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Abstract

The magnetotransport properties of thin manganite films (La0.7Ca0.3MnO3) coupled with arrays

of permalloy (Py) nanodots deposited on the surface of the film is studied as a function of temper-

ature, magnetic field and size of the dots. In the presence of the magnetic dots, a reduction of the

electrical resistivity is observed, especially at the insulator-to-metal transition, as well as a shift

of the transition peak towards higher temperature. This indicates that, due to the local interface

exchange coupling, highly conductive ferromagnetic domains are nucleated in the manganite film

underneath the Py nanodots. The use of a simplified resistor network model allows us to estimate

the size of the metallic regions induced by the exchange coupling. At low temperatures, these re-

gions extend ∼ 70 nm beyond the edge of the nanodots, a lengthscale comparable to the correlation

length of the ferromagnetic clusters in the phase-separated state of La0.7Ca0.3MnO3.

PACS numbers: 75.47.Gk, 71.30.+h, 73.63.-b, 72.80.Ga
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Colossal Magnetoresistance (CMR) is a thoroughly studied phenomenon consisting of a

large decrease of the electrical resistivity of a magnetic oxide under the influence of moderate

magnetic fields.1–5 In some manganese perovskites, the so-called manganites, this effect can

reach several orders of magnitude, and a strong general consensus indicates that phase sep-

aration is a prerequisite for the emergence of these large magnetoresistive effects.3–5 Phase

separation in manganites comprises the coexistance of insulating (paramagnetic or antifer-

romagnetic) and metallic (ferromagnetic) domains. The relative concentration of these do-

mains determines the electrical properties of the material, with compounds exhibiting CMR

on the verge of an insulator-to-metal transition.4–11 In such a case, an applied magnetic

field shifts the balance in favor of the ferromagnetic (FM) phase, concomitantly increasing

the conducting volume just enough to produce the well-documented percolative insulator-

to-metal transition.5–10 Alternatively, similar electrical transitions are usually observed as a

function of temperature (T ) as well.5,8–11

If any device application is going to be developed from CMR in phase-separated man-

ganites, manipulation of the phase coexistence becomes a central issue to be addressed.4,5,12

Although no unique lengthscale has been established for the phase separation, in most

cases where CMR occurs the insulating and metallic domains coexist at the submicrometer

scale.6,7,11,13–17 A prototypical example of CMR based on a percolative insulator-to-metal

transition is given by La0.7Ca0.3MnO3 (LCMO), where direct observations show metallic

and insulating domains ∼ 100-200 nm in size.17 Therefore, manipulation of the electrical

properties necessarily implies the fabrication of different artificial nanostructures.5,12,18,19

For example, Ward et al. randomly evaporated ferromagnetic Fe nanodots onto a LCMO

thin film.18 According to their results, a large interface exchange coupling of LCMO with

the Fe dots pushed the film into a FM phase and induced a percolative transition from the

insulating to the metallic state.

In this work, motivated by a controlled manipulation of the transport properties of a

phase-separated manganite, we patterned square arrays of permalloy (Py, Ni80Fe20) nanodots

onto the surface of a LCMO thin film. As indicated in Fig. 1(a), the FM nanostructures are

expected to favor the formation of ferromagnetic islands in the LCMO film due to a proximity

effect, especially in the phase-separated state where the manganite is most sensitive to

magnetic perturbations. Since the resistivity in a FM domain is significantly smaller than

in the insulating phase, one would expect to modulate the LCMO conductivity depending
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on the size of the Py dots and the spacing between them. We present experimental evidence

of the enhancement of the conductivity in the LCMO film due to the organized array of

magnetic nanodots, and also show how these measurements give the opportunity to study

the mechanism and lengthscales involved in the process of the percolative insulator-to-metal

transition of manganite films.

A high quality, 20-nm thick La0.7Ca0.3MnO3 film was grown on a LaAlO3 (100) single

crystal at 690◦C and an O3 partial pressure of 2 × 10−6 Torr by ozone-assisted molecular

beam epitaxy (MBE). A brief (∼ 30 sec) annealing period followed the deposition of each

unit cell layer. Film crystallinity was monitored in situ using reflection high energy electron

diffraction, and after growth the film was characterized by x-ray diffraction, which reveals

single-crystalline growth. The c-axis lattice constant is 3.954 Å, slightly larger than the

bulk value (3.86 Å) and consistent with a small (∼ 1.8 %) compressive in-plane strain from

the substrate. Using e-beam lithography, followed by e-beam evaporation of Py under high

vacuum (10−8 Torr) and subsequent lift-off, we patterned arrays of h = 20 nm-thick Py

nanodots on the bare LCMO film. Each device, shown in Fig. 1(c), covers an area of

200× 400 µm2 of the film. Among the three fabricated devices, the first one, shown in Fig.

1(b), consists of a square array of dots of diameter φ = 100 nm spaced by three times the

diameter center to center (spacing 3φ = 300 nm). This corresponds to a surface coverage of

Py of ∼ 8.7 %. The second device is made of dots with a diameter φ = 200 nm and the same

Py-covered area of 8.7 % (spacing 3φ = 600 nm), and the last device is a control sample

without any dots. The LCMO current path and four probe connections were patterned using

photolithography and liquid nitrogen-cooled Ar+ ion milling. Finally ohmic contacts were

formed by wire bonding to 100 nm-thick Au contact pads.

Transport measurements were performed with the magnetic field (H) applied both in-

plane and out-of-plane of the film using a Quantum Design PPMS, as well as a Versalab

system with external current source and nanovoltmeter from Keithley Instruments. In Figs.

2(a) and 2(b) we show the modification of the transport properties in the LCMO film due

to the presence of the Py dots, with magnetic fields applied perpendicular to the plane of

the film. For all three devices, magnetotransport measurements exhibit the usual insulator-

to-metal transition upon cooling, represented by a peak in the resistivity (ρ) at ∼ 190 K,

somewhat lower than in bulk LCMO.17,20,21 This peak shifts towards higher temperature

when a magnetic field is applied. Similarly, as shown in Fig. 2(c), the presence of the
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Py dots also significantly reduces the peak resistivity at the insulator-to-metal transition

and shifts it towards higher temperature. At zero field: (ρpeak, Tpeak) = (76 mΩ cm, 186

K) for the device without dots; (58 mΩ cm, 194 K) for the 200 nm dots; and (51 mΩ

cm, 196 K) for the 100 nm dots. We draw attention to the fact that such a reduction

of resistivity cannot be attributed to a short of the current through the Py dots, as one

would expect this spurious effect to remain relatively constant throughout the temperature

scale. Namely, the resistivity of Py thin films, which varies only slightly with temperature

[ρPy(300 K) ∼ 30 µΩ cm and ρPy(15 K) ∼ 20 µΩ cm, Ref. 22], is at all temperatures two

to three orders of magnitude smaller than the resistivity of the LCMO film [ρLCMO(300 K)

∼ 1.4 × 104µΩ cm and ρLCMO(15 K) ∼ 1.1 × 103µΩ cm]. Then, for a square array of dots

of size φ separated by 3φ center-to-center, the current shortage should result in a reduction

of the resistivities ρφ=100nm and ρφ=200nm independent of T of about one third (in the worst

case scenario, as long as ρPy ≪ ρLCMO). However, as the inset of Fig. 2(a) shows, the

reduction of ρ is clearly temperature dependent: it is large (∼ 60 %) around the insulator-

to-metal transition where the burst of the FM volume occurs,11,17 but small in the high T

paramagnetic phase (∼ 10 %). For example, the resistivity of the device without dots is

∼ 23 mΩ cm at both 140 K and 265 K. However, the drop of resistivity induced by the

100 nm dots at 140 K is ∼ 15 mΩ cm, while it is a modest 2.4 mΩ cm at 265 K. That is,

large FM domains can be promoted by the Py dots when the sample is cooled through the

insulator-to-metal transition. Both characteristics, the shift of the resistivity peak towards

higher T and the asymmetric enhancement of conductivity, unequivocally indicate that the

Py nanodots facilitate the percolation of the FM metallic phase in LCMO by means of a

magnetic coupling between the LCMO and the Py.

In order to gain insight into the origin of this magnetic proximity effect, we compared the

electrical transport properties of the devices with a magnetic field applied parallel (in-plane)

and perpendicular (out-of-plane) to the LCMO film. As shown in Fig. 3, the direction of

the applied field affects very minimally the resistivity of the samples. At µ0H = 2 T the

resistivity with the field in-plane is slightly smaller than with the field out-of-plane, even

for the bare LCMO. Thus, this minor effect is likely related to the shape anisotropy of the

LCMO film, i.e., we conclude that the magnetic interaction between the dots and the LCMO

is independent of the Py nanodots being magnetized parallel or perpendicular to the plane

of the LCMO film. This rules out dipolar (magnetostatic) interactions as the source of the

4



magnetic coupling. Due to the large aspect ratio of the Py dots, φ/h=100/20 and 200/20,

the magnetic flux penetrating the LCMO film due to the stray field of the dots, seen in

Fig. 3(b), is much larger in the out-of-plane configuration than for the in-plane case (the

demagnetizing factor along the axial direction of the dot is ∼ 10-20 times larger than for

the in-plane directions, Ref. 23). Therefore, for a dipolar coupling between the LCMO and

the magnetic dots, a more pronounced reduction of resistivity would be expected when the

field is perpendicular to the film. The absence of such anisotropy is then a confirmation

that the nature of the magnetic proximity effect is an interface exchange coupling. In their

previous work with Fe nanodots on LCMO, Ward et al. concluded the same through the

analysis of the strength of the magnetic coupling.18 They argued that the stray field of the

nanodots (estimated to be smaller than 2 T) is not enough to drive a transition from the

insulating to the metallic state, and suggested that an equivalent field associated to the

magnetic coupling should be well above 9 T. Indeed, in terms of an equivalent exchange

field (the so-called molecular field), spin exchange couplings emulate high local magnetic

fields, typically ∼ 30 T.24 Therefore, although complete saturation is hard to achieve in

phase-separated manganites with typical laboratory fields, it is reasonable to assume that

the magnetic islands in the LCMO underneath the Py dots are fully ferromagnetic.

Up to this point, the proximity effect of the Py nanodots appears somewhat equivalent to

the application of an external magnetic field. However, this equivalence is only qualitative

and far from complete. As shown in the inset of Fig. 2(a), the reduction of resistivity is

more pronounced for the 100 nm-dots device than with the dots of 200 nm. In particular,

in that figure we show that adjusting the external field at 1.2 T for the device without

dots reproduces fairly well the resistivity of the 100 nm Py dots device at zero field. One

could argue that this would be an equivalent field that results from the spacial average

over the LCMO area of the local exchange fields of the discrete Py nanodots. However,

for the 200 nm-dots device this equivalent field drops to ∼ 0.84 T, i.e., the smaller Py

dots have a larger magnetic influence on the LCMO film. In principle, for the same area

of Py (∼ 8.7 %) one would expect to have the same FM volume induced in the LCMO

in both devices. However, the results shown in Fig. 2 point toward a higher increase of

the metallic volume in the LCMO film when the size of the Py dots is reduced. Thus, we

propose a scenario where the exchange interaction induces ferromagnetism in the LCMO

film in a region that is not sharply delimited by the edge of the Py dots, but it extends a
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certain length λ beyond the perimeter of the dots, as sketched in Fig. 1(a). In this way,

the effective area of FM islands induced by the Py is proportional to (1+ 2λ/φ)2, thus, it is

larger for the smaller dots, supporting the observed results. With the goal to estimate the

value of λ we propose a simple phenomenological model, shown in Figs. 4(a) and 4(b), that

corresponds to a 2D periodic resistor network. In this model, we assume that a fully-FM

domain of small resistivity ρF extends over a characteristic length λ outside the Py dots (or

inside, if λ < 0). The remaining volume of LCMO is not simply insulating, but comprises

a mixture of conducting and insulating clusters (the unaltered phase-separated state). The

resistivity in these regions, ρN , is taken equal to the resistivity of the bare LCMO film. With

these considerations, the resistivity ρφ of a given device is reduced to a matrix of resistance

elements that are only a function of the resistivities ρF and ρN , the density of dots, and one

fitting parameter, λ. We consider a square lattice of metallic islands with lattice parameter

s (s = 3φ in our case), according to the pattern in Fig. 4(a). In Fig. 4(b) we present the

equivalent resistor network, from which we calculate the resistance for the columns with

metallic islands (R1) and for the columns in between, with no islands (R2);

1

R1
=

[

1

Rcell
+

t(s−D)

ρND

]

ℓ

s
(1)

R2 =
ρN(s−D)

tℓ
(2)

where t = 20 nm is the thickness of the LCMO film and ℓ = 200 µm is the total width

of the device. Rcell is the resistance of a square cell of side D = (φ + 2λ) concentric with

the circular FM domain of diameter D = (φ+ 2λ). The two columns are conected in series

and the pattern repeats over the whole length of the device (L = 400 µm), such that the

total resistance is given by Rφ = (R1 + R2)L/s. In this way, the resistivity of the device,

ρφ = Rφ tℓ/L, results to be

ρφ =
Rcell ρN (φ+ 2λ)t

ρN (φ+ 2λ) + t(s− φ− 2λ)Rcell
+

ρN(s− φ− 2λ)

s
(3)

For the calculation of Rcell, we consider a circle of diameter D and resistivity ρF immersed

within a square of side D and resistivity ρN in the corners around the circle, as seen in Fig.

4(a). After the appropriate integration, we found
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1
Rcell

= t
ρN−ρF

{

ρN√
ρ2
N
−(ρN−ρF )2

tan−1

(

ρN−ρF√
ρ2
N
−(ρN−ρF )2

)

− π
2

(

1− ρN√
ρ2
N
−(ρN−ρF )2

)}

(4)

The value of ρN(T,H) is taken from the measured resistivity of the sample without dots.

However, in order to have λ as the only fitting parameter, an estimate must be made for

ρF (T ). At this point, it is important to consider that the steep increase of resistivity at ∼

150 K is not due to an intrinsic temperature dependence of ρ, but is driven by a drastic

reduction of the metallic volume, which is the essence of the insulator-to-metal transition in

LCMO.10,11,17 Actually, the resistivity of the FM metallic phase remains very small, following

a power-law temperature dependence3,20,25–27

ρF ≈ ρ0(1 + αT 2) +mT 4.5 (5)

where the term T 4.5 accounts for the electron-magnon scattering28 and the T 2 dependence

is usually ascribed to electron-electron interactions.3,20,25–27 Indeed, as seen in Fig. 4(c) the

resistivity of our LCMO film at T < 100 K also follows this law. The coefficient m rapidly

decreases with increasing magnetic field. Therefore, since ρF in Eq. (4) corresponds to

saturated FM domains under the influence of large exchange fields, where magnon scattering

is largely suppressed, we will neglect the T 4.5 contribution in ρF (T ). For the T 2 term we

obtained α = 75 × 10−6 K−2 independent of field, very close to previous results.25 Finally,

previous reports have shown that the T -independent term ρ0 reaches a small saturation

value of ≈ 0.1 mΩ cm3,25,26 (indeed, our LCMO film under a moderate field µ0H = 4 T

reaches ρ0 ∼ 0.3 mΩ cm, and for the device with 100 nm dots under the same field ρ0 drops

below 0.2 mΩ cm).

The T dependence of the size of the FM domains (D = φ + 2λ), estimated from solving

Eqs. (3) and (4) for different applied fields is shown in Fig. 5. We first notice that for high

temperatures the Py dots only produce a minor effect on the LCMO film, nucleating FM

metallic domains of ∼ 80 nm, even smaller than the diameter of the magnetic dots. This

is explained considering that at high T the paramagnetic insulating phase dominates and

magnetic perturbations have little effect on LCMO. As a result, the resistivity of LCMO

displays only a marginal decrease of around 10 % [inset of Fig. 2(a)]. When the temperature

is reduced to ∼ 210 K, the nucleated FM domains rapidly grow in size and start to extend

7



outside of the limits of the Py dots (D > φ). This growth correlates with a sudden decrease

of resistivity in the devices with 100 nm and 200 nm dots [see inset of Fig. 2(a)], indicating

that the growth of the FM islands helps to percolate metallic paths throughout the LCMO.

For T below ∼ 120 K the size of the FM domains reaches field-independent values ofD ∼ 220

nm (for φ = 100 nm) andD ∼ 375 nm (for φ = 200 nm), i.e., λ ∼ 60 nm and ∼ 90 nm for the

two devices, respectively. These values, together with the characteristic steep increase of λ at

the insulator-to-metal transition (see Fig. 5), suggest that this parameter plays a similar role

to a magnetic correlation length. That is, a fully-FM domain is created immediately below

the Py dot under the influence of a large exchange field, and then these FM correlations

propagate up to a characteristic distance λ away from the region of the magnetic perturbation

where spins in LCMO directly couple with the spins of the Py. In this context, the value of

2λ should be comparable to the typical size of the FM domains in the bare LCMO, i.e., the

typical lengthscale where FM correlations are preserved.5 Remarkably, our finding of 2λ ∼

120-180 nm coincides with direct obervations in LCMO, where FM clusters of ∼ 100-200

nm in size were reported.17

We note that the estimate of the size of the FM islands is always smaller than 3φ, the

lattice parameter of the square array of Py dots. Thus, the induced FM domains are not

large enough to develop percolative paths by themselves. Notwithstanding this, the FM

islands do provide percolation paths for the disordered FM clusters that are present in the

phase-separated, inter-island regions of LCMO. The consequence of this is that the insulator-

to-metal transition occurs at a higher temperature than for the bare LCMO. On the other

hand, while for φ = 200 nm the width of the inter-island regions is 3φ − D ∼ 220 nm, in

the 100 nm-dots device they are only ∼ 80 nm wide. Moreover, the correction factor for the

area coverage of FM islands, (1 + 2λ/φ)2, is ∼ 3.5 for the larger Py dots and ∼ 4.8 for the

smaller ones. These large differences in the topography of the FM islands now quantitatively

explain the larger magnetic proximity effect when the LCMO film is covered with smaller

Py dots, even though the density of magnetic material deposited is the same.

It is worth noting that the model proposed is a simple phenomenological description of

the landscape of magnetic domains and conductivities in the LCMO film under the influence

of the Py nanodots, and more detailed models may be developed. For example, FM corre-

lation lengths are defined in the context of the exponential decay of spin-spin correlations

at distance r, e−r/λ. Then, instead of using steep walls at the limits of the FM domains
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of diameter D = φ + 2λ, a gradient of conductivities may provide a more realistic image

of the transport mechanism. Also, the slight difference in the estimate of λ for the devices

with 100 nm and 200 nm dots suggests that the growth of the FM islands is probably less

organized than in our simple model of well-defined resistance elements. On the other hand,

the curiously large value of D at zero field around 140 K is most likely a spurious effect. This

may be due to the spin-dependent scattering caused by the misaligned magnetization direc-

tions of FM clusters, which contributes to the zero-field resistivity of the phase-separated

state. In spite of these details, we showed that our model captures the essential physics of

phase-separated manganites and their percolative transport, and provides a new step toward

its possible manipulation.

In conclusion, we demonstrated the existence of a substantial exchange coupling between

an array of permalloy nanodots and a La0.7Ca0.3MnO3 thin film, which behaves qualitatively

similar to the application of a homogeneous magnetic field in the sense that it shifts the

insulator-to-metal transition to higher temperatures and significantly reduces the resistivity

of the manganite (more than 60 % at its maximum effect). However, this exchange cou-

pling has a local character, and promotes a higher conductivity state on a lengthscale that

extends ∼ 70 nm beyond the border of the magnetic dots. This lengthscale is determined

by the correlation length of the short-range ordered, phase-separated manganite, thus it is

comparable to the size of the FM clusters in this state. Our results open the possibility

of tailoring the transport properties of manganite films by controlling the characteristics of

the deposited ferromagnetic nanostructured lattices, such as their shape, density and lattice

parameters.
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FIGURE CAPTIONS

FIG 1: (a) Schematic of the FM islands induced in the LCMO by the Py dots. λ is the

characteristic length where these FM domains extend beyond the limits of the dots. (b)

Scanning electron microscopy image of the 100 nm-dots device. (c) Optical microscopy

image of the sample with three devices: 100 and 200 nm dots and bare LCMO (no dot).

FIG 2: (a) Resistivity vs temperature for the no-dot device at different fields (as labeled),

as well as for the 100 and 200 nm-dots devices at zero field. The black dashed lines closely

reproducing the 100 nm (200 nm) device data correspond to the no-dot resistivity measured

with applied fields of 1.2 T (0.84 T). Inset: ratio of the resistivity of the devices with 100
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and 200 nm Py dots to the resistivity of the bare LCMO film. (b) Resistivity ρφ(T ) at

different fields (as labeled) for the devices with Py dots of diameters φ = 100 nm and 200

nm. (c) Value of the peak resistivity showing the effect of both perturbations, the external

magnetic field and the arrays of FM nanodots.

FIG 3: (a) Comparison of the resistivity between in-plane and out-of-plane external fields

of 2 T for the 100 nm and no-dot devices. (b) Illustration of the magnetic flux dispersed

from the Py dot for in-plane and out-of-plane configurations.

FIG 4: (a) Square lattice, with lattice parameter 3φ, of fully-FM metallic domains of di-

ameter φ + 2λ and resistivity ρF , within the phase-separated matrix of resistivity ρN . (b)

Equivalent two-dimensional resistor network of the pattern shown on the left. Rcell is the

resistance of the square cell shown in (a), with the circular FM domain inside. R1 is the

effective resistance of a column containing stacked cells and phase-separated regions, while

R2 is the resistance of the columns in between, with no cells and resistivity ρN . (c) Low

temperature resistivity of the bare LCMO film at different fields. The solid lines are fits

with the power-law dependence of Eq. (5) (see text). The lower line corresponds to the

resistivity ρF of the saturated FM islands under the Py dots, used in the calculations in Eq.

(4).

FIG 5: Temperature dependence of the size of the FM islands that nucleate in LCMO under

the Py nanodots, at fields of 0 T, 2 T and 4 T. Solid (open) symbols correspond to the 100

nm (200 nm) diameter Py dots.
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