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We present a variable variance Preisach model that fully accounts for the different magnetiza-
tion processes of a multilayer structure with perpendicular magnetic anisotropy by adjusting the
evolution of the interaction variance as the magnetization changes. We successfully compare in a
quantitative manner the results obtained with this model to experimental hysteresis loops of sev-
eral [CoFeB/Pd]n multilayers. The effect of the number of repetitions and the thicknesses of the
CoFeB and Pd layers on the magnetization reversal of the multilayer structure is studied, and it is
found that many of the observed phenomena can be attributed to an increase of the magnetostatic
interactions, and subsequent decrease of the size of the magnetic domains. Increasing the CoFeB
thickness leads to the disappearance of the perpendicular anisotropy, and that a minimum thickness
of the Pd layer is necessary to achieve an out-of-plane magnetization.

I. INTRODUCTION

Throughout the last decade, materials with perpen-
dicular magnetic anisotropy (PMA) have been of great
interest to the scientific community due to their applica-
tions in magnetic recording media [1–4]. Recently, this
interest has shifted to PMA spin valves and magnetic
tunnel junctions (MTJs) due to their potential in reduc-
ing the switching energy while preserving thermal stabil-
ity in spin-torque transfer (STT) magnetic random ac-
cess memory (MRAM) applications [5–10]. These devices
could improve current CMOS processor cache technol-
ogy by lowering power consumption at sub-20 nm nodes
[11–13]. Furthermore, PMA thin films are also of great
interest for spin-torque oscillators due to the formation
of dynamic droplet solitons [14–17] and their capabilities
in generating zero field rf signals with increased output
power [18–20]. Thus, the importance of understanding
the underlying physics related to PMA materials is clear,
and many experimental and theoretical studies have been
done on this topic [21–25].

Through the use of field-dependent magnetization
techniques, unique switching mechanisms have been iden-
tified for materials with PMA [21], and theoretical ef-
forts have successfully reproduced the observed behavior
in a qualitative manner [25, 26]. However, quantitative
analysis of the field dependence of magnetization in ma-
terials with PMA remains a challenge. In theory, mi-
cromagnetic simulations can be used to reproduce the
hysteresis loops. However, due to the random distri-
butions of defects and surface roughness, a micromag-
netic approach is impractical due to the prohibitively
long simulation times required. Numerical calculations
and semi-analytical hysteresis models like the Preisach,
Jiles-Atherton, and vector-hysteresis models have been
used successfully to characterize qualitatively and quan-

titatively different kinds of materials and magnetic ar-
rays by modeling experimental hysteresis loops [27–31].
However, none of the models is able to properly describe
the magnetization switching of a thin film material with
PMA. Phase field type models such as the one described
by [32] have the potential to reduce simulation times and
could be used as an intermediate description between mi-
cromagnetic simulations and the various existing semi-
analytical hysteresis models.

In this paper, we propose a new implementation of
the variable variance Preisach model (VVPM) [33] that
fully accounts for the different magnetization processes of
a multilayer with PMA, and successfully compare it in a
quantitative manner to experimental hysteresis loops of a
[CoFeB/Pd]n multilayer. This model allows us to identify
whether a multilayer structure has significant in-plane
components of the magnetization, and gives insights into
the physics governing the different magnetization reversal
mechanisms.

Furthermore, we explain the changes that arise when
the thicknesses of the constituent layers are changed, as
well as the effect of the number of [CoFeB/Pd] bilay-
ers. Finally, we show that the magnetostatic interactions
are extremely important in determining the behavior of
the magnetization in multilayer systems with PMA, and
discuss how the behavior is related to the domain wall
energy, the magnetostatic interactions, and the surface
and volume anisotropy.

II. PREISACH MODEL

Preisach-type models use a phenomenological ap-
proach to study hysteretic systems. The system is de-
scribed by an infinite number of fundamental components
called hysterons. Each hysteron has a square hysteresis



2

HB

HC

H

M

FIG. 1: Square hysteresis cycle of a hysteron, with the asso-
ciated coercive field HC and interaction field HB .

cycle, with an associated coercive field HC and interac-
tion field HB , as shown in Fig. 1. These fields describe
the system in terms of stored energy versus energy dissi-
pated in Barkhausen jumps [34]. When applied to thin
films with PMA, it becomes evident that the bi-stable
hysterons are directly related to the up and down states
of the domains within the material. This allows us to
model PMA materials by using a Preisach-type model
(as explained below), and to fully account for the differ-
ent mechanisms governing the magnetization reversal.

The magnetization M for a given applied field is ob-
tained by adding the individual contributions of all the
hysterons using the expression

M

Ms
=

∫ ∞
0

dHC

[∫ b(Hc)

−∞
p (HC , HB) dHB

−
∫ ∞
b(Hc)

p (HC , HB) dHB

]
, (1)

where Ms is the saturation magnetization. The bound-
ary line b (HC) identifies the state and the history of the
system. The major hysteresis loop is given by

b (HC) = H ±HC , (2)

where the + sign represents the down cycle, the − sign
the up cycle, and H is the external applied field. A de-
tailed explanation regarding the selection of b (HC) which
accounts for the history of the system and allows for
the calculation of minor hysteresis loops can be found
in [34]. The Preisach distribution p (HC , HB) represents
all the microstructural and magnetic features affecting
the magnetization reversal process [34, 35]. We assume
that HC and HB are statistically independent, and thus
the Preisach distribution p (HC , HB) is written as the

product of the distribution of coercive fields f (HC) and
the distribution of interaction fields g (HB), as given by

p (HC , HB) = f (HC) g (HB) . (3)

For systems described by the classical Preisach model
(CPM), these distributions generally take the form of well
known probability distributions, e. g. Gaussian and log-
normal distributions [34, 36, 37]. In thin films with PMA,
the distribution of the coercivities can be related to the
distribution of defects throughout the sample, and the
average coercive field depends on the PMA.

However, it has been shown [33, 38, 39] that strong
interactions affect the shape of g (HB), leading to a dis-
tribution that varies with the magnetization of the film.
This prevents the CPM from correctly describing the hys-
teresis of strongly interacting magnetic systems. As an
additional consequence of these interactions, it also has
been found [40–42] that the first order reversal curves
(FORC) diagrams are equivalent to the Preisach distri-
bution only if the system is correctly described by the
CPM.

If one focuses only on major hysteresis loops and ig-
nores higher order reversal curves (such as those repre-
sented by the FORC diagrams) it should be possible to
find a Preisach distribution which reproduces these loops.
However, in the case of thin film multilayers with PMA
this would lead to Preisach distributions with little to no
physical meaning due to the complex relaxation mecha-
nisms associated with these systems (see Section IV A).

For thin films with in-plane magnetization or partic-
ulate ensembles with random orientations, it has been
shown [38, 42, 43] that the ensemble of interactions fol-
lows a multi-peaked distribution which varies with the
magnetization state of the sample. To our knowledge,
such mapping of the interactions has not been properly
studied for thin film multilayers with PMA. However,
previous experiments used to formulate the VVPM [33]
suggest that in systems with PMA and large lateral sizes
the mean interaction remains zero, and g (HB) is given
by a Gaussian distribution with a variance that evolves
with the magnetization following

σB = σa + σb |m|k , (4)

where σa and σb are constants.
Furthermore, it is well known that complex spatio-

temporal fluctuations related to the collective dynam-
ics of domain walls during the magnetization switching
cannot be ignored in magnetization reversal and hystere-
sis process. Models based on probability distributions
(such as Preisach-type models) are unsuitable to prop-
erly describe the magnetization reversal in systems where
such fluctuations are present. The most notable of these
fluctuations is the Barkhausen effect, where discontinu-
ities in the magnetization reversal arise from irregular
fluctuations in the motion of a domain boundary [44].
Nonetheless, if we approach the magnetic relaxation as
a sum of individual Barkhausen jumps independent of
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field rate, the magnetization reversal is dominated by
the distribution of pinning fields throughout the sample
[45]. It has been shown [34, 46, 47] that the long-range
magnetostatic interactions are the dominant contribution
in the distribution of these pinning fields in thin films
with PMA. Additionally, these magnetostatically-driven
pinning fields limit the length of Barkhausen processes
[32, 46, 47]. Thus, assuming that the individual relax-
ation events take place on a time scale much smaller than
the time scale over which the applied field changes signif-
icantly, the long-range dipolar interactions are the dom-
inant mechanism for the magnetization reversal of thin
films with PMA and the effect of the short-range fluc-
tuations of the domain walls can be ignored, providing
justification for the application of Preisach-type hystere-
sis models.

A. Reversible magnetization

In general, Preisach-type models only describe changes
in the magnetization due to the instantaneous irreversible
up-down (or down-up) changes in the magnetization of
the hysterons, therefore the reversible magnetization due
to the elastic distortions of the domain structure has to be
treated separately. This can be done by approximating
the reversible magnetization to a Langevin function [48],
where the total magnetization M is given by

M = (1− x)Mirr + xMrev. (5)

Mirr is the irreversible magnetization given by [Eq. (1)],
Mrev is the reversible magnetization given by

Mrev

Ms
= L

[
H ∓ H̄C

a

]
, (6)

and x represents the proportion of the reversible magne-
tization. In Eq. (6) L is the Langevin function. The mi-
nus(plus) sign is taken for the down(up) half cycle, and a
is a shape parameter dependent on the temperature and
the material properties [49].

III. EXPERIMENTAL METHODS

[Co40Fe40B20(tCoFeB)/Pd(tPd)]n films were de-
posited on thermally oxidized Si(100) substrates using
confocal DC magnetron sputtering at ambient temper-
ature in a chamber with a base pressure better than
2×10−8 Torr and at an Ar working pressure of 5 mTorr.
tCoFeB and tPd represent the thickness of the CoFeB
and Pd layers respectively, and n is the number of
repetitions of the [CoFeB/Pd] bilayer system.

The films were grown on a Ta(20 Å)/ Pd(20 Å) seed
layer and capped with 5 nm of Pd to protect the surface
from oxidization. The thin Ta layer allows for greater
mobility of the deposited atoms [50, 51] and an improved
fcc-(111) orientation of the Pd layer deposited just above,

thus improving the PMA of the CoFeB/Pd multilayers.
We prepared three series using CoFeB (the target com-
position was 40 - 40 - 20 atomic %) as a soft magnetic
material as follows:

• [Co40Fe40B20(3 Å)/Pd(10 Å)]n where n = 5, 10,
15.

• [Co40Fe40B20(tCoFeB)/Pd(10 Å)]5 where

tCoFeB = 2, 3, 4, 5 Å.

• [Co40Fe40B20(3 Å)/Pd(tPd)]5 where tPd = 6, 8,

10, 15, 60 Å.

Magnetization measurements were performed at room
temperature using a PMC MicroMag 2900 alternating
gradient magnetometer (AGM) with the magnetic field
applied either in-plane or out-of-plane. Magnetic domain
structure was imaged were studied using an Evico Mag-
netics Kerr Microscope with a highly stable and intense
Xenon short arc light source. The maximum optical reso-
lution of about 300 nm. A maximum perpendicular mag-
netic field of 9200 Oe was provided by an electromagnet.

IV. FORMULATION AND PHYSICAL
EXPLANATION OF THE MODEL

A. Relaxation mechanisms

It is known that the relaxation mechanisms of the mag-
netization of multilayer systems with PMA change with
the magnetization of the structure [21, 52–54]. In the
following we provide a brief summary of this evolution,
a more complete discussion can be found in [21]. First,
small domains nucleate in localized sections of the sample
due to a stochastic relaxation of the magnetization due
to thermal effects [55–57]. These domains serve as nu-
cleation centers for labyrinth domains, inducing a sharp
change in the magnetization of the structure. After the
system is populated with these domains, the relaxation
takes place by growth of the relaxed domains through the
motion of the domain walls. Finally, when the growth of
the domains is no longer energetically prefered, the relax-
ation is performed by annihilation of the remaining non-
relaxed labyrinth domains. From this point forward, we
refer to the different regimes as the L regime (Labyrinth
domain nucleation), W regime (domain Wall motion),
and A regime (domain Annihilation). Furthermore, we
refer to the transition from the L regime to the W regime
and from the W regime to the A regime as the LW and
WA transitions, respectively.

Fig. 2 shows the evolution of the magnetic domains of
the [CoFeB(3 Å)/Pd(10 Å)]5 sample for different times
after an external field of H = 60.2 Oe is applied op-
posite to the magnetization of the negatively saturated
sample. We can clearly see the nucleation of small do-
mains [Fig. 2(a)] which serve as nucleation centers for the
labyrinth domains [Fig. 2(b)]. These domains eventually
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FIG. 2: Kerr microscopy image of the evolution
of the labyrinth magnetic domains of a reversing
[CoFeB(3 Å)/Pd(10 Å)]5 multilayer system with PMA
for (a) t= 4 s, (b) 20 s, (c) 44 s, and (d) 65 s after tha
application of a perpendicular applied field H = 60.2 Oe.
White (black) indicates negative (positive) saturation.

span the entire sample [Figs. 2(c) and (d)], confirming
the well-known relaxation mechanisms typical of multi-
layer thin films with PMA. We have found that to ob-
tain a physically meaningful Preisach distribution which
describes the hysteresis cycles of the multilayer system
[Co40Fe40B20(tCoFeB)/Pd(tPd)]n, it is necessary to sep-
arately account for the different relaxation mechanisms.

We emphasize that a given magnetization state in a
thin film with PMA is composed mostly of a combina-
tion of up/down states distributed spatially throughout
the structure. This means that for these systems, the
hysterons composing the Preisach distribution are di-
rectly related to the spatial distribution of the up/down
magnetization states. Consequently, the distribution of
coercivities and interactions composing the Preisach dis-
tribution are directly related to the spatial distribution
of coercivities and interactions throughout the sample,
respectively.

B. Distribution of coercivities

It has been shown that a Gaussian distribution of the
anisotropies is a reasonable choice to account for the
structural disorder in thin films with PMA [25]. The dis-
tribution of coercivities is assumed to take the following

form

f (HC) =(1− pd)
1√

2πσC
exp

[
−
(
HC − H̄C

)2
2σ2

C

]

+ pd
1√

2πσD
exp

[
−
(
HC − H̄D

)2
2σ2

D

]
, (7)

where σC is the variance of the coercivities, and H̄C is
the average coercive field of the system.

Eq. (7) has an additional term which represents the
defects within the samples. H̄D is their average coercive
field, σD is the variance of their coercive fields, and pd
is the proportion of defects. The defect coercivity H̄D is
independent of the average coercive field H̄C in order to
separate the contribution of the defects from that of the
PMA.

A possible origin of these defects is the roughness of
the Si substrate which is of the order of 18 Å. When
this roughness is comparable to the total thickness of
the magnetic material (nominal thickness of the CoFeB
times the number of repetitions), local variability in the
structure is introduced. When combined with the natural
roughness of the interface, these changes lead to local
variations of the PMA throughout the sample.

Eq. (7) does not depend on the magnetization state,
and thus does not account for the evolution of the relax-
ation mechanisms explained in Section IV A. Indeed, the
distribution of anisotropies arises from local changes in
the physical configuration of the multilayer, and should
not depend on the magnetic state of the structure.

C. Distribution of interactions

As stated previously, the origin of the nucleation
sites which initiate the different reversal regimes is ther-
mally activated stochastic magnetic relaxation [55–57].
Nonetheless, once the nucleation sites are created, the re-
laxation processes and mechanisms are governed by the
interactions throughout the system [25, 26, 52, 54, 58, 59].

Other work on thin film structures where local relax-
ation processes arise randomly throughout the sample
has shown that the interactions typically follow single or
multipeaked distributions [38, 39, 42, 43, 60–62]. We as-
sume the simplest case, where the distribution for the
interactions is given by the single peak Gaussian distri-
bution

g (HB) =
1√

2πσB
exp

[
−H

2
B

2σ2
B

]
(8)

where σB is the interaction variance, which depends on
the magnetization state of the system [33].

When σc is very small, most of the information pro-
vided by the Preisach distribution is centered around
a very narrow range of HC . In this case, when solv-
ing Eq. (1) for major loops [b(HC) is given by Eq. (2)],
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Eq. (8) is indistinguishable from an equivalent distribu-

tion gp (HB) = exp
[
−(HB − H̄B)2/(2σ2

Bp)
]
/(
√

2πσBp),

where H̄B is the mean interaction field, and σBp is the
variance of the new distribution. For a proper physical
description, this mean field should depend linearly on the
magnetization state following H̄B = αm, as given by the
moving Preisach model (MPM) [35, 63, 64]. However,
we have found that the MPM alone is not able to de-
scribe properly the hysteresis cycles of our multilayers
with PMA, and a non-linear dependence of H̄B with m
is necessary. It has been suggested that both the VVPM
and MPM are necessary in systems with complex mag-
netization processes [35], and a two peaked model which
can describe their individual and combined contributions
(as particular cases) has been formulated previously by
Stancu et al. [62]. Nonetheless, if both the VVPM and
the MPM are used simultaneously to reproduce the ma-
jor hysteresis loops of our samples, we found that the
MPM only adds a fitting parameter α with an effect in-
distinguishable from the results obtained by the VVPM
alone. Hence, we use Eq. (8), where σB includes informa-
tion on both the mean interaction field and the variance
of the interactions. Future works could focus on the sepa-
ration of both contributions by the study of, e. g., FORC
diagrams.

Taking into account the existence of the three different
relaxation regimes L, W, and A, we have separated the
evolution of σB in three stages. Each individual stage fol-
lows the general expression given by the VVPM [Eq. (4)],
and we ensure continuity of σB for −1 < m < 1. σB is
then given by

σuB =


σL
a + σL

b m m < mLW
σW
a + σW

b |m|
0.1

mLW < m < mWA
σA
a + σA

b |m|
5

m > mWA

(9)

for the up cycle, and

σdB =


σL
a − σL

b m m > −mLW
σW
a − σW

b |m|
0.1 −mLW > m > −mWA

σA
a − σA

b |m|
5

m < −mWA
(10)

for the down cycle. σβa and σβb , with β ≡ L,W,A, are
given in Eq. (A2). They are functions of the following
parameters: the value of σB at the zero magnetization
state σ0, the value of σB at the start of each half loop
σst, the value of σB at the end of each half loop σnd, the
value of m for which the LW transition occurs mLW, and
the value of m for which the WA transition occurs mWA.

A phenomenological approach was used to identify
each value of the exponent k, similar to recent works
treating the modeling of the hysteresis of magnetic ma-
terials [28, 31, 65, 66]. More precisely, they were obtained
by fitting the measured [CoFeB(3 Å)/Pd(10 Å)]15 mul-
tilayer, and application of the model to the remaining
samples revealed that they remain unchanged as long as
there is an negligible in-plane component of the magne-
tization.

-1
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0
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1

-1000 -500 0 500 1000

M/Ms

H(Oe)

Theory VVPM
AGM n = 5
AGM n = 10
AGM n = 15

FIG. 3: Hysteresis cycles of a [CoFeB(3 Å)/Pd(10 Å)]n mul-
tilayer system, with n = 5, 10, and 15. Comparison of alter-
nating gradient magnetometer measurements with the results
from the variable variance Preisach model.

Both mLW and mWA are defined for the up-loop,
and the formulation of Eqs. (9) and (10) account for the
proper sign and value of m. In practice, the magnetiza-
tion at which the reversal mechanism changes is not well
defined, and there will always be a transitional regime
where several mechanisms are present at the same time.
Thus, the magnetizations mLW and mWA are approxi-
mate values. In the following sections this will be evident
in the high estimated errors of the fitted values.

The variations of the local interactions throughout a
system with PMA are mostly related to the up-down
transitions and the density of domain walls [26, 58, 60],
and thus only irreversible processes are relevant. Further-
more, an increase of temperature results in a reduction of
the coercive field [6, 67], and thus role of the temperature
is taken into account in Eq. (7) through the value of H̄C .
Hence, only the irreversible magnetization Mirr [Eq. (5)]
is used to calculate the evolution of σB , and consequently,
to determine the values of mLW and mWA.

V. RESULTS AND DISCUSSION

Fig. 3 shows a comparison of the theoretical re-
sults obtained with the VVPM given by Eqs. (9)
and (10) with the experimental hysteresis cycles for the
[CoFeB(3 Å)/Pd(10 Å)]n samples, with n = 5, 10, and
15. An excellent agreement between the two is observed
for the three samples, and similar results were obtained
for different Pd and CoFeB thicknesses (Figs. 7 and 8).
However, when the samples show a strong in-plane mag-
netization component our model is no longer able to
reproduce the experiments. This is because the rever-
sal processes change, and therefore the model has to be
changed accordingly to account for the new relaxation
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Sample H̄C(Oe) σ0(Oe) σst(Oe) σnd(Oe) mLW mWA σD(Oe) Sat. Corr. (%)

[CoFeB(3 Å)/Pd(10 Å)]5 89 ± 1 4 ± 1 3 ± 1 80 ± 10 −0.25 ± 0.75 −0.1 ± 0.6 300 ± 50 5 ± 0.5

[CoFeB(3 Å)/Pd(10 Å)]10 85 ± 5 150 ± 10 20 ± 5 250 ± 5 −0.3 ± 0.29 0.55 ± 0.25 200 ± 50 3 ± 0.5

[CoFeB(3 Å)/Pd(10 Å)]15 25 ± 5 390 ± 10 50 ± 5 420 ± 10 −0.5 ± 0.1 0.3 ± 0.29 100 ± 50 1 ± 0.3

TABLE I: Effect of the number of repetitions on the parameters of the variable variance Preisach model for different
[CoFeB(3 Å)/Pd(10 Å)]n samples.

mechanisms. Examples of samples with strong in-plane
component of the magnetization can be seen in Figs. 7
(tCoFeB = 5 Å) and 8 (tPd = 6 Å).

The simulation parameters are summarized in Ta-
bles I, II, and III. Of the different simulation parameters,
the average coercive field H̄C , the variances σC , σ0, σst
and σnd, and the magnetizations mLW and mWA are
the most relevant when describing the magnetization re-
versal of a thin film with PMA. In general, we found that
besides the defects (which present a high coercive field),
the films are of very high quality with a very low distri-
bution of coercivities, and thus σC is not listed (σC = 1
Oe for all the samples, which is the lowest resolution that
our numerical implementation of the VVPM has for the
coercive field). The final value labeled Sat. Corr. is
a percentage correction of the saturation magnetization
applied to eliminate the mismatch between the measured
and theoretical saturation, which may stem from tem-
perature effects. The reversible magnetization [Eq. (6)]
was fitted to the sections at the beginning of each half
loop before the sharp irreversible switching is observed
(Figs. 3, 7 and 8). We obtain a reasonably good agree-
ment with the experiments, and the associated fitting
parameters remain mostly on the ranges of x = 0.2− 0.3
and a = 200 − 300 Oe. However, the reversible magne-
tization relaxation due to temperature effects is not the
focus of this work, and thus the values of these fitting
parameters are not specified for each individual sample.

We have estimated the errors linked to each fitting pa-
rameter in order to provide a better understanding of
the precision of the obtained results. To estimate these
errors, individual parameters were varied until it was ev-
ident that the calculated hysteresis loops no longer de-
scribed the experimental measurements. H̄C , σ0, σst,
and σnd show very small estimated errors (Tables I , II,
and III) of up to 10 Oe, which arise from the small varia-
tions in the experimental data due to thermal effects and
the experimental setup. From a percentage point of view,
some of these errors appear significant. However, due to
constraints in the simulation time, our implementation
of the VVPM has a maximum precision of 1 Oe for all
the variances. Furthermore, due to the small coercivity
of our samples, most of the magnetization dynamics hap-
pen at low fields, and thus errors of the order of 10 Oe
become more relevant. It can be seen that even when
the values of the coercivity and the variances increase,
the estimated errors stay within the same order of mag-
nitude (≈ 10 Oe). On the other hand, all the values of

mLW and mWA have high estimated errors, which is an
indication that the change between the different reversal
mechanisms occurs gradually, leading to regimes where
more than one mechanism is present.

The defects of almost all the samples had similar aver-
age coercive field (H̄D = 800 Oe with varying estimated
errors. For the [CoFeB(3 Å)/Pd(15 Å)]5 sample a slightly
different value of H̄D = 750 ± 10 Oe was used instead),
and only the variance σD changed from sample to sam-
ple. The effect of these defects on the hysteresis cycle is
evident in Fig. 4(a) through the gap in the magnetization
for high fields (|H| > 300 Oe).

In the following we present an analysis of the measured
hysteresis cycles and a comparison with our model, which
has allowed us to identify different behaviors of the mag-
netization reversal and the magnetostatic interactions re-
lated to changes in the number of repetitions, thickness
of the CoFeB, and thickness of the Pd.

A. General discussion

By analyzing the values of the fitting parameters pre-
sented in Tables I, II, and III, we can explain the different
physical aspects related to the size of the domains, the
domain wall density, the magnetostatic interactions, and
the number of repetitions in multilayers with PMA.

It has been shown theoretically and experimentally
[26, 52, 58] that there is a reduction of the domain size (or
thickness in the case of stripe domains) when the num-
ber of repetitions of a PMA multilayer increases. This
reduction in size has been related to an increase of the
interlayer magnetostatic interactions [26, 58], and orig-
inates from the competition between the latter and the
domain wall energy of the system [26, 59]. More pre-
cisely, the domain wall energy of the system per unit
volume decreases with increasing domain size, while the
magnetostatic energy per unit volume decreases with de-
creasing domain size. The energy is thus minimized for
the domain size and density of domain walls related to
the dominant mechanism, namely domain wall energy
for low n (weak magnetostatic interactions, big domains)
and magnetostatic interactions for high n (strong magne-
tostatic interactions, small domains). Knowing that σB
(and consequently σ0, σst, and σnd) contains information
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FIG. 4: Measured and calculated hysteresis cycle of
[CoFeB(2 Å)/Pd(10 Å)]5 and [CoFeB(3 Å)/Pd(10 Å)]5 mul-
tilayer system.

on both the strength and variance of the interactions, we
can relate wide and narrow labyrinth domains to low and
high values of σB , respectively [e. g., comparing σ0, σst,
and σnd for n = 10 and 15 in Table I, it is evident that
the sample with n = 10 has wider labyrinth domains
than the sample with n = 15 due to the difference of
their magnetostatic interaction].

Now we will make use of Fig. 5, which shows a sim-
plified one dimensional magnetization state of the up-
wards cycle after each stage of the magnetization re-
versal, namely i) saturation [Fig. 5(a)], ii) L regime
[Figs. 2 and 5(b)], iii) W regime [Fig. 5(c)], and iv)
A regime [Fig. 5(d)]. Fig. 5(e) shows the evolution
of σuB with the normalized magnetization m for the
[CoFeB(3 Å)/Pd(10 Å)]n samples.

In the saturated state i) the interaction is homogeneous
throughout the sample, and thus σuB (m = −1) = σst is

zero (or very low in real samples), as seen in Fig. 5(e). It
increases with the number of layers to represent stronger
magnetostatic interactions.

After the nucleation field is reached the system ar-
rives at stage ii), and the magnetization decreases rapidly
due to the formation of labyrinth stripe domains in an
avalanche process [21]. The disorder of the local mag-
netization states and the density of the domain walls
throughout the sample has increased greatly, leading to
different values of the interactions across the sample.
This increases σuB following a linear behavior given by
the first line of Eqs. (9) and (10) until the magnetization
reaches the critical value m = mLW. This linear behav-
ior can be observed in Fig. 5(e) for −1 < m < mLW.

Further increasing the field will induce motion of
the domain walls, as indicated by the small arrows in
Fig. 5(c) [stage iii)]. In a real sample, the shape of
the labyrinth domains and thus the density of domain
walls remains mostly constant. Hence, the interactions
observe very low variation. This is represented by the
small value of the exponent k = 0.1 in the second line
of Eqs. (9) and (10). Thus, σuB is mostly constant for
m < 0 and m > 0, but a jump in its value is introduced
at m ≈ 0. This behavior can be observed in Fig. 5(e)
for mLW < m < mWA. In the following discussion we
explain the origin of this jump.

It is well known that due to the magnetostatic interac-
tion, magnetic domains become more stable as their size
decreases. When m < 0 the down domains are bigger
than the up domains, while for m > 0 the up domains
are dominant. That means that due to their size, the
up domains are more stable for m < 0, and is easier
to switch into them from the less stable down domains,
hence there is a lower σuB . For m > 0 the down do-
mains are more stable, and thus σuB increases because it
is now more difficult to induce switching. m ≈ 0 is a
transitional state where both the up and down domains
are roughly equally stable, leading to the jump in σuB .
In general, mLW < 0. Nonetheless, there can be mul-
tilayer structures where mLW > 0. In such cases, σuB
does not demostrate the transitional regime (jump), and
it becomes nearly constant with value 2σ0 − σst.

Another consequence of the increased stability of small
domains is a slow variation of the magnetization with the
applied field when the domains decrease in size. Thus,
once in the A regime [stage iv)], the variance changes
slowly from 2σ0−σst (for m = mWA) to σnd (for satura-
tion) to represent the increased stability of the domains.
This slow change in σuB is obtained through the large
exponent k = 5, as seen in Fig. 5(e) for m > mWA.

As the domains are annihilated the density of domain
walls decreases, reducing σuB . From the values in Ta-
bles I, II, and III, it can be shown that almost all the
samples exhibit a reduction of the variance in the A
regime (σnd < 2σ0 − σst). Only two samples show devi-
ations from this behavior: [CoFeB(2 Å)/Pd(10 Å)]5 and
[CoFeB(3 Å)/Pd(10 Å)]5. The [CoFeB(2 Å)/Pd(10 Å)]5
sample exhibits very small magnetostatic interactions
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FIG. 5: Stages of the magnetization reversal of a thin film with perpendicular magnetic anisotropy, namely (a) saturation,
(b) L regime, (c) W regime, and (d) A regime. (e) Evolution of σB for the up cycle of a [CoFeB(3 Å)/Pd(10 Å)]n multilayer
system, with n = 5, 10, and 15.

due to a small thickness of the magnetic material and
a small number of repetitions, and thus the switching
regimes are not well defined as the magnetization changes
(hence, the values of mLW and mWA in Table II are not
defined for this sample). This is further confirmed by the
square hysteresis loop, as shown in Fig. 4(a).

The hysteresis loop of the [CoFeB(3 Å)/Pd(10 Å)]5
sample is shown in Fig. 4(b). While the squareness of
the loop approaches unity, there is a noticeable slope in-
dicating true saturation requires significantly more field.
We only were able to reproduce this slope by increasing
σB in the A regime. A similar behavior in other thin films
with PMA has been attributed to pinning of the domains
to defects [54] or to the physical domain boundaries in
patterned thin films [57], which slows down the magne-
tization reversal effectively increasing σB . This pinning
is present as long as there is a sufficiently strong inter-
action within the sample. Nonetheless, for samples with
strong interlayer magnetostatic interactions, the domains
become smaller. With smaller domains, the pinning of
the magnetization around the defects becomes less rele-
vant, and σB decreases instead due to the increased order
induced by the domain annihilation.

Finally, one should expect σB to be equal for m = ±1.
As seen in Fig. 5(e) this is not the case. This difference
comes from the fact that σB contains information on both
the strength and variance of the interactions. As stated
before, as the system reaches saturation and the domains
decrease in size they become more stable, which changes
the interaction strength seen by an opposite applied field.

B. Number of repetitions

We studied the effect of the number of repetitions n on
the hysteresis cycles of [CoFeB(3 Å)/Pd(10 Å)]n samples,
with n = 5, 10, 15, and the results are summarized in
Table I.

The most notable effect is the systematic increase of
the variances σ0, σst, and σnd, indicating an increase of

the magnetostatic interactions. In fact, as we noted in
the previous section, we can attribute several of the dif-
ferent phenomena observed in our samples to the increase
of magnetostatic interactions, making it one of the most
fundamental contributions that govern the behavior of
the magnetization switching in multilayer structures with
PMA.

Initially, increasing the number of bilayers does not
affect the coercive field. However, once a certain thresh-
old is overcome, the coercivity starts to decrease, in
agreement with Jung. et al. [22] who found a con-
stant H̄C for a range of small to mid n, and then a
reduced H̄C for large n. To explain this effect, let us
assume a perfect square hysteresis cycle with a coercive
field given by the perpendicular anisotropy field given by
(in Oe) HA ≡ 2K⊥/Ms, where K⊥ is the perpendicular
anisotropy constant (in erg/cc), and Ms is the saturation
magnetization of the magnetic material (in emu/cc). In-
creasing n affects mostly the volume, and thus HA (and
consequently Hc) remains constant. Nonetheless, as the
magnetostatic interactions between the layers increase
with n, self-interaction effects start to be relevant, in-
ducing an in-plane shape anisotropy and reducing the
coercivity for high n. Increasing n also adds more inter-
faces to the structure, which should induce variations in
the anisotropy constant K⊥. Our model accounts implic-
itly for these variations through the Preisach distribution
and the evolution of the coercivities and interactions with
increasing n, thus precise descriptions of the interface
anisotropy throughout the sample are not necessary.

Increasing n also decreases the nucleation field, even-
tually causing magnetization switching even with an op-
posing applied field (see the negative nucleation field in
Fig. 3). This effect has been observed before experimen-
tally and theoretically [21, 22, 25, 53, 68]. Knowing that
the mechanism of reversal nucleation is identical for all
the samples, namely the avalanche of labyrinth domain
formation, the presence of a demagnetizing energy can
be inferred. Furthermore, it has been shown [25] that
this behavior is observed in systems that present only
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K

FIG. 6: In plane shape anisotropy (left) and antiferromagnetic
interaction (right) contributions of the dipolar interaction to
the magnetic ordering of two magnetic moments.

exchange and dipolar interactions. Therefore, by a pro-
cess of elimination (due to the absence of any material
that could produce an antiferromagnetic exchange), we
attribute this behavior to the competition between the
dipolar interaction and the PMA, which tends to induce
an antiparallel state of neaby magnetic moments within
a layer, favoring the early formation of nucleation centers
and labyrinth domains.

To better understand the origin of this competition,
we consider the energy of the dipolar interaction between
two magnetic moments ~s1 and ~s2 with equal saturation
Ms and connected by the vector ~r, given by

ED = −µ0

4π

M2
s

r3

[
3 (~s1 · ~r) (~s2 · ~r)

r2
− ~s1 · ~s2

]
. (11)

From the first term within the square brackets in
Eq. (11), it is evident that the dipolar energy will be
minimized when the magnetic moments are parallel to
the vector ~r, and thus parallel to each other, as shown
in Fig. 6(left). This leads to the well-known shape
anisotropy. However, due to external factors, the mag-
netic moments could prefer a direction that is not paral-
lel to the connecting vector, and the dipolar interaction
tends to align the two magnetic moments in an antipar-
allel state, as shown in Fig. 6(right). This antiparallel
state has been observed theoretically for thin films [69],
spheres [70], and multilayers [71], and experimentally in
arrays of elliptical nanomagnets [72]. In our samples,
the external factor inducing the antiparallel state is the
PMA.

C. CoFeB thickness

The effect of the CoFeB thickness was studied by an-
alyzing different [CoFeB(tCoFeB)/Pd(10 Å)]5 samples,

with tCoFeB = 2, 3, and 4 Å. The results are summa-
rized in Table II and Fig. 7. The sample with tCoFeB =

5 Å shows a strong in-plane component of the mag-
netization, and thus we were not able to reproduce its
hysteresis loop using our model.

Similar to the number of repetitions, increasing the
thickness of the CoFeB layer increases the magnetostatic
interactions. This increase is more evident in the values
of σ0 and σst when changing from tCoFeB = 3 Å to 4 Å.

-1
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0

0.5

1

-1000 -500 0 500 1000

M/Ms

H(Oe)

Theory VVPM
AGM tCoFeB = 2 Å
AGM tCoFeB = 3 Å
AGM tCoFeB = 4 Å
AGM tCoFeB = 5 Å

FIG. 7: Hysteresis cycles for a [CoFeB(tCoFeB)/Pd(10 Å)]5
multilayer system, with tCoFeB = 2, 3, 4, and 5 Å. Compari-
son of alternating gradient magnetometer measurements with
the results from the variable variance Preisach model.

Nonetheless, when increasing the thickness from 2 Å to
3 Å the increase in the magnetostatic interactions is in-
ferred from the increase in σnd, which represents stronger
pinning to the defects.

Furthermore, a diminution of the coercive field can be
observed. This is evidence [73] that the anisotropy of a
single Pd/CoFeB/Pd multilayer is given by the combi-
nation of an in-plane volumetric component Kv, and an
out-of-plane component Ks which arises from a surface or
interface anisotropy present at each CoFeB/Pd interface
due to atomic mixing [54, 74, 75]. This competition even-
tually leads to the disappearance of the PMA for thicker
CoFeB layers, as shown in Fig. 7, where experimental
hysteresis cycles for different tCoFeB values are shown.

PMA can be observed for tCoFeB = 2, 3, and 4 Å, with
the coercivity being lower in the latter. Furthermore, the
hysteresis cycle of the sample with tCoFeB = 5 Å clearly
shows a shape typical of in-plane magnetization, and thus
the PMA has either disappeared or is weak compared to
the in-plane volumetric component.

D. Pd thickness

We analyzed different [CoFeB(3 Å)/Pd(tPd)]5 samples
to study the effect of the Pd thickness, and the results
are summarized in Table III and Fig. 8.

We observed that a critical value for the thickness of
the Pd is necessary to achieve PMA in the sample, as
shown in Fig. 8. It can be seen that for tPd = 6 Å
the system has an in-plane easy axis, while thicknesses
of 10 Å, 15 Å and 60 Å present a clear indication of
PMA and were well described by our model. This critical
Pd thickness has been observed by other groups as well
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Sample H̄C(Oe) σ0(Oe) σst(Oe) σnd(Oe) mLW mWA σD(Oe) Sat. Corr. (%)

[CoFeB(2 Å)/Pd(10 Å)]5 82 ± 2 10 ± 2 10 ± 2 10 ± 2 − − 110 ± 10 9 ± 1

[CoFeB(3 Å)/Pd(10 Å)]5 89 ± 1 4 ± 1 3 ± 1 80 ± 10 −0.25 ± 0.75 −0.1 ± 0.6 300 ± 50 5 ± 0.5

[CoFeB(4 Å)/Pd(10 Å)]5 12 ± 3 86 ± 2 15 ± 2 60 ± 10 −0.5 ± 0.1 −0.1 ± 0.09 200 ± 50 3.5 ± 0.5

TABLE II: Effect of the CoFeB thickness on the parameters of the variable variance Preisach model for different
[CoFeB(tCoFeB)/Pd(10 Å)]5 samples.

Sample H̄C(Oe) σ0(Oe) σst(Oe) σnd(Oe) mLW mWA σD(Oe) Sat. Corr. (%)

[CoFeB(3 Å)/Pd(10 Å)]5 89 ± 1 4 ± 1 3 ± 1 80 ± 10 −0.25 ± 0.75 −0.1 ± 0.6 300 ± 50 5 ± 0.5

[CoFeB(3 Å)/Pd(15 Å)]5 37 ± 2 75 ± 5 12 ± 1 85 ± 5 0.01 ± 0.05 0.45 ± 0.15 90 ± 70 4.5 ± 0.5

[CoFeB(3 Å)/Pd(60 Å)]5 42 ± 3 12 ± 1 9 ± 1 1 ± 1 −0.21 ± 0.78 −0.19 ± 0.78 200 ± 50 4 ± 0.5

TABLE III: Effect of the Pd thickness on the parameters of the variable variance Preisach model for different
[CoFeB(3 Å)/Pd(tPd)]5 samples.
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FIG. 8: Hysteresis loops for a [CoFeB(3 Å)/Pd(tPd)]5 multi-

layer system, with tPd = 6, 8, 10, 15, and 60 Å. Comparison
of alternating gradient magnetometer measurements with the
results from the variable variance Preisach model.

[74], and is attributed to smoother CoFeB/Pd interfaces
for thicker Pd layers [76]. Moreover, our model does not
describe properly the hysteresis loop of the sample with
tPd = 8 Å, suggesting a transitional state between in-
plane anisotropy and PMA.

Furthermore, a very high Pd thickness leads to a hys-
teresis loop which is qualitatively very similar to that
of a multilayer with low number of repetitions. The
increased distance between the magnetic layers reduces
the interlayer magnetostatic interactions, and the mag-
netic behavior of the sample tends towards that of a
single Pd/CoFeB/Pd structure, as shown in Fig. 8 for
tPd = 60 Å. The initial switching observed in this sample
is due to small differences in one of the repetitions, which
has a lower coercive field than the rest of the sample, fur-

ther confirming that each repetition acts individually.

VI. CONCLUSIONS

We have presented a new formulation of the variable
variance Preisach model that is able to describe quanti-
tatively the hysteresis cycles of multilayer thin films with
PMA, bringing an important improvement over other
models which only provide qualitative descriptions. Fur-
thermore, we associate our model with the different mag-
netization reversal processes observed in the multilayer
by adjusting the interaction variance as the magnetiza-
tion changes. The model provides insight on details of the
physics of the magnetization reversal mechanisms and
how they are influenced by the interactions. Addition-
ally, our model has the potential to predict the hysteresis
loops of multilayer structures with PMA when individual
physical parameters such as the thicknesses of the layers,
the number of repetitions, and roughness of the interfaces
are changed.

We applied our model to [CoFeB/Pd]n multilayer
structures, and we found that in general the variance
of the interaction is either constant or follows a sim-
ple dependence on the magnetization, but its behavior
is greatly dependent upon the reduction of the domain
size due to the increase of the magnetostatic interactions,
and the enhanced stability of the domains as their size is
reduced.

For a small to intermediate number of repetitions the
coercive field is not affected. However, a high number of
repetitions eventually induce an in-plane easy axis and
reduce the coercivity. An increase of the magnetostatic
interactions was also observed. This eventually led to
a negative nucleation field, which arises from the com-
petition between the magnetostatic interactions and the
PMA.

Furthermore, increasing the thickness of the CoFeB
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layer also increases the magnetostatic interactions of the
structure. Additionally, the coercive field is reduced due
to a competition between in-plane volumetric anisotropy
and out-of-plane surface anisotropy.

Finally, a minimum thickness of the Pd is necessary to
achieve perpendicular magnetization due to the necessity
for smooth CoFeB/Pd interfaces. However, a thick Pd
layer will decrease the interlayer interaction to the point
where each repetition behaves individually.

VII. ACKNOWLEDGEMENTS

This work was partially funded by the FONDECYT
Postdoctoral project No 3150180. C. Garcia acknowl-
edges the financial support received by FONDECYT
Grants No 1140552 and 1130950 and Proyecto Basal FB
0821. Support from the Swedish Research Council (VR),
Swedish Foundation for Strategic Research (SSF), the
Knut and Alice Wallenberg Foundation, and C-SPIN, a
STARnet Center of DARPA and MARCO, is gratefully
acknowledged.

Appendix A: Definition of the VVPM variances

Defining the variances σ1 and σ2 as

σ1 ≡ σ0 − σst σ2 ≡ −2σ0 + σst + σnd, (A1)

the variances specified in Eqs. (9) and ((10)) are given
by

σL
a = σ0 σL

b = σ1

σW
a = σ0 + σ1mLW − σ1s

(
mLW

) ∣∣mLW
∣∣0.1 ∆um

WA
LW

σW
b = σ1s (m) ∆mWA

LW (A2)

σA
a = σ0 + σ1 − σ2s

(
mWA

) ∣∣mWA
∣∣5 ∆um

1
WA

σA
b = σ2s (m) ∆m1

WA,

with

∆mWA
LW ≡

(
1−mLW

)
s
(
mWA

) ∣∣mWA
∣∣0.1 − s

(
mLW

) ∣∣mLW
∣∣0.1

∆m1
WA ≡

1

1.0− s
(
mWA

) ∣∣mWA
∣∣5 .

(A3)

s(x) is −1 for x < 0, 1 for x > 0, and 0 for x = 0.
Eqs. (A2) and (A3) arise algebraicaly from ensuring σB
is continuous from −1 < m < 1.
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