N/`imp(ε, x) (weakly dependent on mo-
mentum directions), as a function of energy, for `N = πξ/0.3.
In Born limit (orange), the mean free path is large in the bulk
(dashed lines) and becomes small at the domain wall (solid
lines). For unitary scattering (blue), on the right, this behav-
ior is reversed: the zero-energy peak in the DOS results in
suppression of scattering rate at the domain wall and longer
mean free path.

Eq. (20) through anomalous self-energy and local scatter-

ing length 1/`imp = 2 Im[γR0 ∆̃R
imp −ΣR]/vF . This length

is positive and finite, depends on directions very weakly
and can be approximated by `imp(x, ε) ≈ 〈`imp(x, p̂, ε)〉p̂.
The impurity scattering creates a band of mid-gap states,
which hybridize with Andreev bound states. Such hy-
bridization depends strongly on the strength of the im-
purities and may lead to a significant ‘renormalization’
of scattering features in the vicinity of the domain wall,
as shown in Fig. 7. In the unitary limit, Andreev states’
interaction with impurity band leads to suppression of
scattering and long lifetime of close-to-zero-energy quasi-
particles. This results in an effective ‘wormhole’ across
the domain wall region for these quasiparticles, and an
enhancement of heat conductivity at low temperature,
see Fig. 6. In the Born scattering limit, on the other
hand, the impurity band is weak, and its presence can-
not compensate Andreev reflections. In this case, for all
temperatures, the heat transport is suppressed across the
domain wall.

B. Multiple domain walls

To model the periodic structures of FFLO states we
investigate transport across a set of domain walls. Since
the main effects come from the density of states and scat-
tering, we omit the self-consistent calculation of the order
parameter, and simpy ‘build’ a lattice of NDW equally
spaced domains with an arbitrary period XFFLO, tak-
ing the single domain profile as a unit cell, as shown in
Fig. 4 for NDW = 4. We place the domains symmet-
rically around x = 0 and use this symmetry to reduce
computation time.

There are several effects that influence the transport
across multiple domain walls. First one is the trivial (in-
coherent) accumulation of effects from all domains that

FIG. 8. Effective thermal length dL′ (normalized by ξ )
across NDW domain walls, for low temperature T/Tc = 0.05
(large symbols, solid lines) and intermediate temperature
T/Tc = 0.5 (small symbols, dashed lines). The scattering rate
1/τN = 0.3Tc is used for various impurity strengths: Born
(B), Unitary (U) and intermediate δ = π/4 (I). This is an ‘in-
dependent domain walls’ regime where the heat conductivity
contributions from each domain add up, as is clear from linear
dependency c1NDW + c2 shown by lines. At low temperature
the unitary and intermediate strength disorder has negative
slope consistent with single-domain result in figure 5, coming
from low-energy states’ transport. At intermediate tempera-
ture we have a suppression of heat flow due to independent
Andreev reflection processes, with positive slope and linear
increase in the thermal length dL′ with NDW. In Born limit
at low temperature the dependence is more complicated due
to large extent of bound states and more intricate impurity
band energy dependence for T ∼Wimp.

are independent in this case. This happens when the
mean free path, Eq. (29), is shorter than the spacing
XFFLO between domain walls, and the spatial extent of
the bound states also exceeds this length, XABS[p̂] ≈
vF /

√
∆2(p̂) +W 2

imp � XFFLO, where Wimp is the im-

purity bandwidth. Independent domain walls lead to lin-
ear dependence of the heat conductivity on the number
of domain walls NDW, based on the temperature regime
and single-domain result as in figure 5. Such behavior
is expected for reasonably dirty superconductors. Full
numerical results for domain wall spacing XFFLO ≈ 18 ξ
are shown in Fig. 8 and in independent-domain regime
are fitted with straight lines.

When the superconductor is in the clean limit, and the
domain walls are tightly spaced with XFFLO < XABS, the
bound states belonging to neighboring domains can over-
lap, hybridize, and build up a conduction band (hybrid
transport). This is expected in FFLO phase when the
order parameter is small and harmonic-like, with periods
∼ 5− 10ξ rather than a combination of fully formed do-
main walls, or when the transport is dominated by the
nodal quasiparticles since ABS states can extend far be-
yond the DW region, especially in Born limit with tiny
Wimp.

If the spacing between the domain walls is somewhat
longer, then the hybridization of bound states from differ-
ent domains depends on their quasiclassical trajectory. In
the anti-nodal direction, the ABS spatial extent is smaller
than XFFLO and ABS are spatially separated. Each do-
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FIG. 9. Effect on thermal conductance of Andreev reflections
from a set of NDW domain walls (clean limit). Heat transport
through more than ten consequitive domains is dominated by
extended bound states along nodal directions on the Fermi
surface. Phase space of those states and their contribution to
the heat transport grow with temperature. The fitting line
through numerical points is explained in the text.

main is the center of an Andreev reflection process. Con-
secutive reflections add up and yield a power law reduc-
tion of the transmission of anti-nodal quasiparticles. By
contrast, in the nodal direction, the ABS extent is large.
ABS at consecutive domains overlap and the transmis-
sion is rather insensitive to the number of domains. To-
gether, they result in NDW-dependence seen in Fig. 9.
The heat conductance can be roughly fitted by a sum of
nodal and anti-nodal contribution: gn.+ga.n.t

NDW , where
conductance contribution from nodal quasiparticles gn.

grows with temperature, and transmission coefficient t is
only weakly temperature-independent.

C. Zeeman field

In this section we present the effects of a Zeeman field
on heat transport across the nonuniform state, since the
FFLO state is a result of competition between magneti-
zation and condensation energies. Again, the main effect,
we assume, is coming from the modification of the den-
sity of quasiparticle states that are shifted in energy by
±µH for up/down spins. We neglect the order parame-
ter suppression due to magnetic field, which is relatively
small at low temperature.25 Then spin up and spin down
QPs are independent, and their contributions to thermal
transport add up.

The dependence on spin enters equations (19), (20),
and boundary conditions (25) and (31) through energy

shift in coherence functions γ
R/A
0 (ε ± µH). The quasi-

particle distribution function prefactor ε∂TΦ0(ε, T ) is not
changed. We can use it to write the heat current as some
spin-dependent kernel times the distribution function,

jh =
∑

s=±1

∫
dεKs(ε) ε∂TΦ0(ε, T ) . (35)

0.1 0.2 0.3 0.4 0.5
T/Tc

-10

-5

0

5

dL'

h=0 h=0.5 h=1

FIG. 10. Effect of the Zeeman field splitting h = µH/Tc

on thermal transport across a single domain wall. Unitary
limit with scattering rate 1/τN = 0.3Tc. The bound states,
shifted by h = 0.5 contribute to a reduction of the thermal
length, dL′, in a wide range of temperatures. When the Zee-
man shift is very large h = 1 the contributions from bound
and continuum states mix up leading to very non-monotonic
temperature dependence.

We then can re-use the zero-field results to compute the
thermal current including the Zeeman splitting. In the
Zeeman field the spin dependent kernel is simply the spin-
independent kernel shifted energy: Ks(ε) = K(ε− sµH).
We then can transfer the dependence on spins into the
distribution function, without recalculating the kernel:

jHh =
1

2

∑

±

∫
dε j0

h(ε)

[
(ε± µH)∂TΦ0(ε± µH, T )

ε∂TΦ0(ε, T )

]
,

(36)
where j0

h(ε) is the spectral heat current in the absence of
Zeeman field. As a reminder, Fig. 6 highlights the effect
of impurity on the kernel of heat current in absence of
Zeeman field.

The effect of Zeeman splitting of the states on thermal
conductivity across a single domain wall is shown in Fig.
10 for strong impurities. The bound states contribute
most to the low-energy heat current and lead to increase
in conductivity at low temperatures T . ∆εBS/2.5.
From the h = 0 curve the half-width of the bound states
can be estimated as ∆εBS ∼ 0.4Tc. When the Zeeman
field shifts the bound states by h = µH/Tc = 0.5 they
dominate the heat transport in a wide range of temper-
atures leading to negative dT − dTu. For even higher
fields h = 1, close to the critical field, the contributions
of bound states with one spin projection mix with the
continuum contribution with the other spin projection,
leading to a non-monotonic temperature dependence of
the heat conductivity.

V. CONCLUSIONS

In this paper we have developed theoretical framework
to investigate thermal transport in nonuniform supercon-
ductors. Our approach is based on fully self-consistent
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non-equilibrium quasiclassical Eilenberger-Keldysh tech-
nique, that takes into account, on the same footing, com-
bined effects of impurity scattering, spatial variations of
the order parameter and density of states, and the pres-
ence of Andreev bound states in strongly inhomogeneous
environments.

We applied this theory to compute the thermal cur-
rent across a periodic modulations of the order parame-
ter, and domain walls, in a superconductor with d-wave
pairing. Here we outline the key effects that govern trans-
port in such systems compared with the uniform super-
conductors. First, Andreev bound states ‘trap’ quasipar-
ticles and cause a depletion of the continuum (ε > ∆)
states near the domain wall, leading to Andreev reflec-
tion processes with particle-hole conversions. This results
in a reduction of heat transport across the domain wall,
and this mechanism is dominant at intermediate tem-
peratures and in clean superconductors. Another effect
becomes relevant at low temperatures when disorder is
present. Then the bound states at the domain wall in-
teract with the low-energy impurity band. The coupling
of the impurity band to localized Andreev states strongly
depends on the type of impurity scattering. In Born limit
this coupling increases scattering rate, while in unitary
limit the scattering of low-energy quasiparticles is sup-
pressed. These states have longer mean free path in the
domain wall region resulting in an effective ‘wormhole’
through the domain wall. At low temperature, below the
width of the impurity band, transport is dominated by
these states and with unitary impurities heat conductiv-
ity across the domain wall is higher than conductivity in
the uniform state. This results in a very distinct non-
monotonic feature of heat conductivity as a function of
temperature, as one crosses from high- into low-energy
regime. In a Zeeman field the difference between thermal
transport in uniform and nonuniform phases is softened,
but due to the opposite shifts of the up/down spin states,
one can observe additional features in T -dependence of
the heat conductivity, and non-monotonic T -dependence
appears even in the Born limit. A grid of multiple do-
main walls generally amplifies transport properties of a
single domain, but in the clean limit one has to consider
multiple-wall Andreev backscattering processes.

These results show that thermal transport can be a
useful probe to detect and study nonuniform states, such
as Fulde-Ferrell-Larkin-Ovchinnikov phase that so far has
been only identified using NMR technique.27 The ap-
proach that we developed will pave the way for future
theoretical studies of heat transport near surfaces of su-
perconductors with non-trivial surface states, in vortex
lattices including vortex core states or for complete anal-
ysis of FFLO-type order parameter periodic structures.
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Appendix A: Uniformity of currents

In the absence of inelastic scattering processes, the self-
consistent solution of the Elenberger transport Eq. (5)
together with impurity self-energies (9) guarantees uni-
form heat flow, and non-accumulation of heat, ∇ · jh =
−∂tQ = 0, even in the presence of spatially-varying order
parameter. The heat current is given by Eq. (3) which
we repeat here:

jh(R) = 2NF vF

+∞∫

−∞

dε

4πi

∫
dp̂ [ε p̂]

1

4
Tr
{
gK(R, p̂, ε)

}
.

(A1)
With only energy-conserving impurity collisions, all ε
are independent, and we can consider divergence of the
heat current kernel for single energy, ∇ · jh(R, ε) ∝〈
p̂ · Tr∇gK

〉
p̂
. Using equation for Keldysh component

of Eq. (5)

ivF p̂∇gK = gK(ετz−σA)−(ετz−σR)gK+σKgA−gRσK
(A2)

we can split off the mean field self-energy ∆(R, p̂), com-
mon for both retarded and advanced functions and zero
for Keldysh component, from the impurity self-energy.
This allows us to write

〈
p̂Tr∇ · gK

〉
p̂
∝ −

〈
Tr{[ετz −∆, gK ]}

〉
p̂

+

Tr
{
σRimp

〈
gK
〉
p̂
−
〈
gK
〉
p̂
σAimp + σKimp

〈
gA
〉
p̂
−
〈
gR
〉
p̂
σKimp

}

= −0 + 0 (A3)

where the first term is zero due to the traceless property
of a commutator and the second zero follows from the
self-consistent relations between impurity self-energies
and the Fermi-surface averaged propagators, Eq. (9).

Note that the order parameter self-consistency was not
used in the above argument. It is however needed to
conserve the charge/particle number. The formula for
the particle current, written in terms of 4-trace, acquires
an extra τz matrix (and absence of ε factor):

je(R) = 2NF vF

+∞∫

−∞

dε

4πi

∫
dp̂ p̂

1

4
Tr
{
τzg

K(R, p̂, ε)
}
.

(A4)
Following the same line of arguments as for the heat cur-
rent above, we notice that the impurity self-energy part
vanishes due to same self-consistency as before but the
commutator term with the mean-field order parameter is

∫
dε
〈
Tr {τz[ετz −∆ , gK ]}

〉
p̂

= 2

∫
dε
〈
Tr
{

∆τzg
K
}〉
p̂
,

(A5)
- vanishes if one uses the self-consistency on ∆(R, p̂)
Eq. (8), ensuring non-accumulation of charge.
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FIG. 11. Spectral and transport properties of a uniform d-
wave superconductor. Angle resolved DoS, N(p̂, ε)/NF (top
row), mean free path `e(p̂, ε)/`N (middle row) and impu-
rity scattering length `imp(ε)/`N (bottom row) are plotted
in Born and Unitary limits, for the normal state mean free
path `N ≈ 10 ξ, where `imp = vF /2Im[Σimp]. Different curves
represent different momentum directions spanning the d-wave
clover from a node to antinode (solid blue to red dashed lines),
as shown in inset. In unitary limit, the low energy impurity
band in DoS is large, and the mean free path is reduced by
enhanced impurity scattering. By contrast, in Born limit, the
impurity band is exponentially small and the mean free path
of nodal quasiparticles is longer.

Appendix B: Relative importance of density of
states and mean free path.

To relate our results and treatment to previous work,
in this appendix we present results for a uniform d-wave
superconductor. The heat transport in a typical Boltz-
mann picture depends on a product of the density of
states N(p̂, ε) and effective elastic mean free path

`e ≡ τ̄(p̂, ε)v(p̂, ε) , (B1)

The low-energy spectrum of a d-wave superconductor is
strongly modified by the scattering of quasiparticles on
impurities due to the anisotropy of the order parameter
structure. Scattering on impurities results in formation
of midgap states.30 These impurity-bound states are ex-
tended in space and form a conduction ‘impurity’ band
with energy width Wimp.2,31 This bandwidth is tiny in

the Born limit, WB
imp ≈ 4∆0 exp(−π∆0

Γ ), but can be large

in the Unitary limit where WU
imp ≈

√
π∆0Γ/2.

The mean free path reflects the effectiveness of the
scattering of quasiparticles by impurities. It depends on

FIG. 12. (Color online) Uniform thermal conductivity as
a function of temperature. At low temperature T . 0.3Tc

(ε . 0.6Tc) thermal conductivity in Born limit (green) is
higher than that in Unitary limit (blue), indicating that it
is dominated by large mean free path of quasiparticles. Solid
and dashed lines correspond to mean free paths `N = πξ/0.3
and `N = πξ/0.2 respectively.

the concentration Γ and strength δ of impurities, as well
as on the available phase space for scattering, given by
the properties of the order parameter ∆. At low en-
ergy ε < WB

imp < ∆, in the Born limit, impurity scat-

tering is ineffective, vF /2 Im[ΣRimp] > `N = vF τN =

vF /(2Γ sin2 δ), and it allows quasiparticle to travel long
distance between scatterings producing large heat trans-
port. By contrast, in the Unitary limit, scattering is en-
hanced vF /(2 Im[ΣRimp]) < `N , i.e. low energy QPs bind
to impurities forming a wide impurity band.

Numerically, we find that thermal transport properties
are mainly influenced by the behavior of scattering length
`e(p̂, ε) rather than that of density of states. In Fig. 12,
we plot the temperature dependence of κu(T ), which we
analyze using data from Fig. 11. At low-intermediate
temperature 0.05 < T/Tc < 0.3, corresponding to ener-
gies Wimp . ε < 0.6Tc the DoS in Born limit is small
NB(ε) < NU (ε), while `Be � `Ue ,producing κBu (T ) >
κUu (T ). At higher energy and temperature 0.4 < T/Tc,
ε > 0.8Tc the result is reversed κBu (T ) < κUu (T ), again
in agreement with the increase of `Ue > `Be while having
about the same values for the DoS in this energy interval.
In the very low temperature limit, T � Wimp, DoS and
scattering effects exactly cancel each other, producing
the universal limit for heat conductivity, where it does
not depend on the disorder properties.2,32,33

Appendix C: Heat conductivity of a clean
constriction

In this appendix, we evaluate heat transport proper-
ties of a spin-singlet superconducting constriction with-
out impurities and discuss the role of Andreev reflection
processes. The constriction can be thought of as a narrow
bridge connecting two large reservoirs, that are assumed
to be in equilibrium at temperature T±dT (dT � T, Tc).
We define the conductance of the clean constriction as
G = Ih/(2dT ). The global phases of the superconduct-
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FIG. 13. Thermal transport properties of a clean su-
perconductor across a single domain wall (solid lines) com-
pared agains uniform superconductor (dashed lines). (a)
Local DoS for momenta directions shown in (d) at the do-
main wall N(p̂, ε, x) with part of the spectral weight (shaded
area) moved from continuum states into zero-energy bound
states, that form a very sharp peak not resolved on this
scale. (b) The Andreev reflection length scale `∆(ε, p̂, x).
In uniform superconductor it is infinite for above-gap ener-
gies 1/`∆ (|ε| > |∆(p̂)|) = 0, while at the domain wall it is
finite for all energies and even changes sign. (c) Kernel of
the heat current K(p̂, ε) for four momentum directions and
integrated over the Fermi surface. With the domain wall the
kernel K(ε, p̂) < 1 is suppressed due to Andreev reflection.

ing order parameter in the reservoirs ∆(p̂) exp(iϕL,R) is
set to ϕL,R = 0, π. The constriction is assumed to be
long and narrow, so we neglect the edge effects. In linear
response, the energy transport is governed by Eqs. (15)
and (20), with σimp = 0. At boundaries, γ(±L, p̂x ≶ 0, ε)
is given by Eq. (30) and we take

xaR/L = xa(±L, p̂x ≶ 0, ε) = ∂TΦ0 (∓dT )(1 + γRu γ̃
A
u ),

(C1)
which conveniently describes junctions between reser-
voirs that have negligible heat currents inside. This is dif-
ferent from the boundary condition (31) that was aimed
at describing a continuous flow of heat.

The order parameter ∆(x) and γ0(x, p̂, ε) are self-

consistently determined throughout the constriction.
From equilibrium γ0(x, p̂, ε), using Eq. (15), one can find
analytic solution for the distribution function along the
constriction:

xa(x, p̂x > 0, ε) = t(x, p̂, ε) xaL,

xa(x, p̂x < 0, ε) = t(x, p̂, ε) xaR,
(C2)

where

t(x, p̂, ε) =
1− |γR0 (x, p̂, ε)|2
1− |γRu (p̂, ε)|2 , (C3)

plays the role of a transmission coefficient (|t| < 1). In a
uniform superconductor energy is perfectly transmitted
|t(ε, p̂)| = 1. However, with a domain wall, one has |t| ≤
1, i.e. energy is not fully transmitted. This is interpreted
as a partial Andreev reflection of incident quasiparticles
from the spatially varying profile of the order parameter.
Inserting Eq. (C2) into heat current expression Eq. (19),
we can express the conductance as

G =

∫
dε ε 〈|p̂x|K(ε, p̂)〉p̂

∂Φ0

∂T
, (C4)

where the kernel K(ε, p̂) is

K(ε, p̂) = NF vF
(1− |γR0 (ε, p̂, x)|2)(1− |γ̃R0 (ε, p̂, x)|2)

|1 + γR0 (ε, p̂, x)γ̃R0 (ε, p̂, x)|2 .

(C5)
Again, because the energy flow is uniform, K(ε, p̂) does
not depend on position x, even though γR0 does.

In Fig. 13 where we plot the heat current kernel to-
gether with the density of states and the Andreev reflec-
tion length 1/`∆ = 2 Im[γR∆̃]/vF appearing in Eq. (20).
For uniform order parameter (dashed lines) K(ε, p̂) = 1
for ε > |∆(p̂)|, and is zero for energies below the gap
where there are no quasiparticle states. `∆(ε, p̂) is finite
for subgap states ε < ∆(p̂), and infinite otherwise.

At the center of domain wall `∆ (ε > ∆(p̂), p̂, x) is finite
(and can even be negative!) for the above-gap states,
their spectral weight is moved into the ABS, and the
amplitude of K(ε, p̂) is reduced, as shown by solid lines
in Fig. 13. In the clean limit, the conductance is reduced
in the presence of a single domain wall, alike the pinhole
of perfect transparency.20
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