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We experimentally demonstrate a robust dynamical decoupling protocol with bounded controls
using long soft pulses, eliminating a challenging requirement of strong control pulses in conventional
implementations. This protocol is accomplished by designing the decoupling propagators to go
through a Eulerian cycle of the coupler group [Phys. Rev. Lett. 90, 037901(2003)]. We demonstrate
that this Eulerian decoupling scheme increases the coherence time by two orders of magnitude in
our experiment under either dephasing or a universal noise environment.

PACS numbers:

INTRODUCTION

Dynamical decoupling is a powerful method to combat decoherence of quantum systems caused by coupling to slow-
varying environment [1–8]. Conventional dynamical decoupling requires to apply a sequence of strong instantaneous
pulses [1, 5, 8], with the pulse duration shorter than other time scales in the system so that the control sequence can
be approximated by δ-pulses or unbounded control Hamiltonians. Decoupling schemes based on finite-width pulses,
such as the magic-echo trains, have been proposed and implemented in experiments [9, 10], however, they still require
the driving amplitude to be much higher than other dynamical parameters in the system [10]. Dynamical decoupling
has been used in a number of quantum information systems to suppress decoherence, with particular applications to
the solid state spin qubits [11–17]. As any control Hamiltonian in real systems always has bounded parameters, the
need of strong pulses with amplitudes larger than other dynamical parameters may impose a serious restriction on
applications of the dynamical decoupling method. Theoretically, a method called the Eulerian decoupling scheme has
been proposed to overcome this problem [6]. The Eulerian decoupling is highly robust to variation in the pulse length
and shape as long as the integral of the pulse completes a π-rotation on the target spin, eliminating the challenging
requirement on the pulse amplitude or duration.
In this paper, we report an experimental demonstration of effectiveness of the Eulerian decoupling scheme. We test

performance and robustness of the Eulerian decoupling under various noise environments, using the solid-state spin
qubits carried by the Nitrogen-Vacancy (NV) centers in a diamond sample. Recently, the NV centers in the diamond
have stood out as a promising system for realization of quantum information processing [18–28, 31]. The coherence of
this system can be well controlled and manipulated even at room temperature [18–20]. Here, we use this system as a
testbed for various dynamical decoupling protocols and show that the Eulerian decoupling scheme with long soft pulses
is almost equally effective as the conventional schemes based on strong instantaneous pulses. The natural nuclear spin
environment around the diamond NV centers provides a source of dephasing noise. To study the effectiveness of the
Eulerian decoupling scheme under general noise including both dephasing and relaxation, we realize a general noise
model by injecting microwave noise. Under various noise models, we demonstrate that the corresponding Eulerian
decoupling scheme can increase the coherence time of the system by two orders of magnitude in our experiment. The
demonstration of effectiveness of the Eulerian decoupling scheme may stimulate applications of this powerful method
to systems where strong control pulses are hard to achieve compared with the system-environment coupling rate.

RESULTS

Eulerian decoupling

In the dynamical decoupling scheme, the control Hamiltonian is denoted by Hc(t) with its corresponding propa-

gator given by the time-ordered integration Uc(t) = T exp{−i
∫ t

0
dt′Hc(t

′)}. In the conventional scheme based on
instantaneous pulses, the propagator Uc(t) suddenly changes from gl−1 to gl by the pulse l (l = 1, 2, · · · , L) with
Uc((l − 1)t∆ + s) = gl−1 for 0 ≤ s < t∆, where t∆ denotes the time segment between adjacent pulses and the whole
control cycle consists of L pulse with total time Lt∆. The evolution operators {gl, l = 1, · · · , L} form a group G and
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FIG. 1: Dynamical decoupling sequences implemented in our experiments. Each rectangle corresponds to a π rotation of the
electron spin. The height and the width of the rectangle correspond to the strength and time duration of the pulse, respectively.
The pulse interval 2τ and the pulse duration τd together make a complete period with τc = 2τ + τd, which is kept to be the
same for different decoupling sequences in our comparison of their performance.

the dynamical decoupling works as we require the system-environment coupling Hamiltonian is averaged out to zero
over this group G. For the Eulerian decoupling scheme, the instantaneous pulse is replaced by any continuous pulse
which satisfies the condition Uc (lt∆) = gl. For the Eulerian decoupling scheme to work, Uc (lt∆) (l = 1, · · · , L) over
one complete control cycle has to follow the so-called Eulerian path in the graph with {gl} as the vertices. If the noise
is purely dephasing (Z error), the simplest Eulerian path is given by {X, I}, which corresponds to the conventional
Car-Purcell-Meiboom-Gill (CPMG) echo pulse sequence {X,X}. We use X,Y, Z in this paper to denote the three
Pauli operators. So the CPMG sequence should work for the dephasing noise even when we replace the instantaneous
π-pulse by a slow pulse as long as the pulse area is π for each control segment. If the noise is universal including both
dephasing and relaxation (X,Y, Z errors), the simplest decoupling sequence with instantaneous pulses is the XY4
sequence {X,Y,X, Y }. The simplest Eulerian path in this case, however, is given by {X,−iZ,−Y,−I,−Y,−iZ,X, I},
which corresponds to the XY8 pulse sequence {X,Y,X, Y, Y,X, Y,X}. According to the Eulerian decoupling scheme,
the XY8 sequence should work for any slow pulse of arbitrary shape as long as the pulse area integrated over the
duration t∆ is π for each segment.

Test of Eulerian decoupling under dephasing

In our experiment, we use the electron spin qubit of a NV center in a single crystal diamond to test effectiveness
of the Eulerian decoupling scheme. Our experimental setup is described in detail in Ref. [28] and the appendix. We
compare the performance of various pulse sequences under both dephasing and universal noise. The pulse sequences
tested in this paper are shown in Fig. 1. Note that we use the CPMG Y sequence {Y, Y } instead of the X sequence
to combat the dephasing noise (Z error) as the Y sequence is more robust to the systematic X error if we prepare
and measure the superposition state with X pulses in the Ramsey measurement scheme. The dephasing noise in our
experiment is provided by the natural coupling of the electron spin to the surrounding nuclear spins in the diamond
crystal, which induces dephasing with T ∗

2 ≈ 1.85 µs measured through the free induction decay under an external
magnetic filed of 500 G applied along the NV axis (shown in Fig. 2a). To simulate an environment of universal noise,
we apply to the electron spin a noisy microwave field synthesized through an arbitrary waveform generator (AWG)
with the details shown in the appendix.
We test effectiveness of the Eulerian decoupling scheme by measuring the coherence decay of the electron spin under

different dynamical decoupling pulse sequences, with both fast and slow pulses. We prepare the initial state in the
superposition of |0〉 and | − 1〉 spin state by a π/2 pulse along the X axis and then let it evolve with the decoupling
protocol for a total time duration of Nτc (including τc/2 before the first pulse and τc/2 after the last pulse of the
dynamical decoupling sequence), where N is the pulse number and τc is the periodic pulse spacing. The performance
of the dynamical decoupling is characterized by projecting the final state ρ to the Z axis by another π/2 pulse along
the −X axis and measuring the state fidelity F = 〈0|ρ|0〉, which is calibrated by the fluorescence contrast in a Rabi
oscillation experiment.
We start by exploiting the Eulerian decoupling protocol under pure dephasing. In Fig. 2, we show the comparison
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FIG. 2: Coherence decay with the initial states along the +Y axis under pure dephasing. (a) Free induction decay probed using
Ramsey interference. Solid line is a fit to exp(−(t/T ∗

2 )
2) with the fitted T ∗

2 = 1.85 µs. (b,c,d) Coherence decay under repeated
CPMG Y (b), XY4 (c), and XY8 (d) dynamical decoupling sequences compared between fast and slow pulses, where the pulse
period is fixed and the pulse number N varies from 8 to 360 along the horizontal axis. Solid lines are fits to exp(−(t/T2)

2)
with (b) T2 = 816 µs (903 µs) for the fast (slow) CPMG pulses, (c) T2 = 490 µs (384 µs) for the fast (slow) XY4 pulses, and
(d) T2 = 884 µs (896 µs) for the fast (slow) XY8 pulses. The pulse duration τd and the pulse interval 2τ are taken to be 24 ns
(500 ns) and 1900 ns (1424 ns), respectively, for the fast (slow) pulses.

of performance under fast and slow pulses. Note that under pure dephasing, the CMPG-Y, the XY4, and the XY8
sequences all satisfy the Eulerian cycle condition, so theory predicts these sequences should all work with long pulses
instead of strong instantaneous ones. In Fig. 2(b)-(d), we report experimental results with the pulse duration extended
to 500 ns, comparable with the pulse interval 2τ (τ = 712 ns) and T ∗

2 . Compared with the fast pulse case (for which
the pulse duration is 24 ns), the Eulerian decoupling sequences with slow pulses give almost the same performance.
For all the cases, the coherence time is extended to be hundreds of T ∗

2 , in agreement with the prediction of the Eulerian
decoupling scheme under pure dephasing.

Test of Eulerian decoupling under general noise

Universal noise provides a more interesting environment to test performance of the Eulerian decoupling protocol. To
realize a universal noise environment, in addition to intrinsic dephasing in the diamond, we introduce spin relaxation
noise by injecting a noisy microwave field. In Fig. 3a and 3b, we characterize the universal noise environment by
measuring the spin relaxation and dephasing times under no dynamical decoupling pulses. The magnitude of the noisy
microwave filed is controlled such that the corresponding spin relaxation time (T ∗

1 ) is about 10 µs from numerical
simulation of the noise model (insert of Fig. 3a). In experiment, however, we observe that the spin population only
relax by 20% after 700 µs as shown in Fig. 3a. The observed effect can be explained by the dephasing induced
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FIG. 3: Coherence decay with the initial states along the +Y axis under weak relaxation environment. (a) Relaxation of spin
population in |0〉 state. Solid line is a fit to exp(−t/T ∗

1 ) with the fitted T ∗

1 = 1.83 ms. The inset shows the numerical simulation
result of relaxation with the injected microwave noise if there were no dephasing in the environment, for which T ∗

1 = 12.87 µs.
(b) Free induction decay measured with Ramsey interference. Solid line is a fit to exp(−(t/T ∗

2 )
2) with the fitted T ∗

2 = 1.79
µs. (c,d) Coherence decay under repeated XY4 (c) and XY8 (d) dynamical decoupling sequences compared between fast and
slow pulses, where the pulse period is fixed and the pulse number N varies from 8 to 360 along the horizontal axis. Solid lines
are numerical simulation results under the injected spin relaxation noise and the natural dephasing environment characterized
in Fig. 2 (see the Appendix for the simulation method). The pulse duration τd and the pulse interval 2τ are taken to be 24 ns
(500 ns) and 1900 ns (1424 ns), respectively, for the fast (slow) pulses.

inhabitation of relaxation [29, 30]. The strong intrinsic dephasing is equivalent in role to frequent observation of
population, which freezes population transfer by the noisy microwave field when the magnitude of the latter is small
compared with the dephasing rate [29, 30]. Strong dephasing therefore suppresses spin relaxation.
Although the added spin relaxation noise changes little the observed T ∗

1 and T ∗

2 in Fig. 3a and 3b, it significantly
affects the performance of the dynamical decoupling pulses. Under a universal noise environment, theory predicts
that both XY4 and XY8 sequence should work under fast pulses, but only the XY8 sequence, which is the minimum
Eulerian decoupling sequence, will work under slow pulses. In Fig. 3c and 3d, we show the performance of the XY4
and the XY8 sequences under both slow and fast pulses. We see that under the XY8 sequence slow pulses achieve
almost the same performance as the fast pulses, while under the XY4 sequence the performance of the slow pulses is
significantly worse than that of the fast pulses. These observations are in agreement with prediction of the Eulerian
decoupling theory.
We then increase the spin relaxation noise by raising the magnitude of the noisy microwave filed and test the

performance of the Eulerian decoupling scheme under strong relaxation and dephasing. The results are shown in Fig.
4. In Fig. 4a and 4b, we see that both T ∗

1 and T ∗

2 are now reduced to about 1 µs. In Fig. 4c and 4d, we compare
the performance of the XY4 and XY8 sequences under slow and fast pulses with the following two observations:
First, we note that the overall coherence time becomes shorter, and the XY4 sequence is significantly inferior to the
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FIG. 4: Same as Fig.3, but under strong relaxation environment. Solid lines represent numerical simulation results (see the
Appendix for the simulation method). The pulse duration τd and the pulse interval 2τ are taken to be 24 ns (100 ns) and 240
ns (164 ns), respectively, for the fast (slow) pulses.

XY8 sequence in performance even under fast pulses. This is caused by the requirement of a smaller pulse period
τc in this case and thus fast accumulation of the systematic pulse errors. As it is well known, the XY8 sequence is
more insensitive to accumulation of the systematic pulse errors compared with the XY4 sequence as it suppresses the
systematic errors and the spin relaxation noise to a higher order [12, 16]. Under pure dephasing, the pulse period
τc is required to be small compared with the bath correlation time; while under both dephasing and relaxation, the
pulse period τc needs to be small compared with the time scale of T ∗

1 and T ∗

2 (the inverse of the relaxation and the
dephasing rates). The latter sets a more stringent requirement and we need to reduce τc by about a factor of 8 in our
experiment. The overall coherence time correspondingly decreases under the same number of pulses. Second, for the
XY4 sequence the fast pulses significantly outperform the slow pulses, while for the XY8 sequence they give similar
results. This is in agreement with prediction of the Eulerian decoupling theory. In Fig. 4d, we also test performance
of the slow pulses under different pulse shapes, for instance, with a Gaussian instead of a square shape, and find
that the slow pulses under different shapes all give very similar results, with performance comparable to that of fast
instantaneous pulses.

SUMMARY

In summary, we have reported an experimental test of the Eulerian dynamical decoupling scheme in a solid state spin
system and find that the slow soft pulses, under appropriate conditions, are able to give noise suppression comparable to
the performance of strong instantaneous pulses. The experimental demonstration of the Eulerian decoupling scheme
with slow pulses and its effectiveness eliminates a challenging requirement in conventional dynamical decoupling
techniques and may find important applications in physical systems where the system-environment coupling is large
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and it is difficult to apply strong control pulses with amplitudes much higher than any other system or environment
dynamical parameters [8].

APPENDIX

Experimental Setup

We use a home-built confocal microscopy to optically address single NV centers in the diamond. A 532 nm green
laser, controlled by an acoustic optical modulator (AOM), is used for initialization and readout of single NV centers.
The AOM is set in a double pass configuration to enhance the on-off ratio to 100000 : 1. The green laser is then
coupled into a single mode fiber for optical mode shaping. The laser coming out of the fiber is reflected by a wave
length dependent Dichroic Mirror (DM) and focused by an oil immersed objective lens into the diamond sample,
which is mounted on a 3-axis closed-loop piezo. The fluorescence of the NV center is collected by the same objective,
then passes through the DM mirror and gets collected by a single photon detector with a 637 nm long pass filter.
The spatial resolution of the confocal microscopy system is limited by the diffraction limit of the green laser and the

Numerical Aperture (NA) of the objective to about 0.2 µm. The fluorescence count of single NV center is about 100
k/second (the dark count rate is 5 k/second). To collect enough data in experiments, we repeat each experimental
trial 106 times. We apply a magnetic field of 500 G along the NV axis. Under this filed, the green pumping laser
polarizes the nearby N14 and C13 nuclear spins through the electron spin level anti-crossing in the excited-state
manifold, which facilitates electron-spin nuclear-spin flip-flop process during optical pumping [1].
We fabricate a coplanar waveguide transmission line with a 70 µm gap on a cover glass to deliver microwave signal.

The microwave signal is first generated in a microwave source, then modulated at an IQ mixer with the output of a
frequency combiner, whose input is generated by two separate Arbitrary Wave Generators (AWG). The first AWG
generates a 100 MHz signal used to manipulate the electron spin (resonant with the energy level between the |0〉
and | − 1〉 states after mixed with the microwave output). The second AWG generates the noise signal with a center
frequency same as the output of the first AWG and a particular bandwidth corresponding to the interested noise
model. The synchronization and on-off of the second AWG is controlled by the digital output of the first AWG via a
switch.

Realization of a universal noise model by injecting microwave noise

The intrinsic decoherence in the diamond only provides the dephasing noise. To model a universal noise environment,
we need to add spin relaxation, which is achieved by injecting microwave noise to drive the NV spin transitions. The
noise signal, after mixed with the microwave output, is centered at the frequency that is resonant with the transition
from the level |0〉 to | − 1〉. To model the relaxation noise, we add up all the frequency components around the center
frequency up to a cutoff bandwidth (the bandwidth is taken to be 20 kHz in our experiment) and weight the frequency
components with a particular spectrum. To have a time correlation function of the shape exp(−R|τ |), we choose the

weight function to be
√

2∆ωR
(2πn∆ω)2+R2 for the nth component of the microwave noise field with frequency detuning

n∆ω, where ∆ω = 1 kHz is the discretization step. The phase of each frequency component is chosen randomly from
a uniform distribution between 0 and 2π. We generate a 1 ms time trace of this spectrum and set the AWG to
continuously repeat this 1 ms signal. All the dynamical decoupling sequence is shorter than 1 ms, so the noise has no
correlation within a cycle. We have the noise on during the desired evolution period.

Numerical Simulation

Since most of the strong nuclear spins are polarized under optical pumping with a strong magnetic field at
500 Gauss, we ignore the interactions of the electron spins with the nearby nuclear spins. The pulse period τc
is carefully chosen to avoid the collapse of coherence due to resonance with the 0.5 MHz Larmor precession in-
duced by the external magnetic field. We consider the effective spin-1/2 system composed of |0〉 and | − 1〉 states.
The numerical simulation is performed in the rotating frame using the 4th order Runge-Kutta integration with
the effective Hamiltonian given by H = Ωcos(φ)Sx + Ωsin(φ)Sy + Hinjectednoise(t), where Ω and φ are respec-
tively the Rabi frequency and the phase of the microwave pulses for the dynamical decoupling sequence, and
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Hinjectednoise(t) =
∑10

n=−10 W (n)cos(n∆ωt+ φn)Sx −W (n)sin(n∆ωt+ φn)Sy with W (n) =
√

2∆ωR
(2πn∆ω)2+R2 and ran-

dom phase φn simulates the injected microwave noise responsible for the spin relaxation. We perform an average over
1000 realizations of different Hinjectednoise(t) with random phase φn in each run. The simulation result is then en-
veloped with the function 0.5exp(−(t/T2)

2) + 0.5 that represents the intrinsic dephasing in the diamond, where T2 is
experimentally measured under the CPMG Y sequence.
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