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Abstract

In this work, we develop a multi-scale approach to model intrinsic dissipation under high fre-

quency of vibrations in solids. For vibrations with time-scale comparable to the phonon relaxation

time, the local phonon distribution deviates from the equilibrium distribution. We extend the quasi-

harmonic (QHM) method to describe the dynamics under such a condition. The local deviation

from the equilibrium state is characterized using a non-equilibrium stress tensor. A constitutive

relation for the time evolution of the stress component is obtained. We, then, parametrize the evo-

lution equation using the QHM method and a stochastic sampling approach. The stress relaxation

dynamics is obtained using mode Langevin dynamics. Methods to obtain the input variables for

the Langevin dynamics are discussed. The proposed methodology is used to obtain the dissipation

rate, Edissip, for different cases. Frequency and size effect on Edissip are studied. The results are

compared with those obtained using non-equilibrium molecular dynamics (MD).
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I. INTRODUCTION

High frequency vibrations in nano electro mechanical systems (NEMS) have importance

for a wide variety of technological applications and for the fundamental understanding of

physical phenomenon. Technological relevance include atomic scale mass sensors1,2, detec-

tion of biological molecules3–5 and the detection of electron spin flip6 as few select examples.

From a fundamental perspective nano-resonators have been devised to probe physical phe-

nomenon such as non-linear dynamics7 and quantum effects in macroscopic objects8. An

important aspect for all these applications is dissipation in NEMS which limits its per-

formance. For example, observing quantum effects in a macroscopic sized object requires

that the device is in the quantum ground state. For an oscillator this necessitates that

hωn >> kbT . Here, h is the Planck’s constant, ωn is the angular frequency, kb is the Boltz-

mann constant and T is the temperature. This explains the need for high values of ωn.

However, dissipation or coupling with the environment leads to thermalization and smears

out the quantum effect. A low dissipation rate is, therefore, desired.

Modeling of dissipation at the nano-scale is, therefore, of central importance for design

of NEMS devices. Depending on the medium that exchanges energy with the motion of

interest, the dissipation mechanisms can be broadly classified as the extrinsic and the in-

trinsic mechanisms. Extrinsic dissipation10–15 involves the loss of mechanical energy because

of coupling with the external environment while intrinsic damping results from energy ex-

change with the internal thermal vibration of the structure. Extrinsic damping can often

be minimized using better design considerations. Intrinsic energy loss, however, sets a fun-

damental limit for the device performance. The different known mechanisms of intrinsic

dissipation include thermo-elastic damping16,17 (TED), Akhiezer damping18–20, non-linear

coupling between mechanical modes21–24, surface mediated losses25,26 and dissipation due to

defects27–29.

Intrinsic dissipation takes place as a result of the coupling between the mechanical de-

formation and the internal thermal vibrations in a structure. An irreversible flow of energy

takes place resulting in an increase in the entropy of the system. In the classical thermo-

elasticity the thermal vibrations are quantified in terms of the temperature field. Such a

description invokes the condition of local equilibrium. The mean thermal energy or the

temperature field, then, suffices as a complete description of the system. However, this
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approximation is not valid in the case of nano-resonators.

Nano-resonators have vibrational frequency in the order of few GHz. For such high fre-

quencies of vibration the time-scale of mechanical deformation becomes comparable to the

phonon relaxation time. Deformation of a structure, at rates comparable to the phonon re-

laxation time, drives the phonon out of equilibrium. For such cases the mean thermal energy

or the temperature is not an adequate description of the thermal field. Additional variables,

that characterize the deviation from equilibrium, are required to describe the thermal field.

The out of equilibrium phonon population, then, results in the absorption of energy from

the mechanical deformation. Akhiezer mechanism30 characterizes the damping due to this

local disturbance of the phonon population. The dissipation rate due to the Akhiezer mech-

anism is, often, quantified using a reduced order two oscillator model31. In this work, we

provide a detailed quasi-harmonic based multi-scale approach to model intrinsic dissipation

due to perturbation of the local phonon distribution. The time-scale for the thermalization

of phonons is generally of the order of few ps. In the frequency space this corresponds to

a frequency range of 1-100 GHZ. Hence, the dissipation due to local phonon perturbation

is expected to play an important role in nano-resonators. This provides a motivation for

this study. However, other dissipation mechanisms may also play an important role. The

relative contribution of other damping processes needs to be analyzed and each of it merits

a study of its own.

The thermal vibrations in a structure and its coupling with the mechanical field are

described using the quasi-harmonic (QHM) method32,33. The existing QHM frame-work is,

however, valid for quasi-static deformation. In this work we extend the QHM method to

model the intrinsic dissipation in solids under the high frequency vibrations. We introduce

a non-equilibrium component of the stress tensor, σ
′

. The stress tensor characterizes the

deviation from local equilibrium and vanishes under quasi-static deformation. A constitutive

relation that governs the time evolution of σ
′

is obtained. The time evolution for σ

′

is

described by a forcing and a relaxation term. The forcing rate is parametrized in terms of a

dissipation tensor D which is obtained using QHM. We, also discuss a stochastic sampling

method to obtain D. The relaxation dynamics for σ
′

is obtained using Langevin dynamics

in the basis of normal modes. In this approach each of the modes is modeled as a noisy

harmonic oscillator. The proposed methodology is, then, used to study the effect of different

parameters on the dissipation rate. Vibrations with frequency in the range of few GHz are

3



considered. The results are compared with those obtained using non-equilibrium MD.

The manuscript is organized as follows. In section II we obtain the constitutive relation

for σ
′

using QHM. Methods to obtain the dissipation tensor, D, and the stress relaxation

rates are, then, discussed. In section III we apply the method to compute the dissipation rate

as a function of different parameters. The comparisons with the MD results are provided

alongside. Finally, the conclusions are given in section IV.

II. THEORY AND METHODS

In this section we will first obtain an expression for the non-equilibrium stress using the

quasi harmonic (QHM) method. We will then derive a constitutive relation that governs

the time evolution of the non-equilibrium stress. The constitutive relation, as obtained,

shows two physical processes a forcing term and a relaxation term. The forcing term will be

characterized in terms of a dissipation tensorD. An expression forD in terms of the material

parameters will be obtained. We will also discuss a non-equilibrium sampling method to

parametrize D. We will, then, describe the stress relaxation behavior. Langevin dynamics

and Green Kubo formulation will be used in this regard.

A. Non-Equilibrium Stress

In this section we shall derive an expression for stress tensor under non-equilibrium condi-

tion. We consider the case of a crystalline structure that is amenable to the quasi-harmonic

approximation. This implies that the atoms undergo small thermal vibrations about the

mean positions. For a given mean position of atoms, the quasi-harmonic approximation

then suffices to describe the thermal vibrations. We briefly describe the QHM method. For

the details of QHM the reader is referred to32,33. In essence the QHM method considers a

Taylor series expansion of the governing inter-atomic potential for a given mean position

of the atoms. The potential energy is, then, approximated by retaining the second order

terms in the expansion. The quadratic expression for the truncated Hamiltonian is decou-

pled using normal modes. These normal modes constitute a set of orthogonal directions in

the configuration space. For the quadratic Hamiltonian, the motion along one direction is

independent along the other. It should be mentioned that the normal modes are a function
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of the mean atomic position (or strain) in QHM. The dependence of modes on strain, indeed,

gives the coupling between the strain and the thermal vibrations. A harmonic method, for

which the eigen-vector and the frequencies are invariant under deformation, cannot describe

dissipation.

Using QHM the Hamiltonian, can, thus, be written in terms of the modal co-ordinates.

Let ai denote the mode displacement, ωi denote the frequency and vi be the velocity for a

mode i. The Hamiltonian, H , is, given as

H =

nmodes
∑

i=1

1

2
mω2

i a
2
i +

1

2
mv2i . (1)

Here, nmodes is the number of modes and m is the atomic mass. nmodes = 3×nat, where

nat is the number of atoms in the system.

The thermal state of the system is completely described by specifying the probability

density function (PDF) for the mode co-ordinates. Under the equilibrium condition, char-

acterized by temperature, T , the PDF for ai is given as

P (ai) =
1

Z
exp

(

−

mω2
i a

2
i

2kbT

)

(2)

Here, kb is the Boltzmann constant and Z is the partition function.

The PDF in Eq.(2) is only valid under the condition of local equilibrium. When this

condition is violated, the modes no longer satisfy the energy equipartition principle. Instead

each mode i is characterized by a non-equilibrium temperature Ti. The PDF, Pneqb(ai), for

ai for such a state is, then, given as

Pneqb(ai) =
1

Z
exp

(

−

mω2
i a

2
i

2kbTi

)

(3)

This expression for Pneqb(ai) has been obtained using the principle of maximum entropy34.

A derivation for this is provided in Appendix A. In deriving the above expression, the

phonon distribution is considered to have a temperature different from the ambient. The

assumption holds only under the condition of weak coupling with the environment. Under

a more general condition, the mean temperature of phonons will tend to relax towards the

ambient value. For such cases, additional equations that describe this relaxation dynamics,

will be required. In this work we have neglected the coupling with the environment.

We, shall, now derive an expression for the stress tensor for the non-equilibrium state.

5



Let σ denote the thermal stress tensor and let σij denote its components. σij is given as

σij =
1

V

∂ < H >

∂ǫij
(4)

Here, and for all future purpose, the symbol < ... > refers to the ensemble average. V is

the volume and ǫij are the components of the strain tensor, ǫ. Using the expression for H

in Eq.(1) and the PDF in Eq.(3), we obtain

σij =
1

V

nmodes
∑

n=1

∫

1

2
m
∂ω2

n

∂ǫij
a2nP (an)dan (5)

We define λij
n such that λij

n = 1
ωn

∂ωn

∂ǫij
. Using the definition of λij

n and further simplifying

Eq.(5) we get

σij =
1

V

nmodes
∑

n=1

λij
nEn. (6)

Here, En is the mean energy for mode n and is related to Tn as En = kbTn. Using a little

algebra, the expression for σij can be, further, re-casted as

σij =
nmodes

V
λij E +

1

V

nmodes
∑

n=1

∆λij
n∆En (7)

Here, and for all future reference, the symbol x is defined as x = 1
nmodes

∑nmodes
n=1 xn, where

xn is any mode variable for mode n. Also, ∆En = En − E and ∆λij
n = λij

n − λij. We have,

thus, decomposed the stress into two components. Under the condition of equilibrium, the

modes satisfy the energy equi-partition principle and we have ∆En = 0. The second term

in Eq.(7), then, vanishes. We, thus, identify this term as the non-equilibrium component of

the stress tensor, σ
′

. While the equilibrium stress is a state property, the non-equilibrium

stress depends on the rate of deformation of the system. In the next section we will derive

an Eq. that governs the time evolution of σ
′

. The components of σ
′

are, therefore, given as

σ
′

ij =
1

V

nmodes
∑

n=1

∆λij
n∆En (8)

B. Constitutive Relation

In this section we will derive the constitutive relation that governs the time evolution of

σ

′

. Using physical arguments we first state the result. We shall, then, provide a derivation

for the different terms in the expression based on the QHM method. We will also present
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a non-equilibrium sampling approach to parametrize the constitutive relation in the next

section.

The time evolution of σ
′

is given as

dσ
′

dt
= D

∂ǫ

∂t
+

(

∂σ
′

∂t

)

relax

(9)

Here, D is a fourth order dissipation tensor and the second term on the R.H.S describes the

relaxation of the stress tensor. An expression for D will be derived subsequently. Eq.(9)

shows that the evolution of σ
′

results from two competing factors. Deformation of the system

at any finite rate drives it out of equilibrium. Under the linear approximation, the rate at

which the system deviates from the equilibrium state is proportional to the driving rate.

The first term in the above Eq. describes this phenomenon. Further, if left unperturbed,

the system tends to relax towards the corresponding equilibrium state. σ
′

, which measures

the deviation from the equilibrium state, correspondingly relaxes towards a zero value. This

is described by the second term in Eq.(9).

In-order to derive the Eq. that governs the time evolution of σ
′

we take the derivative

of Eq.(8) with respect to time. We, then, obtain

σ̇
′

ij =
1

V

nmodes
∑

n=1

∆λij
n∆Ėn (10)

In the above Eq. we need to substitute the time derivative of ∆En. The energy of a mode

changes due to two processes. The applied deformation field injects (or extracts) energy from

each of the modes. Further, the modes interact with each other and an inter-modal flow of

energy takes place. We shall first consider the energy change due to the applied strain. The

partial change in En due to the change in strain, ǫij , is obtained as

∂En

∂ǫij
=

∫

1

2
m
∂ω2

n

∂ǫij
a2nPneqb(an)dan (11)

Using the expression for Pneqb(an) in Eq.(3) and carrying out the integration we obtain
(

∂En

∂t

)

ǫij

= λij
nEn

dǫij
dt

(12)

Here,
(

∂En

∂t

)

ǫij
denotes the time rate of change of En due to the change in ǫij .

Adding the above Eq. for all values of n we obtain
(

∂E

∂t

)

ǫij

= λij E
dǫij
dt

+∆λij∆E
dǫij
dt

(13)
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Here,
(

∂E
∂t

)

ǫij

denotes the time rate of change of E due to the change in ǫij . For small

deformations in the linear regime, the system shows a weak deviation from the equilibrium

state. Under such a condition, the second term in the RHS of Eq.(13) is negligible in

comparison with the first term. Neglecting the second order terms and taking the difference

between Eq.(13) and Eq.(12) we get
(

∂∆En

∂t

)

ǫij

= ∆λij
n kbT

dǫij
dt

(14)

Here,
(

∂∆En

∂t

)

ǫij
denotes the time rate of change of ∆En due to the change in ǫij. In

deriving the above expression we have also used the approximation that En ≈ kbT . We

have, thus, obtained an expression for the time rate of change of ∆En due to the change in

ǫij . We will now discuss the case of inter-modal interaction.

Let
(

∂∆En

∂t

)

coll
denote the time rate of change of ∆En due to inter modal interaction.

Using a single relaxation time approximation this is, often, given as
(

∂∆En

∂t

)

coll
= −

∆En

τ
.

Here, τ denotes the single relaxation time for all the modes. We will, however, not use the

single relaxation time approximation. Instead, we shall resort to mode Langevin dynamics

and obtain an effective relaxation rate for σ
′

. In this approach, each mode n has its own

characteristic relaxation time τn. The details of stress relaxation will be discussed in the

later section. For the time being we shall just retain the expression
(

∂∆En

∂t

)

coll
to denote the

energy change due to collision.

The total rate of change of ∆En due to strain and the inter-modal interaction is, then,

obtained as
d∆En

dt
= kbT∆λij

n

dǫij
dt

+

(

∂∆En

∂t

)

coll

(15)

Using this expression in Eq.(10) we obtain

dσ
′

ij

dt
=

1

V

[

3,3
∑

p=1,q=1

nmodes
∑

n=1

kbT∆λij
n∆λpq

n

dǫpq
dt

+
nmodes
∑

n=1

(

∂∆λij
n∆En

∂t

)

coll

]

(16)

In-order to write the above Eq. in a compact form we define the fourth order dissipation

tensor D. The components of D are given as

Dijkl =
3kbTρ

m
∆λij

n∆λkl
n (17)

Here, ρ is density and m is the atomic mass. We realize that the second term in Eq.(16)

denotes the relaxation of the non-equilibrium stress. Eq.(16) can, therefore, be re-casted as

dσ
′

dt
= D

∂ǫ

∂t
+

(

∂σ
′

∂t

)

relax

(18)
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We, thus, obtain a constitutive relation that governs the time evolution of σ

′

. The

dissipation tensor, D, can be obtained from QHM using Eq.(17) . It, still, remains to

parametrize the relaxation term in the governing Eq. and this will be pursued in the latter

section. Before discussing the relaxation dynamics we will discuss an alternative approach to

parametrize D. In this approach a stochastic method is used to sample the non-equilibrium

states.

C. Non-Equilibrium Stochastic Sampling

In the previous section, the QHM approximation was used to obtain an expression for

the non-equilibrium stress tensor, σ
′

. Subsequently, we derived an expression for the time

evolution of σ
′

. We obtained a dissipation tensor, D that characterizes the time rate of

change of σ
′

due to the change in ǫ. We can, alternatively, obtain D by measuring the stress

for a system as a function of its deviation from the equilibrium state. In this approach, we

use virial stress tensor obtained using the inter-atomic potential. The QHM approximation

for the stress, as used in the previous section, is not invoked. In-order to motivate this

approach we shall, first, provide a physical interpretation of D.

We consider a system that is initially in thermal equilibrium and is subjected to a differ-

ential strain dǫij . Let dσV
ij denote the differential change in the virial component of stress

and as measured instantaneously. The term instantaneous, here, implies time scales which

are small compared with the time required for thermalization. dσV
ij , then, results from two

processes. First, it results from the change in the mean position of the atoms and corre-

sponds to the elastic contribution. Secondly, it results from the system being driven out of

the equilibrium state and corresponds to the dissipative component. Let dσD
ij denote the

component of σV
ij that results from the second effect. The dissipation tensor D can, then,

be obtained such that its components are given as

Dijkl =
∂σD

ij

∂ǫkl
(19)

We, will, use the above Eq. to compute Dijkl. For this purpose, we need to extract the

stress component that results from the deviation of the system from the equilibrium state.

In-order to obtain this, we will generate atomic configurations in the non-equilibrium state

and with the same mean position of the atoms. The difference in the stress value of the
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non-equilibrium state from the equilibrium configurations, then, gives us σD
ij . Stochastic

sampling approach will be used for this purpose. In essence, the stochastic sampling ap-

proach generates the micro-states according to a given PDF. For computing D we use a

non-equilibrium PDF. Hence, the method is referred to as non-equilibrium stochastic sam-

pling. We will briefly outline the approach here. The details of the algorithm, for performing

the stochastic sampling, is discussed in Appendix B.

For sampling a non-equilibrium state we, first, need to characterize it and construct the

corresponding PDF. We construct the PDF in the basis of the mode co-ordinates. We

consider a non-equilibrium state that results from applying an instantaneous strain ǫkl on

the system. This results in a different change in the frequency of different modes and hence

having different temperature. For a mode i, the change in temperature, ∆Ti, is related to the

change in the potential energy, ∆PEi, as ∆Ti =
∆PEi

2kb
. Further, ∆PEi can be approximated

as ∆PEi =
1
2
m

∂ω2

i

∂ǫkl
< a2i > ǫkl. Using the relation, λkl

i = ∂ωi

ωi∂ǫkl
we get ∆Ti = T0(1 + λkl

i ǫkl).

Here T0 is the temperature in the initial state. Let T be the mean temperature for the

final strained state and is obtained as T = T0(1 + λkl
i ǫkl). Ti can then be expressed as

Ti = T +∆λkl
i ǫklT0. The different terms have the same representation as introduced before.

The PDF for ai is, then, obtained, as

P (ai) =
1

Z
exp

(

−

mω2
i a

2
i

kbTi

)

(20)

For a given value of ǫkl we, first, determine the values of Ti for all the modes. The PDF

for ai is, then, constructed, using Eq.(20). We sample the values of ai using the given PDF.

The ai values are used to determine the atomic displacement using the linear transformation.

An atomic configuration is, thus, obtained. Different samples are generated in this manner.

The sampled sets are, then, used to compute the virial stress tensor. Let σV
ij denote the

mean virial stress tensor for a given non-equilibrium state. We also determine σV
ij for the

equilibrium configuration. The difference between the two values gives the dissipative stress

σD
ij . From the slope of the linear fit of σD

ij vs ǫkl, Dijkl is determined.

D. Stress Relaxation

The constitutive relation for the time evolution of σ
′

in Eq.(9) has two governing terms.

The first term on the R.H.S corresponds to the forcing term while the second one describes
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the relaxation towards equilibrium. The forcing term was characterized using D. We have,

already, discussed methods to obtain D in the previous sections. In this section we seek to

characterize the relaxation behavior of the non-equilibrium stress component.

Microscopically, stress relaxation results from the interaction between the different modes.

We, therefore, need to model the modal dynamics to characterize this behavior. We will use

the Langevin frame-work to describe the dynamics of the modes. Further, we shall resort

to the Green-Kubo formulation and obtain the stress relaxation. For the systems consid-

ered, the stress relaxation shows an exponentially decaying behavior. We will, therefore,

eventually characterize the relaxation of σ
′

using an effective relaxation rate, τrelax, such

that

(

∂σ
′

∂t

)

relax

= −

σ

′

τrelax
(21)

The objective of this section is to provide an algorithm to determine τrelax for different

structures. It would be useful, here, to briefly outline the main steps in the algorithm.

This will aid the reader in understanding the general flow of the section. We will use mode

Langevin dynamics to determine τrelax. The first step required for the Langevin simulation

is the parametrization. Langevin simulation needs as an input the momentum relaxation

time, τmi , for mode i. We shall use a stochastic sampling approach to determine τmi . For

determining τmi using the stochastic sampling approach, one needs an additional information

of the noise relaxation time, τni . This closure is provided by performing a MD simulation of a

reference bulk structure. The τmi values are, then, used to perform the Langevin simulation

and determine τrelax.

The section is organized as follows. We will, first, state the governing Eq. for the mode

Langevin dynamics and describe the different input parameters. We will, then, discuss the

method to determine τni using MD for a bulk reference structure. Next, we shall discuss

the stochastic sampling approach to determine the momentum relaxation time τmi . This

completes the discussion on parametrization step. Finally, the method to determine τrelax

using the mode Langevin dynamics will be discussed.
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1. Langevin Dynamics

The Eq. governing the dynamics of a mode i, using the Langevin approximation, is given

as

m
d2ai
dt2

+
2m

τmi
vi +mω2

i ai = ri(t) (22)

Here, m is the effective mass, ωi is the mode frequency and τmi is the momentum relaxation

time. ri is the noise force with a correlation time τni such that ri(0)ri(t) =< r2i > exp(−t/τni ).

For the cases considered, τni is of the order of few fs. Hence, the Langevin approximation

suffices for describing the mode dynamics. Further, τni , τ
m
i and ri are related using the

fluctuation dissipation theorem as

< r2i >=
2mkbT

τni τ
m
i

(23)

This relation will be used in the parametrization step. For evolving Eq.(22) we need to know

the values of different terms. The mode frequency, ωi, is obtained using the QHM method.

We first use bulk MD as a parametrization step to determine τni .

We consider a bulk structure with a dimension of 8 unit cells in each direction. The

structure is first equilibrated at a desired temperature using the Nosé-Hoover thermostat. It

is, then, evolved as a micro-canonical ensemble. The generated trajectories are used to de-

termine the time series data of the mode variables. We, thus, obtain the mode displacement,

ai(t), the mode velocity, vi(t), and the mode force, fi(t) as a function of time.

We construct the velocity auto-correlation function (VACF), Cvivi(t), such that

Cvivi(t) =< vi(0)vi(t) > . (24)

VACF shows an oscillatory decaying behavior. From the decay rate, the momentum relax-

ation time, τmi , is determined for the bulk structure. We need to determine the value of

τni . For determining τni , we first equate the MD modal force with the mode force from the

Langevin model. We, thus, obtain

fi(t) = −mω2
i ai(t)−

2mvi(t)

τmi
+ ri(t) (25)

Further, rearranging the above Eq. and taking the second moment of the L.H.S and the

R.H.S we get

< (fi +mω2
i ai)

2 >=<

(

2mvi
τmi

)2

> + < r2i > (26)
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In deriving this expression we used the condition that < fivi >= 0. This indeed is true

for the equilibrium state. Further, using < v2i >= kbT
m

and the relation in Eq.(23) we obtain

< (fi +mω2
i ai)

2 >=
4mkbT

(τmi )2
+

2mkbT

τni τ
m
i

(27)

The L.H.S of the above Eq. can be computed using the time series data of mode variables

fi(t) and ai(t). These are obtained from the bulk MD simulation. τmi was determined using

the VACF as discussed before. These values are, then, substituted in Eq.(27) to determine

τni . We compute τni for different modes. Figure 1 shows the noise relaxation time obtained

using MD for a bulk nickel structure. A strong dependence of τni on ωi is observed. We

perform a polynomial fit of τni vs. ωi using the data set obtained. The fitted function is

the first step in the parametrization for Langevin simulation. This information will now be

used to determine the τmi values of any other structure of interest.

10 20 30 40 50 60 70

ω (THz)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

τ
n
 (

p
s)

MD Data

Fit

FIG. 1. Noise relaxation time as a function of mode frequency obtained using MD. The polynomial

fit is, also, shown.

We consider the case of a structure with free surface. In-order to describe the mode

dynamics for this structure, we need to estimate the values of τmi . The values of τmi for

structures with free surface is, in general, different from the bulk case. The presence of

surfaces modifies the phonon spectrum and its dynamics. The surface effect on the phonon

dynamics is, often, described using a phenomenological relation for the surface scattering

term. Here, we will use the underlying inter-atomic potential and a stochastic sampling

approach to capture the surface effect on the phonon dynamics.
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We shall use Eq.(27) to determine τmi for the finite sized structure of interest. The un-

knowns in Eq.(27) are the terms on the L.H.S and the value of τni . We already parametrized

τni as a function of ωi using a reference bulk structure and, hence, is known. For estimat-

ing the term on the L.H.S of Eq.(27), we recognize that an ensemble averaging is required.

We, therefore, need to generate ensembles of micro-states. For this purpose we will use a

stochastic sampling approach. The details of the stochastic sampling approach are discussed

in the Appendix B. Here, we briefly outline the main steps.

In the stochastic sampling method, we generate different samples of the mode variables ai

with a given PDF. The PDF for ai is obtained using the QHM approximation and is given

using Eq(2). Using this PDF, different instances of ai are generated. The ai values are,

then, transformed to obtain the per-atom displacement. For each sampled set of ai values,

an atomic configuration is, thus, obtained. For the given atomic configuration the per atom

forces are computed using the underlying inter-atomic potential. These are used to compute

the mode force fi. The L.H.S of Eq.(27) is, then, determined as

< (fi +mω2
i ai)

2 >=
1

nensb

nensb
∑

j=1

[(fi +mω2
i ai)

2]j (28)

Here, nensb is the number of samples in the canonical ensemble considered and [...]j is the

value of the enclosed variable for the jth sample. Eq.(27) is, then, used to compute τmi .

This completes the parametrization step for the Langevin simulation. We will, now, use the

Langevin dynamics to study the stress relaxation behavior.

We integrate the Langevin Eq. for each of the mode. We get a time series data of ai(t)

and vi(t). The energy, Ei(t), for a mode i is estimated as

Ei(t) =
1

2
mω2

i a
2
i +

1

2
mv2i (29)

The modes satisfy equipartition of energy, this implies that < Ei >= kbT . Hence,

∆Ei(t) = Ei(t) − kbT . We, now, use the Green-Kubo formulation and determine the non-

equilibrium stress relaxation rate from the auto-correlation of equilibrium fluctuations. The

stress component, σ
′

ij , is computed as σ
′

ij =
∑nmodes

k=1 ∆Ek∆λij
k . We construct the stress auto

correlation function, C
σ
′

ijσ
′

ij
(t), such that

C
σ
′

ijσ
′

ij
(t) =< σ

′

ij(0)σ
′

ij(t) > (30)

Cσ
′

ijσ
′

ij
(t) shows a decaying exponential behavior. From the decay rate of Cσ

′

ijσ
′

ij
(t) the stress

relaxation rate, τrelax is determined.
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III. RESULTS AND DISCUSSION

We, first, consider the case of a bulk Ni structure and study the dissipation rate as a

function of frequency under uni-axial deformation. Morse potential36 is used to model the

force field. Frequency values in the GHz range are considered. The dissipation rate is

computed using non-equilibrium MD for comparing the results obtained using the multi-

scale method. Here, we provide a brief description of the MD simulation set-up. All MD

simulations were performed using the open source software LAMMPS37.

The structure is first equilibrated at a desired temperature of 300 K. It is, then, decoupled

from the thermostat. The structure is periodically deformed along the x direction and is

evolved as a micro-canonical ensemble. The work done on the system results in an increase

in the internal energy. From the rate of increase of internal energy per-unit period, the

dissipation rate, Edissip, is computed. We considered 5 ensembles for each frequency of

operation. For each ensemble 100 oscillation periods were taken.

For estimating the dissipation rate using the multi-scale method we need to compute

the different parameters in the constitutive relation. We, first, determine the components

of the dissipation tensor, D, for the bulk structure. For uni-axial deformation along the

x direction, the only required value is the D1111. We determined the value of D1111 using

the QHM method. This requires computing λ11
i for all the modes. Using the λ11

i values in

Eq.(17), D1111 is estimated to be 1.365 GPA at 300 K.

We also determined D1111 using the non-equilibrium stochastic sampling method. Using

this method, the dissipative component of the stress tensor, σD
ij , is obtained for different

values of ǫ11. Figure 2 shows the variation of σD
11 vs ǫ11. The slope of this curve gives D1111

and is determined to be 1.37 GPA. This is in agreement with the value of D1111 computed

using the QHM method. Figure 2, also, shows the variation of σD
22 vs ǫ11. The negative slope

of this curve corresponds to a negative value of D1122. The value of D1122 will be used, later,

in computing the dissipation for the case of bi-axial deformation.

We, also, need to estimate the stress relaxation rate, τrelax. For this purpose, we obtain

the mode relaxation time, τmi , using MD. The mode frequencies, ωi, are determined using

the QHM method. Using these values as input, mode Langevin dynamics is performed. The

stress auto-correlation function, C
σ
′

11
σ
′

11

(t) is computed using Eq.(30). From the decay of

Cσ
′

11
σ
′

11

(t), τrelax is estimated to be 2.07 ps.
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FIG. 2. The dissipative component of the stress, σD
ij , as a function of ǫ11, obtained using the

non-equilibrium stochastic sampling approach.

These parameters are, then, used to determine the time evolution of σ
′

11. We consider a

spatially uniform strain field that varies sinusoidally in time such that ǫ11(x, t) = ǫ0sin(ωf t).

Here, ǫ0 is the strain amplitude and ωf is the forcing frequency. The time evolution of σ
′

11

is obtained using Eq.(9). The dissipation rate, Edissip, per unit period is, then, computed as

Edissip =

∫ ∫ 2π
ωf

0

σ

′

: ǫ̇dtdV (31)

Figure 3 a) shows the plot of Edissip vs ωf obtained using the multi-scale approach. The

figure also shows the MD results. The two results are in good agreement with each other.

The multi-scale approach, therefore, aptly describes the intrinsic dissipation in bulk solids.

We next consider the case of bi-axial deformation. The strain field for the bi-axial defor-

mation is given as ǫij(x, t) = ǫ0(δ1iδ1j + αδ2iδ2j)sin(ωf t). Here, α is the ratio of the strain

in the y direction to that in the x direction. We consider different values of α for a fixed

vibrational frequency of 40 GHz. Figure 3 b) shows the plot of Edissip obtained for different

values of α. We observe that Edissip increases for negative values of α. This is because D1122

is negative. Further, there exists an optimum value of α for which Edissip becomes minimum.

Thus, by operating the resonator under such a desired strain state, the dissipation can be

minimized. The negative sign of D1122 also suggests that it would be efficient to vibrate the

structure under a dilation strain field. It would, also, be interesting to further explore the

class of materials for which D1122 is positive. For such a material, an increase in dissipation
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FIG. 3. (a) Edissip as a function of the oscillation frequency, ωf , for the case of bulk nickel structure.

(b) Edissip as a function of α for the bulk nickel structure forced under an oscillation frequency of

40 GHz.

with the increase in α value will be observed.

We, now, consider the case of structure with free surfaces. The structure has free surfaces

along the y direction while it is periodic in the other two directions. A sinusoidal strain,

ǫ11(x, t) = ǫ0sin(ωf t), is applied along the x direction. Here, ǫ0 is the strain amplitude and

ωf is the oscillation frequency. Since the structure has free surfaces along the y direction, the

applied strain also results in motion along the y direction. Using elasticity theory we shall,
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first, obtain the displacement field along the y direction. The strain field, thus, obtained

will be used as an input to compute the dissipation rate.

Let uy(y, t) denote the displacement field along the y direction. For a linear elastic solid

with cubic symmetry, the stress component, σ22(y), is given as

σ22(y) = C11
∂v

∂y
+ C12ǫ0sin(ωf t) (32)

Here, C11 and C12 are the elastic constants. Using the expression for σ22 in the momentum

balance Eq. we obtain
∂2v

∂t2
= C11

∂2v

∂y2
(33)

Further, we also have the boundary conditions as σ22(0) = σ22(L) = 0, where L is the

transverse length of the structure. The above Eq. admits a solution of the form uy(y, t) =

(Asin(ky) + Bcos(ky))sin(ωf t) where k = ωf

√

ρ

C11

. The constants A and B are obtained

using the boundary condition. The displacement field, uy(y, t), is, then, given as

uy(y, t) = −

C11

C22

ǫ0
k

(

sin(ky) +
cos(kl)− 1

sin(kl)
cos(ky)

)

sin(ωf t) (34)

Here, k is the wave number. For the frequency range and the dimensions of the structure

considered, the strain field in Eq.(34) is nearly uniform. The average strain, ǫ22(t), in the y

direction is, then, obtained as ǫ22(t) =
uy(L,t)−uy(0,t)

L
. Using the expression for uy(y, t) we get

ǫ22(t) = −

C12

C11

tan(kl/2)

kl/2
ǫ11(t) (35)

The value of ǫ22 will be used to compute dissipation for structures with free surfaces.

We consider a structure with a dimension of 10lc×8lc×10lc and with free surfaces along

the y direction. Here, lc is the lattice constant. The strain field is a bi-axial strain field given

as ǫij(t) = (δi1δj1ǫ11+ δi2δj2ǫ22)sin(ωf t). Here, ǫ22 is related to ǫ11 using Eq.(35). Figure 4a)

shows the plot of the ratio ǫ22/ǫ11 as a function of ωf for this structure. The plot shows,

that, the ratio increases with the increase in ωf . The values are in good agreement with MD.

We, shall, now use these strain values to compute dissipation using the multi-scale method.

For performing the multi-scale analysis for this structure, different parameters are de-

termined. The value of τrelax is estimated to be 1.45 ps. The strain field is plugged in

the constitutive relation in Eq.(9) to obtain σ

′

(t). Edissip is, then, computed using Eq(31).

Figure 4b) shows the plot of Edissip vs. ωf . A non-monotonic behavior is observed. We also

observed a non-monotonic behavior for the bulk structure. However, the frequency value
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corresponding to the maximum value of Edissip shifts to a higher value for the free surface

case. This is because the stress relaxation time decreases because of the surface scattering.

This, effectively, increases the value of ωf corresponding to the maximum value of Edissip.
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FIG. 4. (a)The ratio −ǫ22/ǫ11 as a function of ωf for a Ni structure with free surface. The structure

has dimensions of 10lc × 8lc× 10lc. Here, lc is the lattice unit. (b) Edissip as a function of ωf for

the same structure.

We, next, studied the scaling of Edissip with size. For this purpose, the length along the

free surface (y) direction was varied, the other dimensions were kept constant. For each of

the size D1111 and D1122 were obtained using the non-equilibrium sampling method. Figure
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5 shows the plot of D1111 and D1122 as function of size.

We, then, computed τrelax as a function of size. The τrelax value for a structure with a

lateral dimension L is given as
1

τrelax
=

1

τb
+

L0

Lτs
(36)

Here, vg is the phonon velocity, τb is stress relaxation rate for the bulk structure and τs

is the surface scattering rate for a reference structure with a lateral dimension L0. τb was

obtained for the case of bulk structure. We, also, determined τrelax for a structure with free

surface and with dimension L0 using the mode Langevin dynamics. The value of τrelax is

used to parametrize τs. We, then, use Eq.(36) to determine τrelax for a structure with any

given lateral dimension L.
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FIG. 5. The components of the dissipation tensor, D, as a function of size. The values have been

normalized with respect to the bulk value.

The different parameters, thus, obtained are used to compute Edissip as a function of size.

Figure 6 shows the plot Edissip as a function of L and as obtained using the multi-scale theory.

The MD values are also plotted alongside. The plot shows that Edissip decreases with the

decrease in size. This can be understood, predominantly, from the effect of surface on τrelax.

The surface scattering of phonon reduces τrelax. The faster relaxation of the non-equilibrium

stress implies weaker deviation from the equilibrium condition. Dissipation is governed by

the deviation from the equilibrium path. Hence, Edissip, decreases with the decrease in τrelax.

It would be useful, here, to compare the effeciency of the multi-scale method with non-

equilibrium MD. The limiting step for the proposed methodology is the determination of

the mode eigen-vectors. For the structures considered, the computation of the mode vectors
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FIG. 6. Edissip as a function of size for structures with free surface. The size denotes the lateral

dimension, L, of the structure along the free surface direction. The dimension in the other two

(periodic) directions are kept constant.

requires around 6 hours of CPU time. In comparison, a single trajectory of non-equilibrium

MD run (of about 10 ns) takes around 36 CPU hours on the same machine. For a non-

equilibrium MD simulation, the structure first needs to be equilibrated. Further, for a given

frequency value one needs to consider a simulation time of 100 oscillation periods to get the

steady state behavior. Multiple ensembles are needed to cancel out the effect of noise. Also,

such simulations need to be carried out for different structures and for different frequencies

of interest. In contrast, the method developed in this work just requires a single equilibrium

MD trajectory of around 2 ns for the bulk structure. Also, the determination of relaxation

rate for finite sized structure requires performing a mode space Langevin dynamics for only

one structure. Using the dissipation tensor and the relaxation rate, the dissipation rate can,

then, be obtained for a whole range of frequencies and different deformation states in a

matter of few seconds.

IV. CONCLUSIONS

A multi-scale approach to model intrinsic dissipation under high frequency vibrations in a

solid was developed. A non-equilibrium stress, that characterizes the deviation of the phonon

distribution from the equilibrium state, was obtained. A constitutive equation that governs
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the time evolution of the stress tensor was derived. The different parameters in the model

were characterized using the QHM method and a stochastic sampling approach. Langevin

dynamics in the mode space was used to obtain the stress relaxation. We studied dissipation

in the frequency range of few GHz. Using the proposed formulation, the dissipation rate

was computed for different cases. The results were compared with those obtained using

non-equilibrium MD.

Appendix A: Non-equilibrium PDF

We derive an expression for the non-equilibrium PDF using the principle of maximum

entropy34,35. We consider a collection of ndof harmonic oscillators. Let ai and vi denote the

displacement and velocity of the ith oscillator. The energy, Ei, for an oscillator i is given as

Ei =
1
2
ma2iω

2
i +

1
2
mv2i . Here m is the mass and ωi denotes the frequency.

We have the following constraints on the system. The mean energy, < En >, of an

oscillator n is given as < En >= kbTn. Here, Tn provides a measure of the temperature

of the nth oscillator in the non-equilibrium state. We, then, seek to obtain the probability

to observe a micro-state i. The PDF is obtained such that the entropy of the system is

maximized subject to the imposed constraint. Let A denote the set of the displacement and

V denote the set of velocity for all the oscillators for a given micro-state i. Let P (A, V )

denote the probability to observe this micro-state. The entropy, S, of the system is then

given as

S = −

∫

P (A, V )logP (A, V )dAdV (A1)

The constraint on the mean energy for the nth oscillator is given as
∫

P (A, V )(
1

2
mω2

na
2
n +

1

2
mv2n)dAdV = kbTn (A2)

We, also, have the normalization constraint as
∫

P (A, V )dAdV = 1 (A3)

Taking these ndof + 1 constraints into account, the extremum problem for the PDF that

maximizes the entropy can be stated as

sup
P

−

∫

(

P (A, V )logP (A, V ) + αP +

ndof
∑

n=1

βn(
1

2
mω2

na
2
n +

1

2
mv2n)P

)

dAdV (A4)
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Here, α and βn are the Lagrange multipliers for enforcing the constraints. Taking the

variation of the above Eq. with respect to P we obtain

P (A, V ) =
1

Z

ndof
∏

n=1

exp

(

−

1
2
mω2

na
2
n +

1
2
mv2n

kbTn

)

(A5)

Here, Z is the partition function that normalizes P . We, thus, obtain the PDF for the

non-equilibrium state using the maximum entropy principle. We use this PDF to sample

the non-equilibrium state and compute the dissipative stress component, σD
ij .

Appendix B: Stochastic Sampling

The objective of the stochastic sampling approach is to generate the micro-states from a

given PDF. For the case of crystalline solids, the PDF is given as a Gaussian function. Using

a Gaussian random number generator, the mircostates of a crystalline solid can, therefore,

be generated. We will now discuss the details of this algorithm pertaining to our case.

The method requires as an input the mean position of the atoms, the mode eigen-vectors,

ei and the frequency ωi. For a perfectly crystalline solid, the mean position of the atoms are

generated using the underlying lattice structure. Ni at 300 K has a fcc crystalline structure

and was used for our case. Using the mean atomic position the QHM analysis is performed.

We, thus, obtain the values of ωi and ei. We, next, construct the PDF, P (ai) for the

mode co-ordinates, ai. For the equilibrium state, P (ai), is given using Eq.(2). For the non-

equilibrium state, additional constrains in terms of the mode temperature, Ti, are specified.

P (ai) for such a case is given using Eq.(3). We recognize that the PDF for ai, for either

the equilibrium or the non-equilibrium state, are Gaussian functions. Using an algorithm

to generate Gaussian random number, different instances of ai can be obtained. We use the

Box-Muller algorithm, and as implemented in the GNU package38, for our purpose. We,

thus, obtain different samples of ai. For each samples of the ai values we determine the per

atom displacement. Let uj
i denote the displacement for an atom i along the direction j. uj

i

is obtained from an using the linear transformation given as

uj
i =

nmodes
∑

n=1

an(en)
j
i (B1)

Here, (en)
j
i are the components of the eigen-vector en for an atom i along the direction j.
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For each sample of an values, an atomic configuration is thus obtained. The configurations

are, then, used to compute the ensemble averages of the required quantities.
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