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Phase transitions in a classical Heisenberg spin model of a chiral helimagnet with the
Dzyaloshinskii–Moriya (DM) interaction in three dimensions are numerically studied. By using
the event-chain Monte Carlo algorithm recently developed for particle and continuous spin systems,
we perform equilibrium Monte Carlo simulations for large systems up to about 106 spins. Without
magnetic fields, the system undergoes a continuous phase transition with critical exponents of the
three-dimensional XY model, and a uniaxial periodic helical structure emerges in the low temper-
ature region. In the presence of a magnetic field perpendicular to the axis of the helical structure,
it is found that there exists a critical point on the temperature and magnetic-field phase diagram
and that above the critical point the system exhibits a phase transition with strong divergence of
the specific heat and the uniform magnetic susceptibility.

I. INTRODUCTION

Frustration and competition between interactions
and/or fields often induce complicated spin structures
into magnetic materials such as spin ice, magnetic
skyrmion, and spin liquid. Phase transitions and
phase diagrams in magnetic materials driven by vari-
ous interactions and fields have been extensively stud-
ied in condensed matter physics and also statistical
physics. Among them, chiral magnets such as MnSi and
Cr1/3NbS2 have recently attracted great interests to ex-
perimental and theoretical studies not only for its funda-
mental properties but also for applications [1–9]. Chiral
helimagnet is a magnetic system in which a uniaxial heli-
cal structure emerges in the low temperature region. The
helical structure is induced by the Dzyaloshinskii–Moriya
(DM) interaction [10, 11] which is an antisymmetric in-
teraction breaking a chiral symmetry, and thus, the two
same helical structures with different winding directions
do not degenerate. By a variational analysis of a one-
dimensional continuum model [6–9], it is revealed theo-
retically that a chiral magnetic soliton lattice (CSL) is
formed with a finite magnetic field perpendicular to the
axis of the helical structure (see Fig. 1), and a continu-
ous phase transition to forced ferromagnetic phase occurs
with increasing the magnetic field. A mean-field analysis
shows that a phase transition into the CSL phase occurs
at a finite temperature under the magnetic field even in
a three-dimensional system[12].
While recent experiments [2, 3] have reported the ex-

istence of the CSL state at finite temperatures in three
dimensions, finite-dimensional effects beyond the mean-
field theory on the nature of the finite-temperature phase
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transitions of the system are still less clear. In the
absence of magnetic fields, renormalization-group ap-
proaches [13, 14] predict that the system undergoes a
continuous phase transition with critical exponents of
the ferromagnetic XY model. Other theoretical stud-
ies [15, 16] also indicate that the system belongs to the
same universality class of the ferromagnetic XY model.
On the other hand, with the magnetic field perpendicular
to the axis of the helical structure, the system no longer
has any continuous symmetry in the spin space. There-
fore, the nature of a possible phase transition in three
dimensions is nontrivial and possibly different from the
three-dimensional XY model.

In this paper, we study a three-dimensional classical
Heisenberg spin model of a chiral helimagnet by equilib-
rium Monte Carlo simulations. We especially focus on its
phase transitions and ordering structures in the low tem-
perature region with and without the magnetic field. Be-
cause of the competition among the DM interaction, the
symmetric exchange interaction, and the magnetic field,
complicated ordering structures emerge in the low tem-
perature region. In particular, there are many CSL states
with different numbers of chiral solitons which are sepa-
rated with each other by large energy barrier. Hence, a

FIG. 1. A schematic picture of the chiral-soliton-lattice struc-
ture. Each arrow represents a spin. The magnetic field is in
the upward direction of the figure.
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transition between the different CSL states hardly occurs
by means of conventional Monte Carlo algorithms such
as the Metropolis and the heat-bath algorithm. In or-
der to reduce the difficulty of the slow relaxation, we use
the event-chain Monte Carlo algorithm [17–21] which is
a recently proposed rejection-free and efficient algorithm
for equilibrium simulations. This algorithm enables us to
equilibrate quite large systems with more than 106 spins
so as to avoid suffering from its strong finite-size effects
particularly in the presence of the magnetic field.
This paper is organized as follows. In Section II we

define a classical Heisenberg spin model of a chiral he-
limagnet and various physical quantities. The details of
the event-chain Monte Carlo algorithm are presented in
Section III. In Section IV, results of our Monte Carlo sim-
ulations are shown, and properties of phase transitions
and ordering structures of the system with and without
a magnetic field are discussed. In Section V we discuss a
possible phase diagram and summarize our results.

II. MODEL AND PHYSICAL QUANTITIES

In this paper, we study a classical Heisenberg model
of a chiral helimagnet in a three-dimensional simple
cuboidal lattice. The system is defined by the Hamil-
tonian

H ({Si}) = −J
∑

〈i,j〉

Si · Sj −D ·
∑

i

(Si × Si+ŷ)

−h ·
∑

i

Si, (1)

where Si is a unit vector with three components, J is a
positive coupling constant, D = Dŷ is the DM vector,
and h = hẑ is a magnetic field perpendicular to the DM
vector D. The summation in the first term runs over all
the neighboring pairs of sites, and the other summations
run over all the sites. The lattice on which the system
is defined is a cuboid where the linear size of y direction
is α times as long as x and z directions. The linear size
of x and z directions of the lattice is denoted by L and
the total number of sites is N = αL3. We set α = 8 in
the following of this paper. Periodic boundary conditions
are imposed on x and z directions and a free boundary
condition on y direction.
The second term in the Hamiltonian (1) represents the

Dzyaloshinskii–Moriya interaction [10, 11] which induces
a helical spin structure. In the ground state of the sys-
tem without magnetic fields, all spins in each x-z plane
align ferromagnetically and the spins in each plane make
a canted angle θ = arctan(D/J) with respect to its near-
est neighbor plane along the DM vector. The wave vec-
tor qchiral corresponding to the helical structure in the
ground state is determined by D/J via

qchiral = arctan

(

D

J

)

ŷ. (2)

At a finite temperature, the system undergoes a phase
transition from a paramagnetic phase to a chiral helimag-
netic phase as temperature decreases. Following the pre-
vious works [15, 16], the system without magnetic fields
can be exactly mapped onto another system defined by
the Hamiltonian

H ′ ({Si}) = −J
∑

〈i,j〉
⊥

Si · Sj −
∑

i

Si · CSi+ŷ , (3)

where

C =





√
J2 +D2

J √
J2 +D2



 , (4)

and the summation in the first term runs over all the
neighboring pairs of two sites which are in the same x-z
plane. This Hamiltonian (3) for a finite value of D has
the same symmetry with the XY model, and therefore,
the original system is expected to belong to the same
universality class of the three-dimensional ferromagnetic
XY model [16].
In the presence of the magnetic field h perpendicular to

the DM vector, the structure of the ground state is mod-
ulated depending on h = |h|. For 0 < h < hc, the CSL is
formed, and all spins are parallel to the magnetic field for
h > hc. The precise value of hc is unclear for arbitrary
value of D/J while that for D/J ≪ 1 is calculated by a
continuum approximation [1, 6–9]. In the CSL state at
zero temperature, there are more than one local length
scales such as the distance between two chiral solitons
and the length of one chiral soliton, and hence, multiple
wave vectors are expected to be required to characterize
the CSL structure.
For the chiral helimagnetic system, we define the wave-

vector-dependent magnetization which captures the heli-
cal structure of the system as

m (q) =
1

N

∑

i

Si exp(iq · ri), (5)

where q is a three-component wave vector. The wave-
vector-dependent susceptibility associated with m (q) is
defined as

χ (q) = βN
(〈

|m (q)|2
〉

− |〈m (q)〉|2
)

, (6)

where β is an inverse temperature and the bracket 〈· · · 〉
denotes the thermal average. Note that χ (q) is pro-
portional to a Fourier component of the spin correlation
function

C (r) =
1

N

∑

i

(〈Si · Si+r〉 − 〈Si〉 · 〈Si+r〉) . (7)

In particular, the susceptibility with a wave vector q par-
allel to the DM vector D is denoted as χ‖ (q), where
q = |q|. Although the ground state of the system
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with no magnetic fields is obviously characterized by
m (q = qchiral), it is unclear that which q’s character-
ize the structure at finite temperature with/without a
magnetic field h 6= 0. We thus calculate the wave-vector
dependence of χ‖ (q), which yields the wave vectors q0

at which χ‖ (q0) gives a maximum value. By using χ (q),
the wave-vector-dependent finite-size correlation length
is defined as

ξL (q) =
1

2 sin (|qmin| /2)

√

χ (q)

χ (q + qmin)
− 1, (8)

where qmin is the minimum wave vector parallel to q.
Similarly to the susceptibility, the finite-size correlation
length depending on a wave vector q parallel to D is

defined as ξ
‖
L (q), where qmin in Eq. (8) is set to qmin =

(0, 2π/αL, 0).
We also define a distribution function of the energy

density e as

P (e) =

〈

δ

(

e− 1

N
H ({Si})

)〉

, (9)

which is evaluated by Monte Carlo simulations. From the
distribution, the specific heat c is calculated. When the
system exhibits a first-order phase transition, the dis-
tribution has a double-peak structure at the transition
temperature.
We study the phase transitions of the system with

D/J = 1 by equilibrium Monte Carlo (MC) simulations
using the event-chain Monte Carlo (ECMC) algorithm
[17–21] combined with the heat-bath algorithm, the over-
relaxation updates [22, 23] and the exchange Monte Carlo
method (or parallel tempering) [24]. The details of the
ECMC algorithm in our simulations are presented in the
next section.

III. EVENT-CHAIN MONTE CARLO

ALGORITHM

The ECMC algorithm was originally developed for par-
ticle systems [17–19], and recently applied to continuous
spin systems [20, 21]. In every step of the algorithm, only
one particle (or spin) is moved, and another interacting
particle (or spin) starts to move instead of rejecting a pro-
posal. Thus, a series of local updates called “event chain”
is formed, in which many particles (or spins) are updated
in a cooperative manner. This dynamics breaks the de-
tailed balance condition, but still satisfies the global bal-
ance condition. For various systems, the ECMC algo-
rithm outperforms conventional algorithms such as the
Metropolis algorithm [25] and the heat-bath algorithm
[26, 27]. In particular, it is revealed that the algorithm
reduces the value of the dynamical critical exponent z of
the three-dimensional ferromagnetic Heisenberg model to
z ≃ 1 from the conventional value z ≃ 2 [21]. This re-
duction enables us to simulate systems with much larger

degrees of freedom in equilibrium than those attained
with the conventional algorithms previously.
In this algorithm, the state of the system is represented

by ({Si} , U), where {Si} is the spin configuration and U
is a “lifting parameter.” The lifting parameter U specifies
the current rotation site and the direction vector of the
rotation axis. Explicitly, the lifting parameter is given as
an N × 3 matrix of the form U = ejv

T, where ej is an
N -dimensional unit vector with components (ej)k = δj,k
and v is a three-component unit vector. For concrete-
ness, we assume that the Hamiltonian can be written as
a summation of interactions

H ({Si}) =
1

2

∑

i,j

∑

a

E
(a)
ij (Si,Sj)+

∑

i,a

E
(a)
i (Si) , (10)

where the suffix “a” is the type of interaction. Note that
any decompositions of the Hamiltonian in the form of
Eq. (10) are allowed in the following argument. An ele-
mentary step of this algorithm is to propose an infinites-
imal rotation dφ of the moving spin Sj around the axis
v, and to accept the proposal with probability of the fac-
torized Metropolis filter [19]

WU (dφ)

=
∏

k∈∂j
a

exp



−βmax





d
(

∆E
(a)
jk (ϕ = 0;v)

)

dϕ
, 0



dφ





×
∏

a

exp



−βmax





d
(

∆E
(a)
j (ϕ = 0;v)

)

dϕ
, 0



dφ



 ,

where ∂j means the set of sites interacting with j-th spin,

∆E
(a)
jk (ϕ;v) = E

(a)
jk (Rv (ϕ)Sj ,Sk)− E

(a)
jk (Sj ,Sk) ,

∆E
(a)
j (ϕ;v) = E

(a)
j (Rv (ϕ)Sj)− E

(a)
j (Sj) ,

and Rv(ϕ) is a rotation matrix around v with an angle ϕ.
Thanks to the factorization, whether the proposal is ac-
cepted can be determined by each factor independently,
i.e., the proposal is accepted only if all the factorized
potentials avoid the rejection. When the proposal is re-

jected by a factor with the potential E
(a)
jk (or E

(a)
j ), then

a lifting event occurs and the lifting parameter is updated

as U → L
(a)
jk U (or U → L

(a)
j U), where L

(a)
jk (or L

(a)
j ) is a

lifting matrix. The balance condition requires that L
(a)
jk

and L
(a)
j satisfy [18]

L
(a)
jk g

(a)
jk = −g

(a)
jk , (11)

L
(a)
j g

(a)
j = −g

(a)
j , (12)

where

g
(a)
jk =

d

dϕ

(

∆E
(a)
jk (ϕ;v) ej +∆E

(a)
kj (ϕ;v) ek

)∣

∣

∣

ϕ=0
,

g
(a)
j =

d

dϕ

(

∆E
(a)
j (ϕ;v) ej

)∣

∣

∣

ϕ=0
,
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respectively. In general, L
(a)
jk and L

(a)
j which satisfy

Eq. (11) and Eq. (12) are rewritten by using an N × N
regular matrix A and the identity matrix I as

L
(a)
jk = I− 2

Ag
(a)
jk

(

g
(a)
jk

)T

g
(a)
jk · Ag(a)

jk

, (13)

L
(a)
j = I− 2

Ag
(a)
j

(

g
(a)
j

)T

g
(a)
j · Ag(a)

j

. (14)

In principle, any matrix A is available but a class of A
leading to a simple lifting event is desired in practice.
To make the algorithm into practice, an event-driven ap-
proach [28] is adopted, which allows to move the spins
with a finite displacement.
In the conventional ECMC algorithm for continuous

spin systems only with isotropic interactions [20, 21] and
a magnetic field, the Hamiltonian is decomposed as

Hiso ({Si}) =
1

2

∑

i,j,a

E
(a)
ij (Si,Sj) +

∑

i,a

E
(a)
i (Si) , (15)

where

E
(a)
ij (Si,Sj) = −J

(a)
ij Si · Sj , (16)

E
(a)
i (Si) = −h

(a)
i · Si. (17)

The isotropic interactions have a simple relation as

d

dϕ
∆E

(a)
jk (ϕ;v)

∣

∣

∣

∣

ϕ=0

= − d

dϕ
∆E

(a)
kj (ϕ;v)

∣

∣

∣

∣

ϕ=0

(18)

for all j, k and v. This relation yields that by choosing
the matrix A in Eq. (13) and Eq. (14) as the identity I,
the lifting matrices are determined as

(

L
(a)
jk

)

p,q
= δp,q − δj,pδk,q + δj,qδk,p, (19)

(

L
(a)
j

)

p,q
= δp,q (1− 2δj,p) , (20)

respectively. These lifting matrices make the lifting pa-
rameter U have one non-zero row, and thus, only a sin-
gle spin moves at any time. The master equation in
this case is explicitly written down in Appendix A. For
anisotropic interactions including the DM interaction,
however, Eq. (18) does not hold in general. In these cases,

L
(a)
jk depends on the spin configuration, and the updated

lifting parameter L
(a)
jk U has more than one non-zero rows,

meaning that multiple spins start to move after a lift-
ing event. Although we could implement another Monte
Carlo algorithm in which multiple spins move simultane-
ously [18, 29], we apply the ECMC algorithm only with
the rotation axis v = ŷ, where Eq. (18) holds for the
DM interaction and thus the single spin update is still
kept. Instead, the ergodicity condition is not satisfied by
the ECMC algorithm only with a single rotation axis. In
order to recover the ergodicity condition in the Markov
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FIG. 2. (Color online) Autocorrelation function
C|m(qchiral)|

2 (t) of the square of the wave-vector-dependent

magnetization |m (qchiral)|
2 of the chiral helimagnetic model

in three dimensions without magnetic fields. Open and filled
symbols represent C|m(qchiral)|

2 (t) with and without the
ECMC algorithm, respectively. The temperature is set to
the critical temperature Tc estimated in Sec. IVA.

chain, the over-relaxation and the heat-bath algorithms
are combined with this ECMC algorithm. The ECMC al-
gorithm enables us to sample different structures of the
system efficiently by inducing cooperative spin updates
of the same x-z plane in each event chain.
We demonstrate that the ECMC algorithm works ef-

ficiently in the chiral helimagnetic model defined by the
Hamiltonian (1) with D/J = 1 and h/J = 0. We mea-
sure the autocorrelation function CO (t) of a physical
quantity O at Monte Carlo time t defined by

CO (t) =
〈O (t)O (0)〉 − 〈O (t)〉 〈O (0)〉

〈O2 (0)〉 − 〈O (0)〉2
. (21)

Monte Carlo simulations for the measurements are per-
formed with and without the ECMC algorithm. One
Monte Carlo step (MCS) is defined as exactly one up-
date per spin while the number of updated spins in each
event chain of the ECMC algorithm is determined in a
probabilistic way. Because the wave vector qchiral char-
acterizes the order parameter of the finite-temperature
phase transition of the model without magnetic fields as
shown in the next section, we adopt the square of the
wave-vector-dependent magnetization |m (qchiral)|2 as a
physical quantity in Eq. (21). Fig. 2 shows MCS depen-
dence of the autocorrelation function C|m(qchiral)|

2 (t) for
L = 4, 8 and 16 at the critical temperature Tc which is
estimated in the next section. In the combined method
for the calculation of the autocorrelation function, we
use the heat-bath algorithm once in approximately 10
MCS by the ECMC algorithm. One can see in the figure
that C|m(qchiral)|

2 (t) decays much faster by combining the
ECMC algorithm with the conventional heat-bath algo-
rithm and the acceleration by the ECMC algorithm is
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FIG. 3. (Color online) Temperature dependence of the specific
heat c of the chiral helimagnetic model in three dimensions
without magnetic fields.

more significant with increasing L.

IV. RESULT

In this section, we present results of our Monte Carlo
simulations of the system with and without the mag-
netic field. The linear size of the system in the simu-
lations ranges from L = 2 (the total number of spins
N = 2 × 16 × 2) to L = 64 (N = 64 × 512 × 64). The
total number of MCS in our simulations is about 5× 104

– 5× 105 depending on the system size, where one MCS
is defined as 1 update by ECMC with 5 over-relaxation
sweeps per spin. One heat-bath update per spin is per-
formed for every 10 MCS. We checked the equilibration
by confirming that the average values of physical quan-
tities measured during an interval coincide with those
measured during another interval twice longer within sta-
tistical uncertainty. Error bars are evaluated by results
of multiple independent simulations.

A. Universality class of the system without

magnetic fields

First, we present the specific heat c of the system for
various system sizes in Fig. 3. One can see in the fig-
ure that the specific heat shows a sharp peak at about
T/J ≃ 1.68, and thus, a phase transition is expected
to occur at around this temperature. Around and below
this temperature, the wave-vector-dependent susceptibil-
ity χ‖ (q) has two peaks at q = ±qchiral, see Fig. 4. This
fact is insensitive to the system size in our simulations.
Therefore, the wave vector qchiral also characterizes the
ordering structure of the system at finite temperature
and m (qchiral) can be considered as an order parameter
of the system.
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FIG. 4. (Color online) Wave-number dependence of χ‖ (q)
of the three-dimensional chiral helimagnetic model without
magnetic fields (a) for various system sizes at T/J = 1.680645,
which is close to the critical temperature, and (b) with L = 32
at various temperatures above and below the critical temper-
ature.

We show the wave-vector-dependent finite-size cor-

relation length ξ
‖
L (qchiral) divided by αL in Fig. 5.

One can see in the figure that each pair of curves for

ξ
‖
L (qchiral) /αL and ξ

‖
2L (qchiral) /2αL intersects at a tem-

perature and that the intersection converges to a certain
temperature point for larger sizes while it slightly shifts
for smaller sizes. This implies that the correlation length
with the wave vector qchiral diverges at a finite tempera-
ture in the thermodynamic limit. Here, we assume that

ξ
‖
L (qchiral) /αL follows a finite-size scaling (FSS) form

ξ
‖
L (qchiral)

αL
= F

[

(T − Tc) (αL)
1/ν

]

, (22)

where F is a scaling function and ν is the critical ex-
ponent of the correlation length. By using a recently
proposed method based on Bayesian inference [30, 31],
FSS analyses are performed for four sets of the data con-
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FIG. 5. (Color online) Temperature dependence of the
finite-size correlation length ξL(qchiral) divided by αL of the
three-dimensional chiral helimagnetic model without mag-
netic fields. The inset presents an enlarged view around the
critical temperature.

sisting of three successive system sizes Lmin, 2Lmin and
4Lmin. As shown in Fig. 6, the FSS plot for the data
set with Lmin = 16 works well, yielding that the critical
temperature Tc and the critical exponent ν are estimated
as Tc/J = 1.68672(4) and ν = 0.676(3), respectively.

Using the value of the critical temperature esti-
mated by FSS of the finite-size correlation length ra-

tio ξ
‖
L (qchiral) /αL, we also perform FSS analyses of the

wave-vector-dependent susceptibility χ‖ (qchiral) for the
same data sets. The susceptibility is assumed to follow a
scaling form

χ‖ (qchiral) = (αL)
γ/ν

G
[

(T − Tc) (αL)
1/ν

]

, (23)

where G is a scaling function and γ is the critical ex-
ponent of the susceptibility. One can see in Fig. 7 tem-
perature dependence of the susceptibility χ‖ (qchiral) and
the resultant FSS plot. The exponents are estimated as
ν = 0.670(2) and γ = 1.320(4), respectively. The esti-
mated values of the critical temperature and exponents
are shown in Table I. As seen in the table, the values
of the critical exponents approach those of the three-
dimensional ferromagnetic XY model ν = 0.67155(27)
and γ = 1.3177(5) [32] as Lmin increases. We con-
clude that the system without magnetic fields undergoes
a phase transition from a paramagnetic phase to a chiral
helimagnetic phase as temperature decreases with crit-
ical exponents of the three-dimensional XY model, as
predicted in Ref. 13–16.
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FIG. 7. (Color online) (a): Temperature dependence of the

wave-vector-dependent magnetic susceptibility χ‖ (qchiral) of
the chiral helimagnetic model in three dimensions without
magnetic fields. (b): A finite-size scaling plot of χ‖ (qchiral)
of the chiral helimagnetic model in three dimensions with-
out magnetic fields. The value of the critical temperature Tc

estimated by the finite-size scaling analysis of the finite-size

correlation length ratio ξ
‖
L (qchiral) /αL is used.

B. Phase transition under a magnetic field

perpendicular to the DM vector

In this subsection, we focus on the effect of a magnetic
field perpendicular to the DM vector. The wave-number
dependence of the susceptibility χ‖ (q) at h/J = 0.1,
0.2, and 0.3 for various temperatures and various sizes
is shown in Fig. 8 and Fig. 9, respectively. In contrast
to the case without the magnetic field shown in Fig. 4,
χ‖ (q) has several peaks at ±q0 and integral multiples of
q0 in the presence of the magnetic field in the low tem-
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FIG. 8. (Color online) Wave-number dependence of χ‖ (q) of the chiral helimagnetic model in three dimensions for various
temperatures with L = 32. The values of the magnetic fields perpendicular to the DM vector are (a) h/J = 0.1, (b) h/J = 0.2,
and (c) h/J = 0.3. The vertical line represents qchiral/2π.
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FIG. 9. (Color online) Wave-number dependence of χ‖ (q) of the chiral helimagnetic model in three dimensions for various
system sizes near the estimated transition temperature depending on the magnetic field. The values of the magnetic fields
perpendicular to the DM vector are (a) h/J = 0.1, (b) h/J = 0.2, and (c) h/J = 0.3.

Lmin Tc/J νξ νχ γ
2 1.688(1) 0.72(2) 0.711(5) 1.45(1)
4 1.6871(2) 0.696(5) 0.682(2) 1.314(4)
8 1.68683(5) 0.681(4) 0.671(1) 1.303(3)
16 1.68672(4) 0.676(3) 0.670(2) 1.320(4)

TABLE I. The estimated values of the critical temperature
and the critical exponents of the correlation length and the
susceptibility by finite-size scaling analyses. The values of
the critical temperature Tc and the exponent of the correla-
tion length denoted as νξ are estimated using the data of the

finite-size correlation length ξ
‖
L (qchiral) /αL. Using the esti-

mated value of Tc, the value of critical exponents of the sus-
ceptibility γ and that of the correlation length denoted as νχ
are estimated by FSS analyses of the susceptibility χ‖ (qchiral).

perature region with q0 being the positive wave number
which gives the largest value of the susceptibility. The
value of q0 for finite magnetic fields is significantly smaller
than that of qchiral, although the difference is tiny for
small fields as shown in Fig. 8 and Fig. 9. Furthermore,
not only the largest peaks but also other small peaks
are enhanced with increasing the system size, as seen in
Fig. 9. These indicate that a periodic order, e.g., chiral
soliton lattice (CSL) which cannot be characterized by
a single wave vector emerges at low temperatures in the
thermodynamic limit. The distance between two chiral

solitons in the low temperature region is characterized
by the value of the wave number q0 as ∼ 2π/ |q0|. In
Fig. 8(c), for instance, one can see that |q0| /2π ∼ 0.1 at
a sufficiently low temperature for h/J = 0.3, and hence,
the distance between two chiral solitons along the DM
vector is about 10 lattice spacings. Other wave numbers
of the peak in χ‖ (q) in the low temperature region are
considered to characterize shorter length scales within
one chiral soliton.

One may consider naively the order parameter of the
CSL order to be m (q0). The value of q0 weakly de-
pends on temperature and also the values of the wave
numbers of the peaks in finite systems with the magnetic
field slightly deviate from those in the thermodynamic
limit. The latter is due to the fact that the wave number
in finite-size lattices can take only discrete values. As
discussed above, the existence of the CSL phase charac-
terized by the multiple wave vectors is strongly suggested
at low temperatures. It is, however, difficult to identify
the precise value of q0 in numerical simulations and the
order parameter in the CSL phase.

While the CSL emerges in the presence of the magnetic
field, qualitatively different behavior is observed in ther-
modynamic quantities at a relatively large magnetic field,
particularly at h/J = 0.3 in our study. One of the strik-
ing features is the existence of the sharp peak of χ‖ (0) at
a certain temperature which is not the intrinsic suscepti-
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FIG. 10. (Color online) System-size dependence of the peak

value of the susceptibility χ
‖
∗ (0) (a) and the specific heat c∗

(b) of the chiral helimagnetic model in three dimensions with
a magnetic field perpendicular to the DM vector h/J = 0,
0.1, 0.2, and 0.3. The black dotted lines are proportional to
L3. The insets show enlarged views.

bility conjugated with the CSL order and also the chiral
helimagnetic order parameter. Temperature dependence
of the specific heat has a diverging peak at that temper-
ature simultaneously. We denote the peak values of the
uniform susceptibility and the specific heat in the tem-

perature dependence as χ
‖
∗ (0) and c∗, respectively. We

show in Fig. 10 the system-size dependence of χ
‖
∗ (0) and

c∗. For h/J = 0.1 and 0.2, the peak values of χ
‖
∗ (0) and

c∗ do not seem to diverge even in the thermodynamic
limit. This is compatible with the result of h/J = 0,
where the system belongs to the universality class of the
three-dimensional XY model and hence the critical ex-
ponent α is negative. Without the magnetic field, the
specific heat c does not diverge, but shows a cusp singu-
larity at the critical temperature in the thermodynamic
limit as the three-dimensional XY model. When a cusp
singularity exists in the specific heat, its peak value c∗

100
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 1.4  1.42  1.44  1.46  1.48  1.5

D/J = 1
h/J = 0.3
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T/J

L = 4
8

16
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FIG. 11. (Color online) Temperature dependence of specific
heat c of the chiral helimagnetic model in three dimensions
with a magnetic field perpendicular to the DM vector h/J =
0.3.
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FIG. 12. (Color online) The energy-density distribution func-
tion P (e) of the chiral helimagnetic model in three dimen-
sions with a magnetic field perpendicular to the DM vector
h/J = 0.3. The system size L = 64 is the largest size in our
simulations and the temperatures are close to the transition
temperature.

scales as [33, 34]

c∗ ≃ c∞∗ − sLα/ν , (24)

where c∞∗ is the peak value of the specific heat in the
thermodynamic limit and s is a constant. We can see
in the inset of Fig. 10(b) that the peak values c∗ of the
system with h/J = 0, 0.1 and 0.2 have very similar sys-
tem size dependence. This fact suggests that the system
under the magnetic fields also belongs to the universality
class of the three-dimensional ferromagnetic XY model.
On the other hand, for h/J = 0.3, the peak values

χ
‖
∗ (0) and c∗ show very strong tendencies to diverge in

the thermodynamic limit. In particular, χ
‖
∗ (0) and c∗

at h/J = 0.3 seem to diverge as a power law with L3 or
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even faster than a power low in larger system sizes. These
indicate the existence of a critical point (Td, hd) where
0.2 < hd/J < 0.3 on the phase boundary between the
paramagnetic phase and the CSL phase in the magnetic
phase diagram of the system. In other words, the system
is expected to have finite values of the specific heat c and
the susceptibility χ‖ (0) at the transition temperature for
h < hd, and presumably belongs to the same universal-
ity class of the system without the magnetic field, while
the system undergoes a phase transition at a finite tem-
perature with the diverging specific heat c and diverging
magnetic susceptibility χ‖ (0) for h > hd.
A possible explanation of the strong divergence of the

specific heat found at h/J = 0.3 might be an occurrence
of the first-order phase transition. Then, the specific
heat has a delta-function type divergence at the transi-
tion temperature and the peak value of the specific heat
is expected to diverge as Ld where d = 3 is the spatial
dimension [35]. Also the energy-density distribution has
two peaks at the transition temperature. In Fig. 11, we
present temperature dependence of the specific heat c
of the system with h/J = 0.3. One can see in the fig-
ure that the specific heat c shows a very sharp peak at
about T/J ≃ 1.445, and the width of the peak becomes
narrower as the system size increases. This is consistent
with the occurrence of the first-order transition and the
size dependence of c∗ shown in Fig. 10(b) is marginally
compatible with L3. However, as seen in Fig. 12, the
energy-density distribution function P (e) does not have
a double-peak structure near the transition temperature.
No clear evidence of the first-order transition is found
in our numerical results. We could not completely rule
out the possibility of a weak first-order transition with
a finite correlation length at the transition temperature
larger than the largest system size in our simulations.
Therefore, we tentatively conclude that this phase tran-
sition found at h/J = 0.3 is a continuous one. Our results
suggest that the expected universality class has a ratio
of the critical exponents of the specific heat and the cor-
relation length α/ν > 3, assuming that c∗ of the system
diverges faster than L3 also in larger systems. Unfor-
tunately, we could not determine the critical exponents
of the transition and the precise location of the critical
point (Td, hd), which requires larger scale simulations of
the system.

V. DISCUSSION AND SUMMARY

A possible phase diagram of the system is presented
in Fig. 13, where we denote the paramagnetic phase and
the CSL phase as “P” and “CSL”, respectively. The filled
square at h/J = 0 is estimated by the FSS analysis in
Sec. IVA, and other squares are estimated by the peak
temperature of χ‖ (0) at h/J = 0.1, 0.2 and 0.3 for L =
64 and at h/J = 0.35 for L = 16. The circle represents
an expected location of the critical point (Td/J, hd/J).
One can see in the phase diagram that the phase

 0

 0.1

 0.2

 0.3

 0.35

 0  1  2

h
/J

T/J

CSL
(Td/J,hd/J)

Tc/J

P
hc/J

FIG. 13. (Color online) A possible magnetic phase diagram
of the chiral helimagnetic model in three dimensions. In the
phase diagram, “CSL” and “P” denote the chiral soliton lat-
tice phase and paramagnetic phase, respectively. The filled
squares are estimated transition temperature in this work and
the circle represents an expected critical point whose precise
location is not determined.

boundary h∂CSL (T ) between the paramagnetic phase
and the CSL phase has a finite slope, which is compati-
ble with the experimental phase diagram of a chiral heli-
magnet [3]. Imposing differentiability on the free-energy
density of the infinite system at a point (T0, h∂CSL (T0))
where a second-order phase transition occurs, the finite
tangent of the phase boundary yields the relation

∆χ∆c− T (∆ω)
2
= 0, (25)

where ω and χ are the temperature derivative and the
magnetic-field derivative of the magnetization parallel to
the field, and ∆X = XCLS − XP for any X ∈ {c, χ, ω}
at (T0, h∂CSL (T0)), respectively. If the system under the
magnetic field with 0 < h < hd belongs to the univer-
sality class of the three-dimensional ferromagnetic XY

model as discussed above, the specific heat is continuous
on the phase boundary. In this system for a fixed h < hd,
the uniform susceptibility has a finite value. Therefore,
Eq. (25) requires ∆ω = 0, meaning that the magnetiza-
tion parallel to the magnetic field is smooth at the tran-
sition temperature.
For h > hd, however, the strong divergence is found

in the specific heat. The difference ∆c is infinitely large
unless the critical amplitude ratio is accidentally 1 with
the same critical exponent above and below the criti-
cal temperature which may unlikely occur in finite di-
mensions. Then, the relation of Eq. (25) allows typi-
cally two cases: (i) ∆χ = 0 and ∆ω is finite and (ii)



10

∆χ = ∞ and ∆ω = ∞. Our result of the divergence
of χ‖ (0) indicates the latter case. Precisely speaking, χ
is not identical with χ‖ (0) but ∆χ likely diverges when
χ‖ (0) = ∞. This implies that the exponent of the diver-
gence of χ‖ (0) coincides with that of the specific heat.
Furthermore, the temperature dependence of the magne-
tization is also described by the same singularity at least
either above or below the critical temperature. Thus, the
critical singularity of the specific heat appears in other
observables unrelated to the critical nature through the
relation of Eq. (25), while in a conventional system where
χ is an order-parameter susceptibility, the relation yields
the scaling relation α + 2β + γ = 2 among the critical
indices.
We should note here that Dzyaloshinskii predicts by

analyzing the one-dimensional continuum model of the
chiral helimagnet in the presence of the magnetic field
that a continuous phase transition occurs at a finite tem-
perature [8]. It is also shown that the specific heat di-
verges from below the transition temperature with a log-
arithmic correction as

c ∝ 1

(T∗ − T ) log2 (T∗ − T )
, (26)

where T∗ is the transition temperature, while no diver-
gence of c displays from above T∗. In this case, ∆c is
infinity at T∗ and the critical exponent of the specific
heat α′ = 1 below T∗ and α = 0 above T∗. Although no
definite conclusion can be drawn on the validity of this
peculiar prediction, our numerical data of the specific
heat is not inconsistent with the asymmetric behavior
between above and below the critical temperature. One
of the main difficulties in determining the critical indices
is due to the logarithmic-correction term, which makes
the critical region narrow. Assuming the hyperscaling re-
lation dν = 2−α and α = 1, the critical exponent of the
correlation length is ν = 1/3, and hence, the peak value
of the specific heat is expected to diverge as∼ Lα/ν = L3.
It also coincides with that in the system with the first-
order transition. As discussed in IVB, the power-law
divergence of c∗ with L3 is marginally consistent with
our numerical result. Further investigations are required
to clarify the nature of the phase transition of the system
with h > hd and examine the validity of Dzyaloshinskii’s
theory [8].
In summary, we have numerically studied the classical

Heisenberg spin model of a chiral helimagnet in three di-
mensions by equilibrium Monte Carlo simulations using
the event-chain algorithm. We have particularly focused
on its finite-temperature phase transitions with and with-
out a magnetic field perpendicular to the axis of the he-
lical structure. Without the magnetic field, it is shown
by the FSS analysis that the system undergoes a con-
tinuous phase transition with critical exponents of the
three-dimensional ferromagnetic XY model as predicted

by some theoretical studies. It is found that the nature of
phase transitions changes in the presence of the magnetic
field, although we speculate that the phase transition
is continuous irrespectively with the value of the mag-
netic field h. While the specific heat c and the magnetic
susceptibility χ‖ (0) have finite values at the transition
temperature for h/J = 0.1 and 0.2, they diverge at the
transition temperature for h/J = 0.3. Consequently, it
is suggested that the critical point (Td, hd) exists in the
region where 0.2 < hd/J < 0.3 in the phase diagram of
the system. The critical exponents of the phase transi-
tions at and above hd remain unclear, and thus it would
be interesting to reveal the universality class of the phase
transition in high fields by determining the critical expo-
nents. A promising way for studying the phase structure
might be the method of renormalization group. Our re-
sults suggest that the phase transition, distinct from the
transition at the low fields, can be detected as a strong
singularity in the specific heat, uniform susceptibility and
also magnetization curve, which are measurable in exper-
iments. However, the amplitude of the DM interaction
studied in this paper is rather large from viewpoint of
experiments. Thus, the dependence of the critical point
is to be clarified in comparison with the experiments.
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Appendix A: Master equation of the ECMC

algorithm

The dynamics of the ECMC algorithm for continuous
spin systems including the lifting parameter U is ex-
plained in this appendix. As used in this work, only
one spin specified by the lifting parameter U is allowed
to rotate at any time in our simulations. We denote
the probability density of a state ({Si} , U) at time s as
ρ ({Si} , U, s). Time evolution of ρ ({Si} , U, s) follows
the master equation [18, 29]:
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where R̂ejv
T (ϕ) is an operator that makes the rotation

matrix Rv(ϕ) act on j-th spin as

R̂ejv
T (ϕ) {Si} = {· · · , Rv (ϕ)Sj , · · · } .

Here we assume that there exist µ ({Si} , s) and f (U)
such that [18, 29]

ρ ({Si} , U, s) = µ ({Si} , s) f (U) , (A2)

and for any j, k, and a

f (U) = f
(

L
(a)
jk U

)

= f
(

L
(a)
j U

)

, (A3)

where the lifting matrices L
(a)
jk and L

(a)
j are the same

as Eq. (19) and Eq. (20), respectively. Then, using the
relation Eq. (18) and assuming that µ ({Si} , s) is the
Boltzmann distribution, we obtain that the right-hand
side of Eq. (A1) equals 0, meaning that the Boltzmann
distribution is the stationary distribution of Eq. (A1).
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