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We show how to construct fully symmetric states without topological order on a honeycomb
lattice for S = 1/2 spins using the language of projected entangled pair states (PEPS). An explicit
example is given for the virtual bond dimension D = 4. Four distinct classes differing by lattice
quantum numbers are found by applying the systematic classification scheme introduced by two of
the authors [S. Jiang and Y. Ran, Phys. Rev. B 92, 104414 (2015)]. Lack of topological degeneracy
or other conventional forms of symmetry breaking in the proposed wave functions are checked by
numerical calculations of the entanglement entropy and various correlation functions. Exponential
decay of all correlation functions measured are strongly indicative of the energy gap for the putative
parent Hamiltonian of the state. Our work provides the first explicit realization of a featureless
quantum state for spin-1/2 particles on a honeycomb lattice.

I. INTRODUCTION

A modern theme of much interest in condensed matter
systems is the classification of possible phases of quantum
matter in low dimensions. First noted in the context of
quantum Hall physics, it has become clear that different
quantum phases are labeled often by their topological
characters rather than by broken symmetries as in the
conventional Ginzburg-Landau paradig1. How to define
such quantum orders and classify states accordingly in a
precise way has intrigued theorists for several decades.
A powerful guide in the classification effort is the “no-

go” theorem such as the celebrated Lieb-Schultz-Mattis
theorem in one dimension2 and its higher-dimensional
generalizations due, for instance, to Oshikawa3 and
Hastings4, stating that lattice spin models having a half-
integer spin per unit cell must remain gapless, or if
gapped, would either break conventional symmetries or
turn into a topological state with fractionalized excita-
tions. Powerful as they are, though, integer spin systems
are not covered by these theorems. In one dimension we
have some well-established results for integer-spin chains,
e.g. S = 1 Haldane spin chain, saying that the ground
state can be both gapped and featureless.
Turning to two dimensions, search for an analogous

featureless phase not addressed by the no-go theorem can
best proceed by an explicit identification of the S = 1
state on a Bravais lattice5, or the S = 1/2 state on a
honeycomb lattice with an even number of sites per unit
cell5–7. One such construction was given recently with
the S = 1 model on a square lattice5, while attempts to
construct featureless states for S = 1/2 spins on a honey-
comb lattice has met only with partial success so far5–7.
In this paper, we provide an explicit construction of the
spin-1/2 wave function on a honeycomb lattice that pre-
serves the full set of lattice symmetries plus time-reversal
and SU(2) spin rotation, in addition to being devoid of

topological order. Lacking both symmetry breaking and
topological order, such states do not permit a straight-
forward field-theoretic description5. We instead use the
recently developed classification scheme of the tensor net-
work wave functions8–15, in particular the one proposed
by two of the authors8, to identify all possible spin-1/2
featureless tensor network states on the honeycomb lat-
tice for a given bond dimension of the tensor network.
Intensive numerical check carried out by the authors con-
firm that the proposed featureless state is most likely de-
void of any conventional order, and has the topological
entanglement entropy16,17 of zero.

All correlation functions measured for the proposed
wave function exhibit exponential decay which, accord-
ing to conventional wisdom, is characteristic of a gapped
quantum ground state. In the tensor network approach,
however, the parent Hamiltonian having the proposed
tensor network wave function as the ground state is ei-
ther unknown, or very complicated when constructed
explicitly18–20. It is still fair to say that the spin-1/2
featureless wave function we present is a close approxi-
mation to the gapped ground state of some parent spin
Hamiltonian on the honeycomb lattice.

The rest of the paper is organized in the following
way. In Sec. II, we lay out the classification scheme, first
worked out in Ref. 8 and adapted to the case of honey-
comb lattice here. Lattice quantum numbers that help
characterize different classes of symmetric tensor network
wave functions are computed. Finally, an explicit con-
struction of the fully symmetric wave function is made
for one particular class. In Sec. III, extensive numeri-
cal calculations are carried out to investigate properties
of the proposed wave function, with the conclusion that
this is indeed the spin-1/2 featureless state we seek on
the honeycomb lattice. Final thoughts and summary are
given in Sec. IV.
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FIG. 1. (Color online) (a) Graphical representation of the
tensor network state on a honeycomb lattice. (b) u- and v-site
tensors are comprised of three virtual legs labeled a, b, c and
one physical leg shown as an upward black line. Green ellipses
in (a) represent the bond tensor that connect the virtual spins
from the two ends. Bravais unit vectors are chosen as a1 = x̂
and a2 = (x̂+

√
3ŷ)/2. A yellow box represents the unit cell.

II. SPIN-1/2 SYMMETRIC PEPS ON

HONEYCOMB LATTICE

A. Classification scheme

The honeycomb lattice we work on and various nota-
tions for site and bond labels are shown schematically
in Fig. 1(a). The method of choice for constructing fea-
tureless states is the projected entanglement pair states,
or PEPS, pioneered in Ref. 21 and reviewed in Ref. 22.
To construct a honeycomb PEPS, we associate every
site/bond of the honeycomb lattice with a site/bond ten-
sor. A site tensor is formed by one physical leg which
supports physical spin-1/2 degrees of freedom, and three
virtual legs, each with D degrees of freedom called the
bond dimension. The bond tensor is formed by two vir-
tual legs forming a nearest-neighbor bond as shown in
Fig. 1(a) as a green ellipse. Each leg of the bond tensor
has the degree of freedom D matching that of the site
virtual leg. The physical wave function is obtained by
contracting all connected virtual legs of site tensors and
bond tensors.

In constructing a fully symmetric and topologically
trivial state with spin-1/2 per site on a honeycomb lat-
tice, we rely on the recently developed classification algo-
rithm of quantum phases in terms of PEPS proposed by
two of the present authors in Ref. 8. Let us briefly review
the procedure here, delegating full details of the classifi-
cation work on the honeycomb lattice to the Appendix
A.

As shown in the yellow dashed box of Fig. 1, we label
the two lattice sites in each unit cell with the sublattice
index s = u, v. Around each lattice site we introduce
three indices i = a, b, c for the three bond directions.
Unit cells are labeled as x~a1 + y~a2 in terms of the two
Bravais unit vectors ~a1 = x̂ and ~a2 = 1

2 (x̂ +
√
3ŷ). We

are then able to specify all sites and virtual legs of the

honeycomb lattice using the four labels, (x, y, s, i).
The lattice symmetry of the two-dimensional honey-

comb lattice is generated by the following operations

T1 : (x, y, s, i) → (x+ 1, y, s, i),

T2 : (x, y, s, i) → (x, y + 1, s, i),

σ : (x, y, s, a) → (y, x, s, a),

(x, y, s, b/c) → (y, x, s, c/b),

C6: (x, y, u, i) → (−y, x+ y − 1, v, C6(i)),

(x, y, v, i) → (−y, x+ y + 1, u, C6(i)). (1)

In obvious notations, T1 and T2 are the lattice transla-
tions along the ~a1 and ~a2 directions, respectively. Reflec-
tion about the σ-axis in Fig. 1 is indicated by σ. Finally,
there is the C6 rotation about the center of one hexagon
at the origin. The C6 symmetry operation on the bond
index i is defined as C6(a) = c, C6(b) = a, C6(c) = b. We
further impose the symmetry under time-reversal opera-
tion T , as well as the spin rotation Rθ~n, about an axis ~n
by an angle θ, of the physical spin-1/2’s.
The symmetry group of the honeycomb lattice is de-

fined by the following algebraic relations among its gen-
erators:

T−1
2 T−1

1 T2T1 = e,

C−1
6 T−1

2 C6T1 = e,

C−1
6 T−1

2 T1C6T2 = e,

σ−1T−1
1 σT2 = e,

σ−1T−1
2 σT1 = e,

σ−1C6σC6 = e,

C6
6 = σ2 = T 2 = e,

g−1T −1gT = e, (g = T1,2, C6, σ),

g−1R−1
θ~n gRθ~n = e, (g = T1,2, C6, σ, T ), (2)

where e stands for the identity element in the symmetry
group.
Due to the existence of an enlarged Hilbert space by

virtual legs, the mapping from site/bond tensors to phys-
ical wave functions are many-to-one. Namely, a wave
function which is globally symmetry-preserving can have
its constituent site/bond tensors “gauge-transformed”,
by acting with an arbitrary invertible matrix V (s, i) on
a virtual leg i of the site tensor at s and simultaneously
with its inverse matrix V −1(s, i) on the corresponding leg
of the bond tensor. There may also exist special gauge
transformations that leave every site/bond tensor invari-
ant, up to a U(1) phase factor. Those transformations
form a group, named the invariant gauge group (IGG),
which governs the low energy gauge dynamics of the ten-
sor network state as shown in Refs. 19 and 20.
With such gauge structure of the PEPS wave function

in mind, let us consider various symmetry operations on
PEPS. According to the general remarks above, invari-
ance of the physical wave function |ψ〉 (up to a U(1)
phase) under a specific symmetry operation g implies the
following general transformation rules for the site and
bond tensors:
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T s = ΘgWg(g ◦ T s)

T b =Wg(g ◦ T b). (3)

Here, it is assumed that the PEPS wave function is
injective.20 We label the site tensor at s as T s, and the
bond tensor over the bond b as T b. Wg is a leg-dependent
gauge transformation acting on virtual legs of tensors.
Here g◦ can be spin rotation, time reversal or any lattice
symmetry operation on a physical Hilbert space. Sym-
metry implementation is projective in the sense that the
operation on the physical indices by g can be “compen-
sated for” by the gauge operations Wg on virtual indices
and the U(1) phase factor Θg. The site-dependent phase
factor Θg also allows us to capture the symmetry quan-
tum numbers of the state |ψ〉 8.

Following the framework developed in Ref. 8, symme-
try group operations pertinent to the particular lattice
geometry can be cast as a set of algebraic equations as
discussed in the Appendix B. By solving them, one ob-
tains highly constrained forms of all the gauge transfor-
mation matricesWg and Θg associated with the physical
symmetric operation g. We should mention that IGG will
in general enter these algebraic equations, influencing the
outcome of the solutions for Wg and Θg. In keeping with
the spirit of the present paper, which is the search for
featureless states in the case of the spin-1/2 honeycomb
lattice, we set IGG to be trivial, i.e. as an identity ele-
ment.

Details of the classification procedure for symmetric
PEPS with trivial IGG and how to solve for the Wg ’s
and Θg’s are found in the Appendix B. We should em-
phasize that the final expression of the tensors for the
featureless state are quite transparent and can be un-
derstood without the full knowledge of the classification
scheme. In the end, we obtain

WT1(s, i) =WT2(s, i) = I,

WC6(u, a/b) =WC6(v, i) = I, WC6(u, c) = χC6 ,

Wσ(u, a) =Wσ, Wσ(u, b/c) = χC6Wσ,

Wσ(v, a) = χC6 χσC6 Wσ, Wσ(v, b/c) =Wσ,

WT (s, i) =WT =

M⊕

k=1

(Idk
⊗ eiπS

y

k ),

Wθ~n(s, i) =Wθ~n =

M⊕

k=1

(Idk
⊗ eiθ~n·

~Sk),

ΘT1(s) = ΘT2(s) = 1, ΘC6(u) = χC6 , ΘC6(v) = 1,

Θσ(u) = 1, Θσ(v) = χC6χσC6 , ΘT = 1. (4)

Each virtual leg has the Hilbert space consisting of M

different species of spins, each labeled as ~Sk, 1 ≤ k ≤M .

For each spin ~Sk one further introduces the “flavor” de-
generacy of dk, for a total virtual Hilbert space dimension

( χC6 , χσC6) (+1,+1) (+1,−1) (−1,+1) (−1,−1)

C6 +1 +1 −1 −1

σ +1 −1 −1 +1

TABLE I. Lattice quantum numbers (χC6 , χσC6) for C6 and σ
operations for four different classes of featureless states. Sign
of the wave function |ψ〉 changes by the amount shown in the
second and third rows under the C6 and σ operations, respec-
tively, for each state characterized by the pair of quantum
numbers (χC6 , χσC6) in the first row.

D =

M∑

k=1

dk(2Sk + 1). (5)

To have trivial IGG, we are required to assign only half-
integer spins at the virtual legs (see Appendix B for why).
We further have

Wσ =
M⊕

k=1

(
W̃ k

σ ⊗ I2Sk+1

)
, (6)

where W̃ k
σ is a dk-dimensional real matrix satisfying

(W̃ k
σ )

2 = Idk
. Notice that all Wg’s in Eq. (4) are transla-

tionally invariant (independent of s).

B. Probing lattice quantum numbers

In this section, we discuss how to probe the lattice
quantum numbers for a given symmetry PEPS. The lat-
tice quantum number is an eigenvalue of lattice symmetry
operator, i.e.

R|ψ〉 = |ψ̃〉 = r|ψ〉, (7)

where r is the lattice quantum number of lattice symme-
try operatorR.
Global on-site unitary symmetry operation on a finite

size PEPS is defined as 8

R|ψ〉 =∑{ks}
tTr
[
(T s

1 )
k1 · · ·

(
T s
Ns

)kN
T b
1 · · ·T b

Nb

]

× UR ⊗ UR · · ·UR|k1 · · · kN 〉, (8)

where UR is the representation of R on Hilbert space of
physical leg, and Ns (Nb) is the number of site (bond).
Local actions of UR gives a new site and bond tensors

(T̃ s)i = (R ◦ T s)i =
∑

j

(UR)ij(T
s)j ,

T̃ b = R ◦ T b = T b, (9)

and T̃ gives a new PEPS |ψ̃〉. We also know that for a
symmetric PEPS, a site tensor should satisfy Eq. (3) and
therefore
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T̃ s = R ◦ T s = Θ∗
RW

−1
R T s,

T̃ b = R ◦ T b =W−1
R T b. (10)

If all T̃ s and T̃ b are contracted to have |ψ̃〉, all W−1
R ’s

are canceled (since two W−1
R respectively acting on site

tensor and connected bond tensor are inverse each other)
and only Θ∗

R’s can contributes, i.e.

|ψ̃〉 =
∑

{ks}

tTr

[(
T̃ s
1

)k1

· · ·
(
T̃ s
Ns

)kN

T̃ b
1 · · ·T̃ b

Nb

]
|k1 · · · kNs

〉

=

Ns∏

i=1

Θ∗
R(i)

∑

{ks}

tTr
[
(T s

1 )
k1 · · ·

(
T s
Ns

)kN
T b
1 · · ·T b

Nb

]

×|k1 · · · kNs
〉

=

Ns∏

i=1

Θ∗
R(i)|ψ〉 = r|ψ〉. (11)

Therefore, in our construction, the lattice quantum num-
ber is as follows

r =

Ns∏

i=1

Θ∗
R(i). (12)

According to Eq. (4), possible values of ΘR are only +1
and −1, and therefore PEPS constructed on the torus
geometry with even number of unit cells would have the
trivial lattice quantum number (r = 1) regardless of R.
However, when PEPS are constructed on torus geometry
with an odd number of unit cells, each PEPS belonging to
four different classes can be distinguished by the lattice
quantum number. Resulting lattice quantum numbers
for R = C6, Rπ, σ are shown in Table I.
The remaining task is the explicit construction of site

and bond tensors and the examination of physical proper-
ties for the state obtained from contracting the site/bond
tensors. It should be cautioned that, even when the
PEPS wave function is seemingly invariant under all sym-
metry operations, there is a chance that it actually de-
scribes a spontaneous symmetry breaking phase. To rule
out these possibilities and to ensure that the constructed
PEPS state is indeed a symmetric one, one should care-
fully measure the correlation functions for varying system
sizes.

C. Explicit construction of featureless states

In order to find a featureless state, we will focus on
a particular case where every virtual leg accommodates
n copies of spin-1/2’s, and the symmetry class where
χC6 = χσC6 = −1. While this is not the unique way
to derive the wave function for the featureless state, the
imminent goal of this paper is to show how to produce
an example of the featureless state for honeycomb spin-
1/2’s, which is achievable with this particular choice of

the symmetry class. One can choose the bond tensor to
be the maximally entangled state T b = In ⊗ iσ2, where
In acts on the flavor space and iσ2 denotes the spin sin-
glet formed by two virtual spin-1/2’s. For the site ten-
sor, the most general form of a spin singlet (satisfying
spin-rotation symmetry) and Kramers singlet (satisfying
time-reversal symmetry) tensor is given by

T̂ s =
∑

α,β,γ

(
C1
αβγ (| ↑; ↓α↑β↓γ〉+ | ↓; ↑α↓β↑γ〉)

+ C2
αβγ (| ↑; ↓α↓β↑γ〉+ | ↓; ↑α↑β↓γ〉)

+ C3
αβγ (| ↑; ↑α↓β↓γ〉+ | ↓; ↓α↑β↑γ〉)

)
. (13)

Each element of Ci is real to preserve the time reversal
symmetry, and C1 + C2 + C3 = 0 due to the SU(2) spin
rotation symmetry. The first spin inside the ket sep-
arated by the semicolon denotes the physical spin, the
other three are virtual spins from each of the three legs
for a given site, and α, β, γ label the flavor of virtual
spins, with 1 ≤ α, β, γ ≤ n. For D = 2 (a single virtual
spin-1/2 per leg), there is no PEPS solution satisfying
all of lattice symmetries, hence we turn to the simplest
non-trivial case with D = 4 (two flavors of virtual spin-

1/2’s, n = 2). Setting W̃σ = σ3 in Eq. (6), we find that,
in order to meet the condition of invariance under the C6

and σ symmetries, only the following two independent
solutions for the site tensor are possible:

Â(1) = P
(
2| ↑; ↓2↑1↓2〉 − | ↑; ↓1↑2↓2〉 − | ↑; ↓1↓2↑2〉

+ 2| ↓; ↑2↓1↑2〉 − | ↓; ↑1↓2↑2〉 − | ↓; ↑1↑2↓2〉
)
,

Â(2) = P
(
| ↑; ↓2↑1↓1〉 − | ↑; ↓1↑1↓2〉

+ | ↓; ↑2↓1↑1〉 − | ↓; ↑1↓1↑2〉
)
. (14)

P stands for cyclic permutation of the virtual states. The
general site tensor consistent with all symmetry require-
ments can be written as a linear combination

T̂ s = c1Â
(1) + c2Â

(2), (15)

with arbitrary real coefficients c1, c2. We claim that
the topologically trivial symmetric PEPS state is ob-
tained from contracting all virtual legs of the site tensors
T s = c1Â

(1) + c2Â
(2) and bond tensors T b, for appropri-

ate choices of (c1, c2).
There are two special cases, c1 = 0 or c2 = 0, for which

the PEPS wave functions have the emergent U(1) IGG.

For T̂ s = Â(1) in Eq. (14), each ket state has two out
of the three virtual spins with flavor index equal to 2,
and one virtual spin with the flavor index 1. The state
made from contracting Â(1) obviously preserves the fla-
vor quantum number. A U(1) operation U(θ), defined by
multiplying the (flavor index)=1 virtual spin by eiθ but
not the (flavor index)=2 spin, changes the site tensor by
the phase eiθ. These gauge transformations form a U(1)
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group and result in low-energy fluctuations of U(1) gauge
fields, which is known to be confining at long wavelengths
in two dimensions.23 Especially, one may expect a sort
of the nearest neighbor RVB with Â(1). The same argu-
ment shows that the state made out of Â(2) will likely
describe the U(1) long range RVB state. However, we
have found that those U(1) states are strongly depen-
dent on the boundary condition of the tensor network
state (TNS) on the finite system. For example, with a
boundary condition that the virtual legs on the bound-
ary are projected into the state | ↑1〉 and | ↓1〉 alterna-

tively, the TNS made of Â2 is the columnar valence bond
solid state which breaks the C6 rotation symmetry. Sim-
ilarly, alternative projection of | ↑2〉 and | ↓2〉 into the

boundary with the site tensor T s = Â1 gives a state with
spontaneously broken C6 rotation symmetry. The de-
pendence on the boundary condition can be understood
as the insertion of different number of U(1) charge, and
it will be discussed later. Such U(1) invariance can be
broken by choosing a suitable boundary condition such
as α| ↑1〉+ β| ↑2〉 with non-zero α and β. However, since
our main goal is to find a featureless state in the thermo-
dynamic limit (independent on the boundary condition),
we focus on a general site tensor made by a mixture of
two basis tensors which does not have U(1) IGG itself.

In fact, we can show that the mixing of Â1 and Â2

states results in the long-range RVB with a particular
sign definition for each singlet configuration determined
by the site and bond tensors. As will be shown, our
ansatz at a particular (c1, c2) value restores all the sym-
metries as the linear system size increases. Therefore, the
featureless state we are proposing is a particular kind of
RVB liquid state but devoid of the U(1) gauge symme-
try, which sharply distinguishes our state from the well-
known U(1) algebraic spin liquid states on the bipartite
lattice24,25.

III. NUMERICAL INVESTIGATION OF THE

FEATURELESS WAVE FUNCTION

For convenience in numerical calculation, a unit cell
was redefined so that u- and v-site tensors are directly
connected within a unit cell such that xi,u − xi,v =
(a2 − 2a1)/3 as shown in Fig. 2, where xi,u(v) is the po-
sition vector of u(v)-tensor at the i-th unit cell. Expec-
tation values of local operators 〈ψ|Oi|ψ〉 and correlators
〈ψ|OiOj |ψ〉 are obtained by employing the MPS-MPO
compression method26–28 to approximately contract a
given tensor network wave function. Two-site variational
compression is adopted27 where the initial ansatz is given
by the zip-up algorithm29.
We proceed with the search for the featureless states

with Eq. (15) for the site tensor. Choosing c2 = 1 −
c1, a one-dimensional parameter space of 0 ≤ c1 ≤ 1
is generated and we systematically look for featureless
states in this one-dimensional space. Firstly, we work
out the measure of the rotation symmetry breaking

FIG. 2. (Color online) Lattice geometry used to evaluate
(a) correlators and (b) entanglement entropy. A green dot
denotes one unit cell, formed by u (red) and v (blue) sites of
the honeycomb lattice.

|〈Si,u · Si,v − Si,v · Si+1,u〉| (16)

(difference in bond strength of two nearby bonds) as a
function of 1/ log(Lx) for several c2 values as shown in
Fig. 3, where Lx is the number of unit cells in the a1-
direction. The number of unit cells in the a2-direction,
Ly, is chosen as Ly = Lx in this analysis, and c1 + c2 =
1. Positions where the bond strengths 〈Si,u · Si,v〉 and
〈Si,v ·Si+1,u〉 have been measured are close to the center
of the samples. To complete the calculation one must
fix the boundary conditions. For the calculations shown
in Fig. 3, boundary legs are projected into the state | ↑1
〉+ | ↓1〉 except at c2 = 0, where such boundary condition
makes the whole tensor network wave function vanish.
Instead we choose the boundary state | ↑2〉+| ↓2〉 to carry
out the necessary calculation at c2 = 0. Note that both
boundary conditions we used conserve the U(1) gauge
symmetry as discussed in the previous section.
As the results in Fig. 3 clearly shows, wave functions

at c2 = 0 and c2 = 1 exhibit a finite amount of rotational
symmetry breaking irrespective of the system size Lx.
We take it as an indication of the symmetry-broken state
at the two ends of the parameter space. For other c2 val-
ues the degree of symmetry breaking as measured by Eq.
(16) diminishes with increasing system size. The reduc-
tion is most significant for c2 ∼ 0.1 through c2 ∼ 0.3 and
we take it as an indication that symmetry is restored for
this range of c2 in the thermodynamic limit. Following
this reasoning we can conclude there should be at least
two critical points separating the symmetric phase from
the two symmetry-broken phases at c2 = 0 and c2 = 1,
and that such phases have most likely been realized in
the region c2 ∼ 0.1 through c2 ∼ 0.3. Unfortunately,
pinning down the exact phase boundaries turned out to
be a numerically formidable task, and goes well over the
purpose of the paper which is to find an exemplary spin-
1/2 featureless quantum state on the honeycomb lattice.
Therefore we choose c2 = 0.1 state as a candidate for the
featureless state and carry out further analysis to confirm
the featureless nature of the state.
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FIG. 3. (Color online) Degree of rotational symmetry break-
ing (quantity on the vertical axis) as a function of 1/ log(Lx)
for several c2 values (c1 + c2 = 1). Lx = Ly is the linear size
of the lattice. Rotational symmetry is broken at c2 = 0 and
c2 = 1 as the order parameter remains almost independent of
the system size Lx. Reduction of the symmetry-breaking or-
der with the system size is indicative of the restored symmetry
of the PEPS wave functions over c2 ∼ 0.1 through c2 ∼ 0.3.

For (c1, c2) = (0.9, 0.1), topological entanglement en-
tropy has been extracted by fitting the calculated entan-
glement entropy for varying system sizes. As shown in
Fig. 4(a) we find the extrapolated value -0.05 consistent
with the absence of topological order. To evaluate the en-
tanglement entropy, we imposed the periodic boundary
condition along the ~a2-direction of our ansatz wave func-
tion and employed the boundary theory of PEPS 30,31.

Correlation functions were measured for spin, bond,
vector spin chirality, and scalar spin chirality, in or-
der to determine the gapped nature of the state. To
minimize the numerical instability caused by lower and
upper boundaries of the tensor network wave function,
compression is repeated until the convergence of MPS
|Ψn〉 ≃ O|Ψn−1〉 is achieved, where |Ψn〉 is the nth stage
MPS and O is the MPO.

As one can see in Fig. 4, all correlators decay exponen-
tially in the fixed system size Lx = 37, and varying the
distance between two operators Oi and Oj . We double-
checked in Fig. 5 the exponential decays of all correlators
by varying Lx and fixing the position of operators Oi and
Oj to be at Lx/3 and 2Lx/3, respectively. System size
Lx is appropriately set to take trimerization into account
those take place in bond and scalar chirality correlations.
Further analysis on correlation length as a function of
reduced bond dimension d has been examined to reveal
the saturations of all correlation lengths eventually in
large bond dimention as shown in Fig. 6. Lattice and
spin rotation symmetries are numerically confirmed as
well. Based on such overwhelming body of evidences, we
conclude that our ansatz PEPS is a topologically trivial,
fully symmetric and gapped quantum state.

We also measured the entanglement entropy for the
U(1) states (c1 = 0 or c2 = 0). In both cases, it depends
on the number of flavor 1 states and flavor 2 states
we put on the boundary virtual legs. Physically, we
can interpret flavor states as U(1) gauge charges. For
boundary conditions with different total flavor numbers,
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FIG. 4. (Color online) Various numerical results on the spin-

1/2 PEPS made with the site tensor T̂ s = 0.9Â(1) + 0.1Â(2).
(a) Entanglement entropy as a function of Ly . Two linear fits
are shown, based on the numerical data at Ly ∈ {3, 4, 5, 6}
and Ly ∈ {5, 6}, respectively. (b)-(e) Plots of correlation
functions (δA = A−〈A〉) for (b) spin, (c) bond (Vi = Siu ·Siv),
(d) vector chirality (χi = Siu × Siv) and (e) scalar chiral-
ity (Xi = Si−1,v · Siu × Siv) as a function of the distance
Rij = |xi − xj |/|a1|; xi is the position vector of the i-th unit
cell. System size is fixed at Lx = 37.

we end up with wave functions supporting different
number of electric field lines along the length of cylinder.
These states are orthogonal to each other, and in general
give different entanglement entropies.

IV. CONCLUSION

We have identified an exemplary state of a feature-
less quantum insulator on the honeycomb lattice of spin-
1/2’s, based on the methodical search scheme developed
in Ref. 8. Four distinct classes have been identified as a
result of our search. We propose a state whose physical
properties are consistent with the featureless quantum
state. Compared to previous works on constructing the
featureless wave functions5–7, the present method offers
a much more systematic way to classify tensor network
states consistent with symmetry and topological con-
straints. The liquid phase we constructed is intrinsically
strongly interacting, as there is no way to adiabatically
connect them to free electronic states. Exponentially de-
caying correlations are indicative of the gapped nature
of the featureless state, provided an appropriate parent
Hamiltonian is designed to have our state as the ground
state first. These results may thus be relevant for corre-
lated electronic materials on the honeycomb lattice. For
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FIG. 5. (Color online) (a) Spin, (b) bond, (c) vector chirality,
and (d) scalar chirality correlations as a function of the system
size Lx, at the separation distance equal to Lx/3. Inset in
each figure is a plot with logarithmic y-scale and its linear fit.
Exponential decays are observed in all the correlators.

instance, evidences for a putative spin liquid ground state
have been reported for Ba3CuSb2O9

32,33, in which the
spin-1/2 Cu may form a honeycomb lattice 34.

ACKNOWLEDGMENTS

SHJ and YR are supported by the Alfred P. Sloan fel-
lowship and National Science Foundation under Grant
No. DMR-1151440. HYL is supported by the NRF grant
(No.2015R1D1A1A01059296). CMJ is supported by the
David and Lucile Packard foundation and National Sci-
ence Foundation under Grant No. NSF PHY11- 25915.

Appendix A: Classification of projected entangled pair states on the honeycomb lattice with trivial invariant

gauge group

In this section, we classify symmetric projected entangled pair states (PEPS) on the honeycomb lattice with a
half-integer spin per site.

1. General symmetry considerations on PEPS

In this subsection, we lay out general symmetry transformation rules for PEPS on an infinite honeycomb lattice
with a half-integer spin per site. For PEPS which are consistent with all the global symmetries discussed in the
previous subsection, site tensors and bond tensors should satisfy the relations8

T (x,y,s) = ΘS(x, y, s)
(∏

i

WS(x, y, s, i)
)
S ◦ T (x,y,s)

B(x,y,s,i|x′,y′,s′,i) =W−1
S (x, y, s, i)[W−1

S (x′, y′, s′, i)]t S ◦B(x,y,s,i|x′,y′,s′,i). (A1)

Each site tensor T (x,y,s) resides at the unit cell (x, y) and sublattice site s, while the bond tensor B(x,y,s,i|x′,y′,s′,i′)

is defined across the bond (x, y, s, i|x′, y′, s′, i′) between adjacent sites. As is apparent from Fig. 1, a given pair of
adjacent sites (x, y, s|x′, y′, s′) uniquely specifies the virtual bond indices associated with that bond. Our choice of
the bond index guarantees i = i′ for any given bond. We denote each symmetry operation S = T1, T2, C6, σ, T , Rθ~n

on the tensors symbolically as S ◦ T (x,y,s) and S ◦ B(x,y,s,i|x′,y′,s′,i), respectively. WS(x, y, s, i) is a matrix that
implements the gauge transformation on the leg (x, y, s, i). Finally, ΘS(x, y, s) is a site-dependent U(1) phase factor
associated with each symmetry operation. Symmetry of the PEPS state is thus made explicit by the requirement
that the site tensor T (x,y,s) remain invariant after applying the assumed symmetry operation on it (S ◦T (x,y,s)), once
proper re-adjustments through similarity (WS(x, y, s, i)) and phase (ΘS(x, y, s)) transformations are further carried
out. One can equally well view Eq. (A1) as the “definition” of the symmetric PEPS. The symmetry operation S acts
projectively on the local tensors. The global wave function obtained by piecing together the site and bond tensors
that transform according to Eq. (A1) will naturally meet the symmetry requirements.
At first sight it is unclear whether a given tensor T (x,y,s) obeys a particular symmetry constraint or not, due to

the enormous gauge freedom implied by WS(x, y, s, i)’s and ΘS(x, y, s)’s in the projective definition of the symmetry
operation. A large body of the calculations carried out in this note is tantamount to the “gauge fixing” of the non-
Abelian gauge fields WS(x, y, s, i) and the Abelian gauge fields ΘS(x, y, s) without violating the symmetry of the
physical fields T (x,y,s). Before we present the details of the gauge-fixing procedure there is one more requisite concept
in the tensor network theory that deserves some mention. This is the concept of invariant gauge group, or IGG.
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FIG. 6. (Color online) (a) Spin, (b) bond, (c) vector chirality,
and (d) scalar chirality correlation length ξ as a function of
bond dimension d, with log-log scale on the left panel and
with fitting function f(x) on the right panel. Each correlation
length tends to saturate in large bond dimension.

The notion of IGG plays a central role in the classification scheme of PEPS introduced in Ref. 8, as it did in
Wen’s PSG classification of parton models 1,35. In essence, one can identify a particular kind of gauge transformation
matricesW (x, y, s, i) such that both site and bond tensors are invariant under it - up to a phase factor. Such similarity
transformation matrix and the phase factor will be denoted η(x, y, s, i) and µ(x, y, s), respectively, then the statement
of IGG becomes

T (x,y,s) = µ(x, y, s)
(∏

i

η(x, y, s, i)
)
T (x,y,s,i),

B(x,y,s,i|x′,y′,s′,i) = [η−1(x, y, s, i)]t[η−1(x′, y′, s′, i)]tB(x,y,s,i|x′,y′,s′,i). (A2)

The IGG is said to be trivial iff we can set η(x, y, s, i) = I (µ can still be a nontrivial phase factor). Nontrivial IGG’s
lead to PEPS with gauge dynamics 8. In this work, however, we are solely interested in the case of trivial IGG, e.g.
IGG = I, as the non-trivial IGG is likely to lead to topologically ordered ground states.
As will become clear, search for symmetric PEPS is tantamount to a systematic reduction of WS ’s and ΘS ’s for all

symmetries S to a few simple forms through the gauge-fixing procedure. Once all the gauge fields are fixed, Eq. (A1)
will act as constraint equations that can be solved to narrow down the possible forms of site and bond tensors. Once
those gauge variables have been found, however, there is an additional U(1) phase redundancy

WS(x, y, s, i) → εS(x, y, s, i)WS(x, y, s, i),

ΘS(x, y, s) →
(∏

i

ε∗S(x, y, s, i)
)
ΘS(x, y, s), (A3)

that also leaves Eq. (A1) invariant. It means there is an intrinsic redundancy, dubbed the ε-ambiguity in Ref.8,
associated with a given (WS ,ΘS). The set of εS(x, y, s, i)’s also forms a group, called the χ-group 8. The εS-
ambiguity, along with several other ambiguities to be discussed below, will be used to our advantage to “fix” the
symmetry matrix WS associated with a particular symmetry operation S.
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There is a more subtle kind of ambiguity in the definition of tensors and gauge matrices (W ’s) dubbed the “gauge
equivalence” in Ref. 8. Let’s take some T (x,y,s) and WS(x, y, s, i)’s that already obey the symmetry conditions (A1).
Although it might seem at first that one has arrived at a unique solution for the site tensor with all the proper
symmetry requirements, in reality it is not the case. To show this is the case, introduce some arbitrary similarity
matrix V (x, y, s, i) to construct a new site tensor,

T
(x,y,s)

=
(∏

i

V (x, y, s, i)
)
T (x,y,s)

= ΘS(x, y, s)
(∏

i

V (x, y, s, i)WS(x, y, s, i)
)
S ◦ T (x,y,s), (A4)

where the second line follows from T (x,y,s) being the symmetric tensor. Now let’s further define a new gauge matrix
WS(x, y, s, i) related to WS(x, y, s, i) through

WS(x, y, s, i) = V (x, y, s, i)WS(x, y, s, i)S V
−1(x, y, s, i)S−1

= V (x, y, s, i)WS(x, y, s, i)V
−1(S−1(x, y, s, i)). (A5)

Using WS(x, y, s, i) one can re-write (A4) as

T
(x,y,s)

= ΘS(x, y, s)
(∏

i

WS(x, y, s, i)
)
S ◦ T (x,y,s)

, (A6)

which is exactly the symmetry operator defined in Eq. (A1). In other words, any given solution {T (x,y,s),WS(x, y, s, i)}
of the symmetry equation leads to a whole family of solutions {T (x,y,s)

,WS(x, y, s, i)} through the similarity matrix
VS(x, y, s, i). Of course there is really only one, or a few physical solutions for the symmetric tensor and the rest are
simply gauge-equivalent copies. This is the notion of gauge equivalence. Rather than being annoyed by it, one can
utilize the extra freedom to choose the basis in which the gauge matrices WS take on the simplest possible form, for
instance a basis in which WS appears as coordinate-independent. Similarly, there is gauge equivalence under the U(1)
transformation of ΘS(x, y, s),

ΘS(x, y, s) → ΘS(x, y, s) = Φ(x, y, s)ΘS(x, y, s)Φ
∗(S−1(x, y, s)), (A7)

for arbitrary Φ(x, y, s) ∈ U(1). These two transformations were respectively called V -ambiguity and Φ-ambiguity in
Ref.8.
In the next few sections we explain how each of the symmetry equations in Eq. (2) together with the various

ambiguities mentioned in this subsection actually play out to fix the gauge fields WS and ΘS .

2. Translational symmetry consideration

First, let us consider the statement T−1
2 T−1

1 T2T1 = e regarding the translation symmetry, and ask what it implies

for the site tensor T (x,y,s). Each symmetry operation acts projectively on the site tensor according to Eq. (A1).
Applying them in sequence, we get

(T−1
2 W−1

T2
Θ∗

T2
)(T−1

1 W−1
T1

Θ∗
T1
)(ΘT2WT2T2)(ΘT1WT1T1) ◦ T (x,y,s) = T (x,y,s)

= µ12 η12 T
(x,y,s) = (µ12χ

∗
12)(χ12η12)T

(x,y,s). (A8)

Several simplifying notations introduced here are

ΘTk
WTk

≡ ΘTk
(x, y, s)

(∏

i

WTk
(x, y, s, i)

)
, (k = 1, 2),

(µ12χ
∗
12)(χ12η12) ≡

[
µ12(x, y, s)

(
∏

i

χ∗
12(x, y, s, i)

)][(
∏

i

χ12(x, y, s, i)

)
η12(x, y, s, i)

]
.
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Note that T (x,y,s) = µ12 η12 T
(x,y,s) in the second line of Eq. (A8) is a re-statement of IGG, which we take to be

trivial and hence η12 and µ12 are set to be I and 1, respectively, and thus the symmetry equation for the site tensor
becomes

(T−1
2 W−1

T2
Θ∗

T2
)(T−1

1 W−1
T1

Θ∗
T1
)(ΘT2WT2T2)(ΘT1WT1T1) ◦ T (x,y,s) = T (x,y,s). (A9)

Extra U(1) phase factors χ12(x, y, s, i) are introduced as well.
Various translation operations appearing in the above equation can be implemented directly once we realize that,

for instance,

T−1
2 W−1

T2
(x, y, s, i) = T−1

2 W−1
T2

(x, y, s, i)T2T
−1
2 =W−1

T2
(x, y + 1, s, i)T−1

2 , (A10)

in the first bracket, and

T−1
2 (T−1

1 W−1
T1

(x, y, s, i)) = (T1T2)
−1WT1(x, y, s, i)T1T2(T1T2)

−1 =WT1(x+ 1, y + 1, s, i)(T1T2)
−1, (A11)

in the second bracket and so on. Carrying out all the translation operations in Eq. (A8) gives

Θ∗
T2
(x, y + 1, s)Θ∗

T1
(x+ 1, y + 1, s)ΘT2(x+ 1, y + 1, s)ΘT1(x+ 1, y, s)×

(
∏

i

W−1
T2

(x, y + 1, s, i)W−1
T1

(x+ 1, y + 1, s, i)WT2(x+ 1, y + 1, s, i)WT1(x+ 1, y, s, i)

)
T (x,y,s)

= T (x,y,s). (A12)

The condition for this equation to hold is8

W−1
T2

(x, y+1, s, i)W−1
T1

(x+1, y+1, s, i)WT2(x+1, y+1, s, i)WT1(x+1, y, s, i)=χ12(x, y, s, i),

Θ∗
T2
(x, y+1, s)Θ∗

T1
(x+1, y+1, s)ΘT2(x+1, y+1, s)ΘT1(x+1, y, s)=

(∏

i

χ∗
12(x, y, s, i)

)
. (A13)

In other words, realizing the translational symmetry of the site tensor projectively amounts to finding a set of WT1,2

matrices and ΘT1,2 phases that satisfy the two equations above.
Thus far, χ12(x, y, s, i) appear to be arbitrary phase factors. Recall, however, that there is an εTi

-ambiguity in the
definition of WTi

’s and ΘTi
’s,

WTi
(x, y, s, i) → εTi

(x, y, s, i)WTi
(x, y, s, i),

ΘTi
(x, y, s) → ΘTi

(x, y, s)

(
∏

i

ε∗Ti
(x, y, s, i)

)
,

which can be interpreted as transformation rules for χ12:

χ12(x, y, s, i) → ε∗T2
(x, y+1, s, i)ε∗T1

(x+1, y+1, s, i)εT2(x+1, y+1, s, i)εT1(x+1, y, s, i)χ12(x, y, s, i).

Utilizing this freedom in choosing εT1(2)
(x, y, s, i) one can fix χ12(x, y, s, i) = 1! In other words, the W ’s and Θ’s

associated with the translational invariance obey the relations

W−1
T2

(x, y+1, s, i)W−1
T1

(x+1, y+1, s, i)WT2(x+1, y+1, s, i)WT1(x+1, y, s, i)=1,

Θ∗
T2
(x, y+1, s)Θ∗

T1
(x+1, y+1, s)ΘT2(x+1, y+1, s)ΘT1(x+1, y, s)=1. (A14)

In the next step we prove that WT2(x, y, s, i) and ΘT2(x, y, s, i) can be “fixed” to the identity I and 1, by judiciously
invoking V - and Φ-ambiguities, respectively. Due to the ambiguities we can first transform WT2 ’s and ΘT2 ’s as



11

WT2(x, y, s, i) →WT2(x, y, s, i) = V (x, y, s, i)WT2(x, y, s, i)V
−1(x, y − 1, s, i),

ΘT2(x, y, s) → ΘT2(x, y, s) = Φ(x, y, s)ΘT2(x, y, s)Φ
∗(x, y − 1, s). (A15)

From the first line it is clear that if we imposed the recursive relation

V (x, y − 1, s, i) = V (x, y, s, i)WT2(x, y, s, i)

for the V -matrices, one could transform allWT2 ’s to be the identity. Likewise one can set ΘT2(x, y, s, i) = 1, ∀(x, y, s, i)
with the choice Φ(x, y − 1, s) = Φ(x, y, s)ΘT2(x, y, s). In summary, both gauge fields WT2 and ΘT2 associated with
the translation symmetry S = T2 can be chosen as identities through the gauge-fixing procedure outlined so far.
It was mentioned earlier that once the gauge field are fixed, Eq. (A1) can be used to constrain the form of the

site tensor as well. Indeed, now that WT2 = I and ΘT2 = 1 irrespective of the coordinates, Eq. (A1) reduces to an
extremely simple form

T2 ◦ T (x,y,s) = T (x,y+1,s) = T (x,y,s) (A16)

implying the y-independence of the site tensor: T (x,y,s) = T (x,0,s). The local site tensors have become y-independent
in this particular gauge choice.
Now thatWT2 is fixed to I, we want to also restrict the V -matrix to be independent of the y-coordinate, V (x, y, s, i) =

V (x, s, i), so that further application of the V -ambiguity

WT2 → V (x, y, s, i)WT2V
−1(x, y − 1, s, i) (A17)

will not alter the choice WT2 = I. Since εT2 can vary WT2 up to arbitrary phase, we fix εT2 = 1 such that WT2 = I

is completely fixed regardless of remaining V - and ε- ambiguigies. A similar reasoning gives remaining Φ(x, y, s) =
Φ(x, 0, s).
Next we turn to the prospect of fixing the gauge fields associated with another translational symmetry S = T1.

First insert WT2(x, y, s, i) = I and ΘT2(x, y, s) = 1 into Eq. (A13) to find

WT1(x+ 1, y + 1, s, i) =WT1(x+ 1, y, s, i) =WT1(x+ 1, s, i),

ΘT1(x+ 1, y + 1, s) = ΘT1(x+ 1, y, s) = ΘT1(x+ 1, s). (A18)

It turns out both WT1 and ΘT1 are y-independent. Utilizing the y-independent V -matrix Φ-phase we can implement
the transformation

WT1(x, s, i) → V (x, s, i)WT1(x, s, i)V
−1(x− 1, s, i),

ΘT1(x, s) → Φ(x, s)ΘT1(x, s)Φ
∗(x− 1, s). (A19)

Clearly one can choose V (x, s, i) and Φ(x, s) such thatWT1(x, y, s, i) and ΘT1(x, y, s) are both coordinate-independent
and equal to unity. This is the central conclusion of this subsection, that both gauge fields WTi

and ΘTi
(i = 1, 2)

associated with the translation symmetries S = T1, T2 can be fixed to the most trivial form everywhere - a simple
identity. Referring to Eq. (A1), it follows readily that the site tensors must also be site-independent:

T (x,y,s) = T (0,0,s) = T (s). (A20)

Again, we fix εT1(x, y, s, i) = 1 to leave WT1(x, y, s, i) = I. To leave WT1,2 = I and Θ1,2 = 1 invariant, the V -matrix
and the Φ-phase must be sublattice-independent,

V (x, y, s, i) = V (s, i), Φ(x, y, s) = Φ(s). (A21)

We will adopt these conditions in all subsequent considerations of V - and Φ-ambiguities.
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3. Rotational symmetry consideration

Now let us consider the C6 rotation symmetry. Following from the two group relations

C−1
6 T−1

2 C6T1 = e,

C−1
6 T−1

2 T1C6T2 = e, (A22)

we have

(C−1
6 W−1

C6
Θ∗

C6
)(T−1

2 W−1
T2

Θ∗
T2
)(ΘC6WC6C6)(ΘT1WT1T1) ◦ T (x,y,s) = T (x,y,s),

(C−1
6 W−1

C6
Θ∗

C6
)(T−1

2 W−1
T2

Θ∗
T2
)(ΘT1WT1T1)(ΘC6WC6C6)(ΘT2WT2T2)◦T (x,y,s) = T (x,y,s).

(A23)

Manipulations similar to those carried out for translaional symmetries give

Θ∗
C6
(C6(x, y, s))Θ

∗
T2
(T2C6(x, y, s))ΘC6(T2C6(x, y, s))ΘT1(C

−1
6 T2C6(x, y, s))

W−1
C6

(C6(x, y, s, i))W
−1
T2

(T2C6(x, y, s, i))WC6(T2C6(x, y, s, i))WT1(C
−1
6 T2C6(x, y, s, i)) T

(x,y,s)

= T (x,y,s), (A24)

and

Θ∗
C6

(C6(x, y, s))Θ
∗
T2
(T2C6(x, y, s))ΘT1(T2C6(x, y, s))ΘC6(T

−1
1 T2C6(x, y, s))

ΘT2(C
−1
6 T−1

1 T2C6(x, y, s))W
−1
C6

(C6(x, y, s, i))W
−1
T2

(T2C6(x, y, s, i))

WT1(T2C6(x, y, s, i))WC6(T
−1
1 T2C6(x, y, s, i))WT2 (C

−1
6 T−1

1 T2C6(x, y, s, i)) T
(x,y,s)

= T (x,y,s). (A25)

The product of phase factors and the product of W -matrices separately obey the equations

W−1
C6

(C6(x, y, s, i))W
−1
T2

(T2C6(x, y, s, i))WC6(T2C6(x, y, s, i))WT1(C
−1
6 T2C6(x, y, s, i))

= χT1C6(x, y, s, i),

W−1
C6

(C6(x, y, s, i))W
−1
T2

(T2C6(x, y, s, i))WT1 (T2C6(x, y, s, i))×
WC6(T

−1
1 T2C6(x, y, s, i))WT2(C

−1
6 T−1

1 T2C6(x, y, s, i)) = χT2C6(x, y, s, i), (A26)

and

Θ∗
C6

(C6(x, y, s))Θ
∗
T2
(T2C6(x, y, s))ΘC6(T2C6(x, y, s))ΘT1(C

−1
6 T2C6(x, y, s))

=

(
∏

i

χ∗
T1C6

(x, y, s, i)

)
,

Θ∗
C6

(C6(x, y, s))Θ
∗
T2
(T2C6(x, y, s))ΘT1(T2C6(x, y, s))×

ΘC6(T
−1
1 T2C6(x, y, s))ΘT2(C

−1
6 T−1

1 T2C6(x, y, s)) =

(
∏

i

χ∗
T2C6

(x, y, s, i)

)
. (A27)

Up to this point we have deliberately not employed the the facts WT1,2 = I, ΘT1,2 = 1 proven in the previous
subsection. When we use these, Eqs. (A26) and (A27) simplify to

W−1
C6

(C6(x, y, s, i))WC6(T2C6(x, y, s, i)) = χT1C6(x, y, s, i),

W−1
C6

(C6(x, y, s, i))WC6(T
−1
1 T2C6(x, y, s, i)) = χT2C6(x, y, s, i), (A28)
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and

Θ∗
C6

(C6(x, y, s))ΘC6(T2C6(x, y, s)) =

(
∏

i

χ∗
T1C6

(x, y, s, i)

)
,

Θ∗
C6

(C6(x, y, s))ΘC6(T
−1
1 T2C6(x, y, s)) =

(
∏

i

χ∗
T2C6

(x, y, s, i)

)
. (A29)

We introduce the εC6-ambiguity into Eq. (A28) such that χT1C6 and χT2C6 transform to

χT1C6(x, y, s, i) → ε∗C6
(C6(x, y, s, i))εC6(T2C6(x, y, s, i))χT1C6(x, y, s, i),

χT2C6(x, y, s, i) → ε∗C6
(C6(x, y, s, i))εC6(T

−1
1 T2C6(x, y, s, i))χT2C6(x, y, s, i). (A30)

Utilizing such freedom one can set χT1C6(x, y, s, i) = 1 and hence deduce

WC6(x, y, s, i) =WC6(x, y + 1, s, i) =WC6(x, 0, s, i) (A31)

from Eq. (A28). The remaining εC6 ambiguity must satisfy

ε(x, y, s, i)WC6(x, y, s, i) = ε(x, 0, s, i)WC6(x, 0, s, i),

leading to ε(x, y, s, i) = ε(x, y, 0, i), and therefore one can only set χT2C6(x, 0, s, i) = 1. With χT2C6(x, 0, s, i) = 1,
Eq. (A28) reads

WC6(x, 0, s, i) =WC6(x − 1, 1, s, i) =WC6(x − 1, 0, s, i) =WC6(0, 0, s, i).

It follows that WC6 (and hence the remaining εC6-ambiguity) is only sublattice- and leg-dependent. Such property
of WC6 in turn allows us to have χT2C6(x, y, s, i) = 1 for ∀(x, y, s, i) from Eq. (A28). For similar reasons ΘC6 can be
shown to have dependence on the sublattice label s only. Overall,

WC6(x, y, s, i) =WC6(s, i), ΘC6(x, y, s) = ΘC6(s), εC6(x, y, s, i) = εC6(s, i). (A32)

WC6 and ΘC6 satisfy another set of equations due to the group relation (C6)
6 = e, which read

WC6(x, y, s, i)WC6(C
−1
6 (x, y, s, i)) · · ·WC6(C

−5
6 (x, y, s, i)) = χC6(x, y, s, i),

ΘC6(x, y, s)ΘC6(C
−1
6 (x, y, s)) · · ·ΘC6(C

−5
6 (x, y, s)) =

(
∏

i

χ∗
C6

(x, y, s, i)

)
. (A33)

Invoking the (x, y)-independence of the WC6 derived in Eq. (A32), the first line in Eq. (A33) becomes

WC6(u, a)WC6(v, b)WC6(u, c)WC6(v, a)WC6 (u, b)WC6(v, c) = χC6(u, a). (A34)

Lack of dependence on (x, y) on the left side of the equation forces the same independence on the right side as well.
There are five other relations like this from cyclic permutations of the (s, i) label.
It is our assumption, throughout the construction of the PEPS wave function, that the bond tensor B remains

invariant under the multiplication by the χ-group element. As a result, the two χ-group elements multiplied on either
side of a bond tensor must be conjugate, e.g.

ε(v, a) = ε∗(u, a), ε(v, b) = ε∗(u, b), ε(v, c) = ε∗(u, c). (A35)

Using this result and applying the εC6-ambiguity to transform WC6(s, i) → εC6(s, i)WC6(s, i) in Eq. (A34) gives a
factor

|εC6(u, a)|2|εC6(u, b)|2|εC6(u, c)|2 = 1 (A36)
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multiplying the left hand side. Recall that in certain cases like Eq. (A30) we were able to fix χ factor by utilizing the
ε-ambiguity. In the case of εC6-ambiguity, as we can see, χC6 cannot be fixed in this way.
Earlier construction of the V -ambiguity matrix in regard to two translational symmetries forced us to work with

only those V ’s that are independent of the unit cell coordinates (x, y), but still dependent on internal labels (s, i) [see
Eq. (A21)]. One can use what’s left in the degrees of freedom in V (s, i) to help fix WC6(s, i), for instance, as follows:

WC6(u, a) → V −1(u, a)WC6(u, a)V
−1(C−1

6 (u, a)) = I,

WC6(u, b) → V −1(u, b)WC6(u, b)V
−1(C−1

6 (u, b)) = I,

WC6(u, c) → V −1(u, c)WC6(u, c)V
−1(C−1

6 (u, c)) = χC6(s, i) = χC6 ,

WC6(v, i) → V −1(v, i)WC6(v, i)V
−1(C−1

6 (v, i)) = I (i = a, b, c). (A37)

In short, we can fix the WC6 matrices as

WC6(u, a) =WC6(u, b) =WC6(v, a) =WC6(v, b) =WC6(v, c) = I,WC6(u, c) = χC6I. (A38)

In the process of fixing WC6 we are also making use of the property χC6(s, i) = χC6 . Finally, fixing all the WC6

matrices as proportional to the identity also restricts one’s choice of the V -matrix to be independent of (s, i) labels,

V (s, i) = V. (A39)

From the invariance of the bond tensor under the χ-group operation one must have χC6(s̄, i) = χ∗
C6

(s, i), where s̄ is
the opposite sublattice of s. Since χC6(s, i) = χC6 was shown to be independent of (s, i), we conclude that χC6 = χ∗

C6
,

which is true iff

χC6 = ±1. (A40)

Moving to the ΘC6-fixing, the second line of Eq. (A33), using the (x, y)-independence of ΘC6 , becomes

[ΘC6(u)ΘC6(v)]
3 = χC6 . (A41)

Under the remaining phase ambiguity Φ(s) [Eq. (A21)], we have

ΘC6(u) → Φ(u)ΘC6(u)Φ
∗(v),

ΘC6(v) → Φ(v)ΘC6(v)Φ
∗(u),

which can be used to fix ΘC6(v) = 1. Then, Eq. (A42) becomes

[ΘC6(u)]
3 = χC6 . (A42)

For later convenience, we also calculate the symmetry transformation rule associated with the π-rotation symmetry
Rπ ≡ C3

6 :

ΘRπ
WRπ

Rπ ≡ (ΘC6WC6C6)(ΘC6WC6C6)(ΘC6WC6C6)

= ΘC6(s)ΘC6(C
−1
6 (s))ΘC6(C

−2
6 (s)) WC6(s, i)WC6(C

−1
6 (s, i))WC6(C

−2
6 (s, i)) Rπ. (A43)

We see that WRπ
and ΘRπ

can be defined as

WRπ
(s, i) =WC6(s, i)WC6(C

−1
6 (s, i))WC6(C

−2
6 (s, i)),

ΘRπ
(s) = ΘC6(s)ΘC6(C

−1
6 (s))ΘC6(C

−2
6 (s)). (A44)

In the gauge chosen before [Eq. (A37)], one can determine WRπ
and ΘRπ

using Eq. (A44) as follows

WRπ
(u, a/c) = χC6 , WRπ

(u, b) = 1,

WRπ
(v, a/c) = 1, WRπ

(v, b) = χC6 ,

ΘRπ
(u) = 1, ΘRπ

(v) = χC6 .
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4. Reflection symmetry consideration

Now, let us add reflection. One can do similar algebraic calculations as Eqs. (A24) and (A25) for the group relations
σ−1T−1

1 σT2 = e and σ−1T−1
2 σT1 = e to find the corresponding algebraic equations

W−1
σ (σ(x, y, s, i))Wσ(T2σ(x, y, s, i)) = χσT1(x, y, s, i),

W−1
σ (σ(x, y, s, i))Wσ(T1σ(x, y, s, i)) = χσT2(x, y, s, i), (A45)

and

Θ∗
σ(σ(x, y, s))Θσ(T2σ(x, y, s)) =

(∏
i χ

∗
σT1

(x, y, s, i)
)
,

Θ∗
σ(σ(x, y, s))Θσ(T1σ(x, y, s)) =

(∏
i χ

∗
σT2

(x, y, s, i)
)
. (A46)

The gauge WT1,2 (x, y, s, i) = I was used. Invoking the εσ-ambiguity we can set χσT1 (x, y, s, i) = 1. The remaining
εσ-ambiguity should satisfy

ε∗σ(x, y, s, i)εσ(x, y + 1, s, i) = 1 −→ εσ(x, y, s, i) = εσ(x, 0, s, i),

and therefore, one can fix χσT2(x, 0, s, i) = 1. Then, using Eq. (A45), one can arrive at

Wσ(x, y, s, i) =Wσ(x, 0, s, i) =Wσ(0, 0, s, i) ≡Wσ(s, i), (A47)

and similarly for Θσ

Θσ(x, y, s) = Θσ(s). (A48)

In order to preserve the site independence of Wσ and Θσ, the remaining εσ-ambiguity must also be site-independent,
i.e. εσ(x, y, s, i) = εσ(s, i).
Next, the equation corresponding to σ2 = e reads

Wσ(s, i)W (σ−1(s, i)) = χσ(s, i),

Θσ(s, i)Θ(σ−1(s, i)) =
∏

i

χ∗
σ(s, i), (A49)

and therefore

[Wσ(s, a)]
2 = χσ(s, a),

Wσ(s, b)Wσ(s, c) = χσ(s, b) = χσ(s, c). (A50)

Under εσ transformation, we have

χσ(s, a) → ε2σ(s, a)χσ(s, a),

χσ(s, b) → εσ(s, b)εσ(s, c)χσ(s, b).

So, we can set χσ(s, i) = 1 resulting in

[Wσ(s, a)]
2 = 1,

Wσ(s, b)Wσ(s, c) = 1. (A51)

The remaining εσ-ambiguity satisfies

1 = [εσ(s, a)]
2 = εσ(s, b)εσ(s, c). (A52)

For the group relation σ−1C6σC6 = e, the corresponding equation is

W−1
σ (σ(s, i))WC6 (σ(s, i))Wσ(C

−1
6 σ(s, i))WC6(C6(s, i)) = χσC6(s, i).

Namely, we have

Wσ(u, a)Wσ(v, b) = χσC6(u, a) = χσC6(v, b),

Wσ(u, b)Wσ(v, a) = χC6χσC6(u, b) = χC6χσC6(v, a),

Wσ(u, c)Wσ(v, c) = χσC6(u, c) = χσC6(v, c). (A53)
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Since χ’s are bond-dependent phases, we have χσC6(u, i)χσC6(v, i) = χσC6(u, i)χ
∗
σC6

(u, i) = 1 which leads

χσC6(u, a)χσC6(u, b) = 1,

χσC6(u, c) = ±1.

Using remaining εσ transformation in Eq. (A52), we are able to set

χσC6(u, a) → εσ(u, a)χσC6(u, a)εσ(v, b) = εσ(u, a)χσC6(u, a)ε
∗
σ(u, b) = 1,

χσC6(v, b) → εσ(u, a)χσC6(v, b)εσ(v, b) = ε∗σ(v, a)χσC6 (v, b)εσ(v, b) = 1.

Then, the remaining εσ-ambiguity should satisfy

εσ(u, a)ε
∗
σ(u, b) = 1 = εσ(v, a)ε

∗
σ(v, b), εσ(u, a) = ±1,

and hence εσ(s, i) = εσ = ±1. Now, we can solve Eqs. (A50) and (A53) as

Wσ(u, a) =Wσ, Wσ(u, b) = χσC6Wσ, Wσ(u, c) = χσC6Wσ,

Wσ(v, a) = χC6χσC6Wσ, Wσ(v, b) =Wσ , Wσ(v, c) =Wσ.

where χσC6 ≡ χσC6(u, c) = ±1 and W 2
σ = I.

It should be cautioned that this is not a complete specification of the gauge matrix Wσ associated with reflection
symmetry yet. A more accurate determination of Wσ will be carried out after we considered the spin rotation
symmetry in a later subsection.
For the phase factor, the equation reads

[Θσ(s)]
2 = 1,

Θσ(u)ΘC6(u)Θσ(v)ΘC6(v) = χσC6 .

Remember we have [ΘC6(u)]
3 = χC6 as well as ΘC6(v) = 1. Inserting back to above equations, we conclude

ΘC6(u) = χC6 ,

Θσ(u) = Θσ,

Θσ(v) = χC6χσC6Θσ,

where Θσ = ±1. By using εσ = ±1 ambiguity, we can set Θσ = 1.

5. Time reversal symmetry consideration

In this subsection, we consider the time reversal symmetry. Since the time reversal symmetry commute with all
lattice symmetries g−1T −1gT = e, where g = T1,2, C6, σ, we have

(g−1W−1
g Θ∗

g)(T −1W−1
T Θ∗

T )(ΘgWgg)(ΘTWT T ) ◦ T (x,y,s)

= Θ∗
g(g(x, y, s))ΘT (g(x, y, s))Θ

∗
g(g(x, y, s))Θ

∗
T (x, y, s)×

W−1
g (g(x, y, s, i))[W−1

T (g(x, y, s, i))]∗W ∗
g (g(x, y, s, i))W

∗
T (x, y, s, i) ◦ T (x,y,s) = T (x,y,s),

and therefore

W−1
g (g(x, y, s, i))[W−1

T (g(x, y, s, i))]∗W ∗
g (g(x, y, s, i))W

∗
T (x, y, s, i) = χgT (x, y, s, i), (A54)

Θ∗
g(g(x, y, s))ΘT (g(x, y, s))Θ

∗
g(g(x, y, s))Θ

∗
T (x, y, s) =

∏

i

χ∗
gT (x, y, s, i). (A55)

Recall that under the εT -ambiguity, χgT transforms as

χgT (x, y, s, i) → εT (g(x, y, s, i))χgT (x, y, s, i)ε
∗
T (x, y, s, i).

For g = T1,2, one can use such εT -ambiguity to set χT1,2T (x, y, s, i) = 1, and the residual εT should become coordinate-
independent: εT (x, y, s, i) = εT (s, i). Therefore, in the gauge chosen previously, i.e. WT1,2(x, y, s, i) = I, Eq. (A54)
gives us the coordinate independence
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WT (x, y, s, i) =WT (s, i), ΘT (x, y, s) = ΘT (s).

For the C6 symmetry,

W−1
C6

(C6(s, i))[W
−1
T (C6(s, i))]

∗W ∗
C6

(C6(s, i))W
∗
T (s, i) = χC6T (s, i), (A56)

one can use the remaining εT ambiguity to fix χC6T (s, i) = 1. The remaining εT -ambiguity should satisfy
εT (C6(s, i))ε

∗
T (s, i) = 1, or εT (C6(s, i)) = εT (s, i). For this to hold, one must have εT (s, i) = εT = ±1. Insert-

ing Eq. (A37) into Eq. (A56), one obtains the invariance of WT under the C6 rotation, WT (C6(s, i)) = WT (s, i),
which leads to the coordinate independence

WT (s, i) =WT . (A57)

A similar reasoning also gives coordinate-independent phase factor ΘT (s) = ΘT .
As for the reflection symmetry g = σ, the corresponding symmetry condition g−1T gT = e implies

W−1
σ (s, i)[W−1

T ]∗W ∗
σ (σ(s, i))W

∗
T =W−1

σ [W−1
T ]∗W ∗

σW
∗
T = χσT , (A58)

which shows χσT (s, i) = χσT is independent of the sublattice and virtual leg labels. Combined with the general
property of the χ-group χ(s̄, i) = χ∗(s, i), we also find χσT (s, i) = χσT (s̄, i) = χ∗

σT (s, i), or χσT = ±1. Furthermore,
application of Eq. (A55) to the reflection symmetry gives

Θ∗
σΘT Θ

∗
σΘ

∗
T =

∏

i

χσT = (χσT )
3 = 1.

The only self-conjugate U(1) phase factors are χσT = 1. Under the overall Φ-ambiguity, ΘT transforms as ΘT →
ΦΘT Φ. Thus, we can always set ΘT = 1.
Now we come to the group relation T 2 = e, which gives

T (x,y,s,i) = ΘT

(
∏

i

WT

)
T ΘT


∏

j

WT


T ◦ T (x,y,s,i)

= ΘT Θ
∗
T

(
∏

i

WTW
∗
T

)
T 2 ◦ T (x,y,s,i). (A59)

Since ΘT Θ
∗
T = 1, and the action of T 2 on the site tensor gives −T (x,y,s,i) due to our assumption that physical spin

degrees of freedom are half-integers, the above equation is equivalent to having T (x,y,s) = − (
∏

iWTW
∗
T )T

(x,y,s,i), or

WTW
∗
T = χT = −1, (A60)

for each leg of the honeycomb lattice. We conclude, as a consequence, that virtual legs only support Kramers doublets8.

6. Spin rotation symmetry consideration

Let us add spin rotation symmetry. Since SU(2) group has no non-trivial projective symmetry and nontrivial 1D
representation, one can always set χ’s, η’s and Θθ~n to be trivial ones8.
The on-site spin rotation symmetry operator Uθ~n commutes with all other symmetries. Namely, we have

g−1U−1
θ~n gUθ~n = e

where g = T1,2, C6, σ, T . Symmetry group equations give
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W−1
g (g(x, y, s, i))W−1

θ~n (g(x, y, s, i))Wg(g(x, y, s, i))Wθ~n(x, y, s, i) = I, (g = T1,2, C6, σ)

[W−1
T (x, y, s, i)]∗[W−1

θ~n (x, y, s, i)]∗[WT (x, y, s, i)]
∗Wθ~n(x, y, s, i) = I. (A61)

Then, similar to the time reversal case, by solving the corresponding equations for g = T1,2, C6, one can find that
Wθ~n(x, y, s, i) acts identically on all virtual legs: Wθ~n(x, y, s, i) =Wθ~n. For g = σ, T , one obtains

W−1
σ W−1

θ~n WσWθ~n = I,

(W−1
T )∗(W−1

θ~n )∗W ∗
TWθ~n = I. (A62)

From the equation Uθ=2π = e, we have W2π~n = χθ=2π. Since we only consider systems with a half-integer spin per
site satisfying Uθ=2π ◦ T (x,y,s) = −T (x,y,s), a symmetric PEPS should satisfy [W2π~n]

3Uθ=2π ◦ T (x,y,s) = T (x,y,s) and
hence [W2π~n]

3 = (χθ=2π)
3 = −1. Thus, we once again conclude W2π~n = χθ=2π = −1, namely, virtual legs can only

accommodate half-integer spins.
Using the remaining overall V -ambiguity, Wθ~n → VWθ~nV

−1, we can set Wθ~n as

Wθ~n =

M⊕

k=1

(Idk
⊗ eiθ~n·

~Sk), (A63)

that is, Wθ~n acts trivially in the flavor space and as a unitary rotation on the virtual spins. Here each ~Sk represents

a half-integer spin of size Sk, and Idk
implies there are dk copies of the spin ~Sk. We get the total dimension of the

Hilbert space for a virtual leg as D =
∑M

k=1 dk(2Sk + 1). Any remaining V -ambiguity must leave this form of Wθ~n

invariant, or

V

[
M⊕

k=1

(Idk
⊗ eiθ~n·

~Sk)

]
V −1 =

M⊕

k=1

(Idk
⊗ eiθ~n·

~Sk), (A64)

and therefore must be of the form

V =

M⊕

k=1

(Ṽk ⊗ I2Sk+1),

where Ṽk is an arbitrary dk-dimensional invertible matrix. Apart from the freedom in choosing the dimensionality dk
and the size of the spin Sk, the form of the gauge matrix Wθ~n is completely fixed by Eq. (A63).
We return to the consideration of the general form of Wσ. Recall that we left off at W 2

σ = I in the earlier discussion
of the reflection symmetry. AsWσ must satisfy the first line of Eq. (A62), and given theWθ~n form shown in Eq. (A64),
it will have to take on the form

Wσ =

M⊕

k=1

(W̃ k
σ ⊗ I2Sk+1), (A65)

where (W̃ k
σ )

2 = I to satisfy W 2
σ = I. Since the time reversal operation reverses the spin direction, the most general

form of WT satisfying Eq. (A62) with Eq. (A64) is also constrained,

WT =

M⊕

k=1

(W̃ k
T ⊗ eiπS

y

k ), (A66)

where W̃ k
T is a dk-dimensional invertible matrix. One can use the remaining V-ambiguity to fix W̃ k

T , W̃
k
T →

ṼkW̃
k
T [Ṽ

−1
k ]∗ = Idk

, such that
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WT =

M⊕

k=1

(Idk
⊗ eiπS

y

k ), (A67)

and the remaining V -ambiguity satisfies Ṽk Ṽ
∗
k = Idk

. Plugging Eqs. (A65) and (A67) into Eq. (A58), one obtains

W̃ k
σ = (W̃ k

σ )
∗. (A68)

7. Summary

The results obtained in previous subsections are summarized below. For all the symmetries S considered in this
work, the associated gauge transformations and phase factors are unit-cell-independent:

WS(x, y, s, i) =WS(s, i), ΘS(x, y, s) = ΘS(s).

Further symmetry consideration then identified the structure of each gauge matrix WS to be

WT1(s, i) =WT2 (s, i) = I;

WC6(u, a/b) =WC6(v, a/b/c) = I, WC6(u, c) = χC6 ;

WRπ
(u, a/c) = χC6 , WRπ

(u, b) = 1, WRπ
(v, a/c) = 1, WRπ

(v, b) = χC6 ;

Wσ(u, a) =Wσ, Wσ(u, b/c) = χσC6Wσ, Wσ(v, a) = χC6 · χσC6Wσ, Wσ(v, b/c) =Wσ;

WT (s, i) =WT =

M⊕

k=1

(Idk
⊗ eiπS

y

k );

Wθ~n(s, i) =Wθ~n =

M⊕

k=1

(Idk
⊗ eiθ~n·

~Sk). (A69)

Finally, Wσ =
⊕M

k=1(W̃
k
σ ⊗ I2Sk+1), where W̃

k
σ is a dk-dimensional matrix with real entries satisfying (W̃ k

σ )
2 = Idk

.
The associated phase factors are

ΘT1(s) = ΘT2(s) = 1;

ΘC6(u) = χC6 , ΘC6(v) = 1;

ΘRπ
(u) = 1, ΘRπ

(v) = χC6 ;

Θσ(u) = 1, Θσ(v) = χC6 · χσC6 ;

ΘT = 1. (A70)

Appendix B: Solving the Hilbert space constraints for PEPS

In this section, we solve the constraints imposed on the Hilbert space of tensors by the symmetry transformation
rules worked out thus far. We first identify the Hilbert space structure for a single leg, then subsequently fix the bond
and site tensors.

1. Hilbert space structure for a single leg

We are focusing on systems with a physical spin- 12 Kramers doublet per site. In other words, every physical leg is

isomorphic to a two-dimensional Hilbert space V 1
2
supporting a spin- 12 Kramers doublet.

There are two kinds of virtual legs, one extending out from site tensors, and the other from bond tensors. The
two virtual spaces, or virtual legs, are connected to each other in the sense of tensor contraction and are called dual
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spaces8. In the previous section we identified the tensor structures of Wσ,WT , and Wθ~n. Based on that, we see that
site virtual leg is isomorphic to a space V that can be decomposed as

V ∼=
M⊕

k=1

(DSk
⊗ VSk

). (B1)

VSk
is the Hilbert space for the SU(2) spin-Sk and DSk

is a dk-dimensional space that labels the “flavor degeneracy”
for each spin-Sk. The basis that spans the space V can be labeled as

|Sk, tα,mβ〉 = |Sk, tα〉 ⊗ |Sk,mβ〉 (B2)

where |Sk, tα〉 ∈ DSk
labels the basis in the flavor space, while |Sk,mβ〉 ∈ VSi

labels an eigenstate of ~S2 = Sk(Sk +1)
and Sz.
Similarly, every bond-originating virtual leg is isomorphic to the dual space ofV, labeled V̄, which can be decomposed

as

V̄ ∼=
M⊕

k=1

(D̄Sk
⊗ V̄Sk

) (B3)

with the basis 〈Sk, tα,mβ | = 〈Sk, tα| ⊗ 〈Sk,mβ |.

2. Constraints on bond tensors

Having established the Hilbert space structure of a single virtual leg, we are able to construct the Hilbert space of
a bond tensor VB as the tensor product, VB

∼= V̄⊗ V̄. According to Eq. (B3), VB can be decomposed as

VB
∼=

⊕
i,j((D̄Si

⊗ D̄Sj
)⊗ (V̄Si

⊗ V̄Sj
))

∼=
⊕

i,j,k((D̄Si
⊗ D̄Sj

)⊗ (V̄Sk

SiSj
⊗ V̄Sk

))

where V̄Sk

SiSj
is the “fusion space” denoting different ways to fuse spins Si and Sj to form a spin Sk. According to the

representation theory of SU(2), V̄Sk

SiSj
is isomorphic to C if |Si − Sj | ≤ Sk ≤ Si + Sj and zero otherwise.

We require the bond tensor to be a spin singlet, so the bond Hilbert space is restricted to the S = 0 space

V
S=0
B

∼=
M⊕

i=1

((D̄Si
⊗ D̄Si

)⊗ (V̄S=0
SiSi

⊗ V̄S=0)),

where we used the fact that V̄S=0
SiSj

vanishes unless Si = Sj and Sk = 0. The bond state B̂b (labeled with a carat) can

be decomposed as

B̂b =
∑

k;α1,α2;β1,β2

〈Sk, tα1 ,mα2 | ⊗ 〈Sk, tβ1 ,mβ2 |(B̃Sk

b )α1β1(KSk
)α2β2 ,

where α1, β1 = 1, · · · , dk, α2, β2 = 1, · · · , 2Sk + 1, and B̃Sk

b is some dk-dimensional matrix. KSk
is a (2Sk + 1)-

dimensional Clebsch-Gordan (CG) matrix ensuring the “spin singlet state”,

(KS)αβ = 〈S,mα, S,mβ |Stot = 0,mtot = 0〉 = (−1)S−mαδmα,−mβ
, (B4)

mα = −S + α− 1. KS is antisymmetric for half-integer S. Since the bond state is also a Kramers singlet, we require

B̃Sk

b to be a real matrix in order to preserve the time reversal symmetry. Instead of the bond state B̂b itself, we work
with its matrix form Bb in the following:



21

Bb =

M⊕

k=1

(B̃Sk

b ⊗KSk
). (B5)

Now, let us consider various constraints on Bb from lattice symmetry. For translation symmetry, the associated
gauge transformationWT1,2 = I is trivial and thus Bb = T1,2 ◦ Bb. In other words, all bond tensors ought to be
translationally invariant. We are therefore left with three independent bond tensors within a unit cell, which can be
labeled as B(u,a|v,a), B(u,b|v,b) and B(u,c|v,c). Under the π-rotation symmetry we have

B(u,i|v,i) =W−1
Rπ

(u, i)[W−1
Rπ

(v, i)]tRπ ◦B(u,i|v,i)

=W−1
Rπ

(u, i)[W−1
Rπ

(v, i)]tB(v,i|u,i) = χC6 [B(u,i|v,i)]
t. (B6)

According to Eq. (B5) and the fact that KSk
is antisymmetric in our case, we conclude that one of the following must

hold:

• χC6 = 1, B̃Sk

b = −(B̃Sk

b )t. Namely, B̃Sk

b is a real antisymmetric matrix.

• χC6 = −1, B̃Sk

b = (B̃Sk

b )t. Namely, B̃Sk

b is a real symmetric matrix.

From C6-rotation symmetry one obtains the following additional constraints:

B(u,a|v,a) =W−1
C6

(u, a)[W−1
C6

(v, a)]tC6 ◦B(u,a|v,a) = B(v,b|u,b),

B(u,b|v,b) =W−1
C6

(u, b)[W−1
C6

(v, b)]tC6 ◦B(u,b|v,b) = B(v,c|u,c),

B(u,a|v,a) =W−1
C6

(u, c)[W−1
C6

(v, c)]tC6 ◦B(u,c|v,c) = B(v,a|u,a). (B7)

Combined with Eq. (B6), we conclude

B(u,a|v,a) = χC6 B(u,b|v,b) = B(u,c|v,c).

Thus, once we fix a single bond tensor, say B(u,a|v,a), all other bond tensors are uniquely determined.

We can impose an extra constraint for reflection symmetry operator Wσ =
⊕M

k=1(W̃
k
σ ⊗ I2Sk+1). To see where this

comes from, we write the reflection symmetry relation [Eq. (A1)] for the bond tensor B(u,a|v,a),

B(u,a|v,a) =W−1
σ (u, a)[W−1

σ (v, a)]tσ ◦B(u,a|v,a) = χC6 · χσC6Wσ B(u,a|v,a) [Wσ]
t.

Inserting Eq. (B5) in the above equation, we conclude

B̃Sk

b = χC6 · χσC6W̃
Sk
σ B̃Sk

b [W̃Sk
σ ]t. (B8)

3. Constraints on site tensors

Similar to bond tensors, the Hilbert space of a site tensor has the following tensor product structure:

VT
∼= VS0 ⊗ V⊗ V⊗ V

∼=
⊕

ia,ib,ic

(DSiaSib
Sic

⊗ VS0 ⊗ VSia
⊗ VSib

⊗ VSic
)

∼=
⊕

ia,ib,ic,k

(DSiaSib
Sic

⊗ V
Sk

S0SiaSib
Sic

⊗ VSk
),

where DSiaSib
Sic

≡ DSia
⊗ DSib

⊗ DSic
labels the product flavor space associated with half-integer spins Sia , Sib , Sic

on three virtual legs. The basis of DSiaSib
Sic

is labeled as |Sia , tα〉 ⊗ |Sib , tβ〉 ⊗ |Sic , tγ〉. The physical spin space VS0

has the spin S0.
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V Sk

S0SiaSib
Sic

is the fusion space, which denotes different ways to fuse the four spins S0, Sia , Sib , Sic to form a spin Sk.

The fusion process can be broken down to three successive steps, fusing two spins at each step as (i) (S0, Siα) → Sα,
(ii) (Sα, Sib) → Sβ , (iii) (Sβ , Sic) → Sk. One can write the overall fusion space accordingly as

V
Sk

S0SiaSib
Sic

∼=
⊕

α,β

V
Sk

SβSic
⊗ V

Sβ

SαSib
⊗ V

Sα

S0Sia
. (B9)

We are only considering site tensors that are SU(2) singlets, which means the Hilbert space VT can be restricted to
the S = 0 sector,

V
S=0
T

∼=
⊕

ia,ib,ic

(DSiaSib
Sic

⊗ V
S=0
S0SiaSib

Sic
⊗ VS=0).

Basis states spanning the space VS=0
S0SiaSib

Sic
⊗ VS=0 can be expressed as

K̂ l
S0SiaSib

Sic
≡

∑

j,α,β,γ

(K l
S0SiaSib

Sic
)jαβγ |S0,mj〉 ⊗ |Sia ,mα〉 ⊗ |Sib ,mβ〉 ⊗ |Sic ,mγ〉. (B10)

The coefficient matrix K̂ l
S0SiaSib

Sic
mix the original basis states |S0,mj〉⊗ |Sia ,mα〉⊗ |Sib ,mβ〉⊗ |Sic ,mγ〉 to produce

mutually orthogonal singlet states labeled by different l.
Earlier it was shown that the symmetric site tensor can be chosen to have no spatial dependence: T (x,y,s) = T (s)

where s = u, v is the sublattice index. For each s, one can decompose the site tensor T (s) as

T (s) =
⊕

ia,ib,ic,l

(T̃ l
SiaSib

Sic
⊗K l

S0SiaSib
Sic

), (B11)

where the state
∑

α,β,γ(T̃
l
SiaSib

Sic
)αβγ |Sia , tα〉 ⊗ |Sib , tβ〉 ⊗ |Sic , tγ〉 lives in the flavor space DSiaSib

Sic
.

Now, let us consider lattice symmetries. The two independent tensors, T (u) and T (v), are related by π-rotation
symmetry:

T (u) = ΘRπ
WRπ

Rπ ◦ T u = (χC6)
2T (v) = T (v). (B12)

In the gauge we have chosen, all site tensors are identical.
From C6 rotation symmetry, we obtain the following constraints

(T (u))jαβγ = (T (v))jβγα,

(T (v))jαβγ = (T (u))jβγα, (B13)

implying invariance of the site tensor under the simultaneous cyclic permutation of the virtual spin and flavor indices
(α, β, γ) living on legs (a, b, c) and the sublattice index (u, v). Since T (u) = T (v) from the earlier argument, we
conclude T (u) is invariant under the even permutation of virtual leg indices:

(T (u))jαβγ = (T (u))jβγα = (T (u))jγαβ . (B14)

For the reflection symmetry σ, we have the following constraint

(T (u))jαβγ =
∑

α′,β′,γ′

Θσ(u)[Wσ(u, a)]αα′ [Wσ(u, b)]ββ′[Wσ(u, c)]γγ′(T (u))jα′γ′β′

=
∑

α′,β′,γ′

(Wσ)αα′(Wσ)ββ′(Wσ)γγ′(T (u))jα′γ′β′ . (B15)

Finally, in order to have a time-reversal-invariant site tensor, we require T̃ l
SiaSib

Sic
to be matrices with only real

entries.
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4. Explicit constructions

In constructing the bond and site tensors explicitly, we must begin by specifying the exact dimensionality dk and
the spin size Sk for the bond Hilbert space. We choose Sk = 1/2 only, excluding higher spin sizes such as Sk = 3/2
for simplicity of calculation, for the dimension of the virtual leg equal to D = n× 2 for n copies of spin-1/2’s.
For the spin- 12 case, we get the Clebsh-Gordon matrix K1/2 = iσ2 from Eq. (B4), and then, for a single bond

tensor, Eq. (B5) is simplified as

Bb = B̃b ⊗ iσ2. (B16)

As the discussion following Eq. (B6) shows, there are two choices of B̃b depending on the sign of χC6 :

• χC6 = 1, B̃b = In/2 ⊗ iσ2. The flavor space dimension n is even.

• χC6 = −1, B̃b = Diag(±1,±1, . . . ). It is diagonal matrix of arbitrary dimension, with entries either +1 or -1.

Note that we have chosen the bond tensor to be a maximally entangled state by gauge transformation.
Let us consider the site tensor. According to the representation of SU(2), for four spin- 12 ’s on a single site tensor

(one physical leg plus three virtual legs), we have

V
0
1
2

1
2

1
2

1
2

∼=
(
V

0
1
2

1
2
⊗ V

1
2
1
20

⊗ V
0
1
2

1
2

)
⊕
(
V

0
1
2

1
2
⊗ V

1
2
1
21

⊗ V
1
1
2

1
2

)
. (B17)

For each of the two ways to generate the total spin zero we have the K-tensor in Eq. (B10) given as

(K1)
j
αβγ = (iσ2)jα(iσ2)βγ ,

(K2)
j
αβγ =

∑

µν

(iσ)jνC
1
2 ,mν

1
2 ,mα;1,mµ

C
1,mµ

1
2 ,mβ ;

1
2 ,mγ

. (B18)

Here, mi = −S − 1+ i is the Sz quantum number, and CJ,mJ

S1,m1;S2,m2

.
= 〈S1m1S2m2|JmJ〉 denotes the CG coefficient.

By introducing basis | ↑〉, | ↓〉 for spin- 12 , the two orthogonal basis for V0
1
2

1
2

1
2

1
2

⊗ V0 read

K̂1 = | ↑〉 ⊗ (| ↓↑↓〉 − | ↓↓↑〉)− | ↓〉 ⊗ (| ↑↑↓〉 − | ↑↓↑〉),
K̂2 = | ↑〉 ⊗ (2| ↑↓↓〉 − | ↓↑↓〉 − | ↓↓↑〉) + | ↓〉 ⊗ (2| ↓↑↑〉 − | ↑↑↓〉 − | ↑↓↑〉).

The first spin is physical, the second, third, fourth spins are virtual at the legs a, b, c, respectively.
According to the above discussion, the site tensor T s can be decomposed as

T s =
(
T̃1 ⊗K1

)
⊕
(
T̃2 ⊗K2

)
,

where we have T̃1,2 denote quantum states in the flavor space D 1
2

1
2

1
2
. Remember T̃1,2 is real since the site tensor is a

Kramers singlet. Further, we require the site tensor satisfies Eq. (B14).
For a virtual leg with dimension D = n× 2, we introduce a set of basis | ↑α〉, | ↓α〉, where α = 1, . . . , n labels the

extra degeneracy. Thus, the site state can be expressed as

T̂ s = A1 ⊗ K̂1 +A2 ⊗ K̂2

=
∑

α,β,γ

{
(A1)αβγ

[
| ↑〉 ⊗

(
| ↓α↑β↓γ〉 − | ↓α↓β↑γ〉

)
− | ↓〉 ⊗

(
| ↑α↑β↓γ〉 − | ↑α↓β↑γ〉

)]

+ (A2)αβγ

[
| ↑〉 ⊗

(
2| ↑α↓β↓γ〉 − | ↓α↑β↓γ〉 − | ↓α↓β↑γ〉

)

+ | ↓〉 ⊗
(
2| ↓α↑β↑γ〉 − | ↑α↑β↓γ〉 − | ↑α↓β↑γ〉

)]}
.
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The Greek indices α, β, γ run over the flavor degeneracy 1 through n. We can simplify the above equation as

T̂ s =
∑

α,β,γ

{(
A1 −A2

)
αβγ

(
| ↑〉 ⊗ | ↓α↑β↓γ〉+ | ↓〉 ⊗ | ↑α↓β↑γ〉

)

−
(
A1 +A2

)
αβγ

(
| ↑〉 ⊗ | ↓α↓β↑γ〉+ | ↓〉 ⊗ | ↑α↑β↓γ〉

)

+ 2
(
A2

)
αβγ

(
| ↑〉 ⊗ | ↑α↓β↓γ〉+ | ↓〉 ⊗ | ↓α↑β↑γ〉

)}
.

Further, according to Eq. (B14), cyclic permutation of the virtual spins results in the identical tensor, which in turn
imposes the conditions on A1,2 as

(
A1 −A2

)
αβγ

= −
(
A1 +A2

)
γαβ

= 2
(
A2

)
βγα

≡ Cαβγ , (B19)

for any values of α, β and γ. For the n = 1 (no flavor degeneracy) case, solving Eq. (B19) with α = β = γ = 1
automatically givesA1,2 = 0. Namely, one cannot write a fully symmetric wavefunction with trivial IGG on honeycomb
lattice with D = 2 (n = 1) PEPS.
For n = 2 (D = 4), one can choose Wσ = σ3 and easily solve the above equation imposing the constraint by

reflection [Eq. (B15)]. Thus, one can find the following 2 independent solutions

Â(1) = P
(
2| ↑; ↓2↑1↓2〉 − | ↑; ↓1↑2↓2〉 − | ↑; ↓1↓2↑2〉+ 2| ↓; ↑2↓1↑2〉 − | ↓; ↑1↓2↑2〉 − | ↓; ↑1↑2↓2〉

)
,

Â(2) = P
(
| ↑; ↓2↑1↓1〉 − | ↑; ↓1↑1↓2〉+ | ↓; ↑2↓1↑1〉 − | ↓; ↑1↓1↑2〉

)
, (B20)

where P stands for cyclic permutation of the virtual spins. Here, we use the Â for the expression of the state that
includes the spin basis.
The linear combination T̂ s = c1Â

(1) + c2Â
(2) with arbitrary real coefficients cλ is the most general fully symmetric

spin liquid states within our classification scheme. The states thus constructed are generically topologically trivial
since the trivial IGG was used in classifying possible spin liquid states. However, there are two special cases, namely
c1 = 0 or c2 = 0. In those cases, the PEPS wavefunctions actually have emergent U(1) IGG. To identify the nontrivial

IGG, let us consider the case where T̂ s = Â(1). The site tensor share the feature that all its components are formed
by two flavor 2 spins and a single flavor 1 spin. We define the action on virtual legs U(θ) as multiplying eiθ on flavor
2 spins while keeping spins with flavor 1 untouched. Then, it is straightforward to check that the whole PEPS is
invariant (up to a U(1) phase) under the gauge transformation which act U(θ) on all virtual legs of tensors on site u,
U(−θ) on virtual legs of tensors on site v, and U−1(θ) or U−1(−θ) on virtual legs of bond tensors for any θ. The above

obervation also holds for T̂ s = Â(2) once we define U(θ) as acting eiθ on spins with flavor 1 and leaving flavor 2 spins
untouched. These kind of gauge transformations form a U(1) group. In other words, the wavefunctions considered
above describe U(1) spin liquids, which will generally be confined in the long wavelength in two dimenstions 23, and
lead to spontaneous symmetry breaking phases. Therefore, one should choose ci to be nonzero to avoid nontrivial
IGG.

Appendix C: Symmetric fermionic PEPS on honeycomb lattice

In this section, we will construct a symmetric wavefunction for a half-filled spinless femion system defined on
honeycomb lattice using fermionic PEPS.
Let us consider the maximally entangled virtual (auxiliary) fermionic bond state

|bond〉 = (α†
u + α†

v)|0〉aux = |10〉aux + |01〉aux,
where α†

u and α†
v are the creation operators of auxiliary fermions for the bond between the sublattice sites u and

v, acting on the vacuum |0〉aux of the auxiliary fermion. The input state is obtained by covering all the bonds of
honeycomb lattice with the above bond state, |input〉 ≡

∏
∈all bonds |bond〉 as depicted by green ellipses in Fig. 1 (a).

To obtain a physical quantum state one acts with a projector, Q =
∏

iQiuQiv
36,37 defined here as

Qiu = Ufi
aibici

(c†iu)
fi |0〉p〈0|aux(αiu)

ai(βiu)
bi(γiu)

ci ,

Qiv = Vf ′

i

limini
(c†iv)

f ′

i |0〉p〈0|aux(αiv)
li(βiv)

mi(γiv)
ni , (C1)
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FIG. C1. (Color online) Results for fermionic PEPS with the projector defined in Eq. (C2). Plots of (a) entanglement entropy,

(b) equal time Green’s function, (c) bond correlation (Vi = c†iuciv), and (d) pairing correlation as a function of the distance
Rij = |xi − xj |/|a1|, where xi is the position vector of i-th unit cell.

where c†is is the creation operator of the physical fermion on the sublattice-s in the i-th unit cell, and |0〉p is the
vacuum of the physical fermion. Virtual fermion operators αis, βis, γis act respectively on the a, b, c bonds around
the site s = u, v shown in Fig. 1(b). Summation over the fermion occupation numbers 0 and 1 are assumed for the
indices ai, bi, ci, li,mi, ni, fi, f

′
i . The resulting quantum state is |ψ〉 = Q|input〉.

The choice of the projectors are dictated by the requirement to get a fully symmetric and half-filled quantum state.
We choose to project singly (doubly) occupied three-leg virtual fermion state (ai + bi + ci = 1(2)) in Eq. (C1)) into
an empty (singly occupied) physical fermion state (fi = 0(1)) in Eq. (C1)). Further considering the lattice symmetry
we propose the following ansatz

Qis = |0〉p〈0|aux (αis + βis + γis)

+ c†is|0〉p〈0|aux (βisαis + γisβis + αisγis) . (C2)

Working with the tensor network of fermionic PEPS requires more careful consideration than its bosonic counterpart
due to the introduction of fermionic swap gates to account for the anti-commuting property of fermions38,39.
The entanglement entropy of our fermionic PEPS ansatz was obtained using the same sample geometry and the

contraction technique as in the earlier bosonic PEPS calculation, imposing a similar threshold for numerical errors.
As shown in Fig. C1 (a), STEE = 0.008 was extracted by fitting the entanglement entropy data, in nice agreement
with the topologically trivial nature of the ansatz state. In order to measure the expectation values of operators, we
employ the same method and algorithm with the same threshold for numerical error to contract the fermionic PEPS
as before in the bosonic case.
Equal-time Green’s function 〈ciuc†ju〉, the bond correlation function 〈ViVj〉 − 〈Vi〉〈Vj〉 (Vi = c†iuciv), and the pair

correlation function 〈c†iuc
†
ivcjucjv〉 are calculated, assuming the open geometry with zigzag edges along the horizontal

directions and armchair edge along the vertical directions. Virtual vacuum states are imposed along the whole
boundary. All the correlations are rotationally symmetry and exponentially decaying as shown in Fig. C1 (b)-(d),
confirming the existence of the energy gap. By measuring the occupation, we confirmed that the ansatz is half-filled:

〈c†iscis〉 = 1/2. Therefore, we conclude our ansatz is a fully symmetric, topologically trivial, gapped and half-filled
fermionic quantum state without charge density order and superconducting order.
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39 P. Corboz, R. Orús, B. Bauer, and G. Vidal, Phys. Rev. B 81, 165104 (2010), URL

http://link.aps.org/doi/10.1103/PhysRevB.81.165104 .

http://link.aps.org/doi/10.1103/PhysRevB.92.195105
http://link.aps.org/doi/10.1103/PhysRevB.92.104414
http://stacks.iop.org/1367-2630/12/i=2/a=025010
http://link.aps.org/doi/10.1103/PhysRevB.81.174411
http://link.aps.org/doi/10.1103/PhysRevA.82.050301
http://link.aps.org/doi/10.1103/PhysRevB.83.125106
http://link.aps.org/doi/10.1103/PhysRevB.83.115125
http://www.sciencedirect.com/science/article/pii/S0003491612001121
http://link.aps.org/doi/10.1103/PhysRevB.86.195114
http://link.aps.org/doi/10.1103/PhysRevLett.96.110404
http://link.aps.org/doi/10.1103/PhysRevLett.96.110405
http://www.sciencedirect.com/science/article/pii/S0003491610000990
http://dx.doi.org/10.1080/14789940801912366
http://link.aps.org/doi/10.1103/PhysRevB.69.224415
http://www.sciencedirect.com/science/article/pii/S0003491610001752
http://www.sciencedirect.com/science/article/pii/S0003491614001596
http://link.aps.org/doi/10.1103/PhysRevB.83.245134
http://link.aps.org/doi/10.1103/PhysRevB.90.115133
http://link.aps.org/doi/10.1103/PhysRevB.89.085130
http://link.aps.org/doi/10.1103/PhysRevB.90.094422
http://www.sciencemag.org/content/336/6081/559.abstract
http://link.aps.org/doi/10.1103/PhysRevB.65.165113
http://link.aps.org/doi/10.1103/PhysRevA.81.052338
http://link.aps.org/doi/10.1103/PhysRevB.81.245110
http://link.aps.org/doi/10.1103/PhysRevB.80.165129
http://link.aps.org/doi/10.1103/PhysRevB.81.165104

