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Abstract

An electromagnetic force density expression that is consistent with a development attributed

to Einstein and Laub appears to be able to describe optical force experiments done to date with

homogenized media. However, a major question that has persisted for about one century relates

to the apparent discrepancy with the usual interpretation of the force description due to Lorentz

in magnetized media. Specifically, it had appeared that the Einstein and Laub force density

incorporated only the free space permeability in relation to the force on the electric current density.

It is shown here for what appears to be the first time that the Einstein and Laub force density

is consistent with the Lorentz picture in the static limit. This resolves a key impediment in

establishing a unified force density description for electromagnetic waves interacting with matter.
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Understanding the force due to electromagnetic fields is fundamental and of importance

in applications like optical tweezers [1, 2] and the study of optical traps [3]. Consequently,

the pertinent theory has received substantial attention during the past century (see, for

example, [4–22]). However, a key and apparently open question has been the description of

the electromagnetic force density in magnetic media [6]. In particular, the theory attributed

to Einstein and Laub [4], used to explain important experiments [23, 24], has appeared

inconsistent with the description due to Lorentz [5] in magnetized media, which is supported

by experiments done by Hall [25] and work on electron beams in magnetized media [26, 27].

It is shown here, evidently for the first time, that the Einstein and Laub theory is consistent

with that of Lorentz in magnetized media in the static limit, thereby providing a unified

description of the force density in homogenized media.

The Lorentz force density (N/m3) is commonly written as

fL = ρE+ J×B, (1)

where ρ (C/m3) is the free electric charge density, E (V/m) is the electric field intensity,

J (A/m2) is the electric current density, and B (T=Wb/m2) is the magnetic flux density.

Equation (1) stems from a static picture of stationary charges and steady state currents. It

has no information related to photon momentum or the wave character of light, although

of course an electromagnetic wave can establish a charge density and a current density in a

material.

A focus of Lorentz was on charges moving in vacuum [5], where in (1)

B = µ0H, (2)

with µ0 (H/m) the free space permeability and H (A/m) the magnetic field intensity. How-

ever, in homogenized magnetic media having magnetization M (A/m), one has [28]

B = µ0(H+M). (3)

Early evidence for the use of (3) in (1) came from the resistivity experiments of Hall in

ferromagnetic media, and he provided an explanation in terms of magnetization [25]. This

has been understood as a spin-orbit effect and described with H and M contributions [29].

The related anomalous Hall effect is the subject of substantial recent interest [30]. While

some experiments gave conflicting pictures [31] (see the introduction), a result showing the
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deflection of mesons by magnetized iron also suggested that use of (3) in (1) is correct

[31]. Electron microscopy has been used to determine the distribution of magnetism [32],

and those experiments also support use of magnetization (M) in evaluating the force on

a beam and indicate that in the situations considered the applied field (H) was unimpor-

tant. Subsequent work indicated sensitivity to magnetized material states [26, 27], and the

characterization method became known as Lorentz microscopy. Therefore, as is broadly

understood, experimental evidence overwhelmingly supports use of (3) in (1). This estab-

lished background is projected against an apparent discrepancy with a rigorous theory for

the electromagnetic force density that presumably should approach (1) in the static limit.

The particular challenge of relevance here has been that J × µ0H appears in the elec-

tromagnetic force density attributed to Einstein and Laub [4], and the explanation has

presented an open issue for a very long time (see, for example, [6, 33]). It is shown here that

in fact the Einstein and Laub force density expression is in agreement with Lorentz and (1)

together with (3) in the static limit.

The force density attributed to Einstein and Laub [4] (fEL N/m3) and used by many

[6, 13, 16–18, 22, 34, 35] is

fEL =
∂P

∂t
× µ0H−

∂µ0M

∂t
× ǫ0E

+ ρE+ J× µ0H+ (P · ∇)E+ µ0 (M · ∇)H, (4)

where P (C/m3) is the polarization and ǫ0 (F/m) is the free space permittivity. The corre-

sponding stress tensor is [24]

TEL =
1

2

(

ǫ0E
2 + µ0H

2
)

I−DE−BH, (5)

where I is the identity matrix, D (C/m2) is the electric flux density, and, for example, DE is a

dyadic product of two vectors with elements (ab)ij = aibj [6]. This stress tensor is arrived at

through incorporation of coupled electromagnetic, polarization, and magnetization systems

[24]. For general material arrangements, (P · ∇)E and (M · ∇)H in (4) can be nonzero, and

the identities

− (∇ ·P)E = −∇ · (PE) + (P · ∇)E (6)

− (∇ ·M)H = −∇ · (MH) + (M · ∇)H (7)

indicate that PE and MH provide a contribution in (5).
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In vacuum and for the static limit, (4) produces ρE + J × µ0H, the Lorentz result in

(1), providing confidence. The relevant point related to the credibility of (4) addressed

here is the static limit in magnetic materials, and consistency with the work of Lorentz

(1). Equation (4) has J × µ0H, while static experiments suggest that it should be J × B.

Introducing an electron beam into a sample, where we make the assumption of uniform

velocity, would appear to be captured in J. Therefore, at least superficially, there appears

to be an issue with consistency between (4) and (1). It has earlier been proposed that

the root of the issue is that (4) applies to local, homogenized media, and the situation of

charges passing through material is more complicated and may not conform [6]. However, J

can be viewed as an impressed current (a mathematical source) that can encompass Ohm’s

law and the steady current when ∂P/∂t → 0, or is an equivalent current (in the Huygen’s

sense). A legitimate electromagnetic force theory should capture this as the circular temporal

frequency (ω) approaches zero, i.e., in the static limit. Therefore, consider more carefully

the static limit for (4), where terms involving a time derivative are removed.

Use of the identity (∇b)·a = (a·∇)b+a×(∇×b) with tensor operation (∇b)ij = ∂bj/∂xi,

gives

(∇H) ·M = (M · ∇)H+M× (∇×H). (8)

Using (8), and with reference to (4),

µ0(M · ∇)H = µ0(∇H) ·M− µ0M× (∇×H)

= µ0(∇H) ·M+ J× µ0M, (9)

with application of Ampere’s law for magnetostatics, neglecting displacement current (to

investigate the relationship between (4) for the static case and the Lorentz result). With

(9), and considering the two relevant terms in (4),

J× µ0H+ µ0(M · ∇)H = J× µ0H+ µ0(∇H) ·M+ J× µ0M

= J×B+ µ0(∇H) ·M

= J×B, (10)

where the approximation assumes that the local, mean field is constant over the length scale

of interest (∇H = 0), appropriate because this is a force density. The force density here is a

macroscopic quantity and is applicable with spatial averages (mean field) over a length scale

4



appreciable relative to inter-atomic distances [36, 37]. The assumption of a constant local

field is also compatible with the local homogenization of materials [37] (and a more recent

example from metamaterials [38]). Equation (10) indicates that (4) is consistent with the

result from Lorentz for the static force on a free current density J, expressed in (1). This

key point does not seem to have been recognized previously.

Consider now the electrostatic situation. Using the same vector identity that led to (8),

(∇E) ·P = (P · ∇)E+P× (∇×E)

= (P · ∇)E

= 0, (11)

because the electrostatic field is conservative and hence has zero curl, and with the assump-

tion of a locally constant field, ∇E = 0, so from (11), (P · ∇)E = 0.

With use of (10) and (11) in (4), and in the static limit,

lim
ω→0

fEL = ρE+ J×B = fL, (12)

in agreement with (1). Equation (12), showing the force density on a free charge distribution,

is the central result. Using ∇H = 0 and ∇E = 0, introduced here for the first time, (12)

can be obtained from a previous development based on (4) [33].

In part, the point of this Letter is to draw attention to the meaning of the terms in (4)

in relation to the material properties and the force description in (1) due to Lorentz. This

has been considered a major problem, i.e., that there is not an adequate picture linking

the two forms [6, 33]. An electric current source or an equivalent boundary representation

is captured by J in (4). Free and bound charge motion are rigorously incorporated in a

temporal Fourier representation of P(t) andM(t) in (4), so in a simple isotropic situation the

complex susceptibilities provide the complete material description: P(ω) = ǫ0(χ
′

E+iχ′′

E)E(ω)

and M(ω) = (χ′

H + iχ′′

H)H(ω). Taking (4) into the frequency domain, we can legitimately

represent the complex electric susceptibility as a complex conductivity (σ = σ′+iσ′′), thereby

forming the equivalence between ∂P/∂t × µ0H and J × µ0H. For a locally homogeneous

medium, the fields are divergenceless (so for the isotropic material case, ∇ · E = 0 and

∇ ·H = 0) and a plane wave superposition can be used. In this situation, the “free charge”

density within the material is ∇ · D = ρ = 0. Current density and charge density are of

course linked through the conservation of charge requirement in the continuity condition. In
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the static case, J describes the conduction current density (free charge) and P the bound

charge, and the two terms can be separated exactly. In the context of homogeneous media,

J and ρ in (4) describe the free or introduced charged particles, the e-beam for instance.

This is precisely the framework to understand how (4) maps to (1).

Let us review what ∇H = 0 and ∇E = 0 in (10) and (11) means in the broader physical

context in arriving at (12). First, the obvious statement that ∇H and ∇E do not appear in

(1), either because only the local field is relevant (and not its spatial variation at each point

in space) or something has been ignored, perhaps electrostriction and magnetostriction, in

applying (1) in materials. The fact that an enormous body of experimental work in dielectric

and magnetic materials with static fields supports (1) suggests that it captures the relevant

physics thus far. The issue then becomes the basis of any approximation. The case was

made that the mean, local field that is built into Maxwell’s equations implies that only the

field amplitude, and not the spatial variation, should be used in the force density impacting

free charge motion in a material. For a linear time-invariant problem, superposition can be

applied. Each elemental component of the beam has weights J(r′) and ρ(r′) at some point

r = r′ in space. Thus, an element of the current density is J = ĵJ(r′)δ(r − r′), where ĵ is

a unit vector and δ(·) is the Dirac delta function. In this mathematical Dirac limit and a

point-wise spatial representation, clearly ∇H = 0 and ∇E = 0 at each point where the force

(density) on the charged particle beam is determined, considering the differential limit for

a continuous field. Integration over a differential volume gives the local force on the current

and charge.

Consider again the physical picture behind (12). The description is of the force on free

charge (the e-beam for instance) in a material. It is not the force deforming the material.

In this sense, electrostriction and magnetostriction are irrelevant. Earlier work considering

the relationship between the Lorentz and Einstein-Laub forces (see [23, 33], for example),

considered the force on the material rather than directly considering the force on the free

charge density. Hall measurements monitor current and hence conform to this picture.

Although straight forward, this point is important because it allows the decomposition of

the Einstein-Laub force into a form that is exactly equivalent to the Lorentz picture, as

widely used and as it must.

Equation (12) indicates that the Einstein-Laub formulation for force density is consistent

with the accepted static form of the Lorentz force on free charges in static fields. This means

6



that the material magnetization will influence the local force density in (4), just as in the

expression from Lorentz that has been supported by experiments. Equation (4) has been

used to explain key optical force experiments, including those due to Jones and Leslie [39]

(see [24]), as well as Ashkin and Dziedzic [40] (see [23]). It might optimistically be concluded

that legitimate interpretations of (4) may be able to explain all macroscopic experiments.

Whether other theories hold, at least approximately, in certain situations represents another

set of questions. Finally, lacking in force experiments has been verification of the influence of

the dispersive material response that is incorporated into (4) through ∂P/∂t and ∂µ0M/∂t.
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