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We consider the phase diagram of a ferromagnetic system driven to a quantum phase transition
with a tuning parameter p. Before being suppressed, the transition becomes of the first-order at a
tricritical point, from which wings emerge under application of the magnetic field H in the T -p-H
phase diagram. We show that the edge of the wings merge with tangent slopes at the tricritical
point.

PACS numbers: PACS

The paramagnetic-ferromagnetic (PM-FM) phase
transition is a textbook example of a second-order phase
transition.1–4 However, when suppressing the phase tran-
sition with a clean parameter such as pressure p, the tran-
sition becomes of the first-order at the tricritical point
(TCP) at Ttcp and ptcp.5 At larger pressures, ptcp <
p < pqwcp, metamagnetic transitions can be observed
when a magnetic field H is applied along the direction
of easy magnetization M . The typical T -p-H phase di-
agram is illustrated in Fig. 1. It is symmetric with re-
spect to H → −H , forming a so-called wing structure
phase diagram. There are surfaces of first-order transi-
tions (dark blue surfaces) which are limited by second-
order transition lines (solid red lines=lines of critical
points). These lines (Tw, pw, Hw) start at the TCP and
evolve towards T = 0 at two quantum wing critical point
(QWCP).6 Such a three-dimensional phase diagram is of-
ten presented schematically.5,7–15 Recently, such a phase
diagram was determined experimentally for a few com-
pounds such as UGe2

16,17 and ZrZn2.18 As the current
understanding of this phase diagram progresses, it was
pointed out recently15 that the Clapeyron relation19 re-
quires an infinite slope of the first order transition at
T = 0. In addition, the wings are tilted in the direction
of the disordered phase and are not perpendicular to the
p axis.15 Here, we are interested in the behavior of the
wing-lines near the TCP. In particular, we show that the
slope is infinite along the field axis, but finite and tan-
gent to the other lines along the pressure axis. These
results are based on generic thermodynamic arguments,
but were not reflected in the phase diagrams drawn so
far. The resulting schematic phase diagram is shown in
Fig. 1.

In condensed matter physics, phase diagrams are im-
portant tools as they provide maps of the existing phases
and transitions. The experimental determination of
phase diagrams can be difficult because of various un-
avoidable complications. Often, portions of the phase di-
agram are interpolated between the available experimen-
tal data. As is well known for constitutional binary di-
agrams used in material science, various thermodynamic
phase rules apply to these diagrams. These rules allow
to improve the accuracy of phase diagrams and to detect

or prevent possible errors.20–22 In the three-dimensional
wing-structure phase diagram considered here, we find
that the slopes of the phase transition lines must be
tangent at the tricritical point in all three dimensions
(Fig. 1).
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FIG. 1. (Color online) Schematic temperature-pressure-
magnetic field (T -p-H) phase diagram. H is applied along the
easy axis of magnetization. The regions of the ferromagnetic
(FM) and paramagnetic (PM) phases are shown. The dia-
gram also indicates the tricritical point (TCP), the quantum
phase transition lines (QPT) as well as two quantum wing
critical points (QWCP). Solid lines are second order transi-
tions. Dashed lines and blue planes are first order transitions.

In order to reproduce a first order paramagnetic-
ferromagnetic (PM-FM) phase transition, the mean-field
Landau expansion of the free energy must be extended
to the 6th order:1,2

F = F0 + AM2 + BM4 + CM6
− HM (1)

In Eq. (1), M is the order parameter and the coefficients
A, B and C are functions of the temperature T and pres-
sure p. The stable solutions correspond to dF/dM = 0



2

and d2F/dM2 > 0. When the PM-FM transition is of
the first order, there will be two degenerate solutions (M1

and M2) and an unstable solution for M1 < M < M2

(dF/dM = 0 and d2F/dM2 < 0). This means that
d2F/dM2 has a minimum between M1 and M2 where
d3F/dM3 = 0. The discontinuity at the first order tran-
sition is ∆M = M2 − M1. As a function of T , p or
H , the first-order transition terminates when M1 = M2.
This corresponds to the edge of the wing (the line of
critical points joining TCP and QWCP). At this line,
dF/dM = d2F/dM2 = d3F/dM3 = 0:

dF

dM
=2AMw + 4BM3

w
+ 6CM5

w
− Hw= 0 (2)

d2F

dM2
= 2A + 12BM2

w
+ 30CM4

w
= 0 (3)

d3F

dM3
= 24Mw(B + 5CM2

w
) = 0 (4)

The solution Mw = 0 of Eq. (4) is compatible with
Eqs. (2) and (3) if Hw = 0 and A = 0. It corresponds to
the tricritical point.

We consider now the other solution of Eq. (4):

M2
w

= −

B

5C
(5)

Then, Eq. (3) yields:

5AC − 3B2 = 0 (6)

Eq. (2) then gives:

2Mw(25AC − 7B2) = 25CHw (7)

Using Eq. (6) with Eq. (7), we obtain:

16MwB2 = 25CHw (8)

Eqs. (5), (6) and (8) determine the shape of the wing-line
in the T -p-H phase diagram.

The slope along the wing-line is obtained by differen-
tiating (6) and (8):

5(CdA + AdC) − 6BdB = 0 (9)

16(B2dM + 2MBdB) = 25(CdH + HdC) (10)

As shown above, at the tricritical point, we have A =
B = H = M = 0, so that, at the TCP, Eqs. (9) and (10)
become:

dA = 0 (11)

dH = 0 (12)

The relation dA = 0 is also the equation for the slope of
the second order phase transition line (H = 0, p < pTCP)
and the slope of the first order transition line at TCP
(H = 0, p = pTCP).1 Since A depends only on T and p,
the Eq. dA = 0 implies that dT/dp is the same for both
lines at the TCP.1 Having the same equation for the slope
of the wing-line means that the four lines (2 wings and
1 second order line and 1 first order line) have the same
tangent at the TCP. Hence, the extra dimension of H in

the T -p-H phase diagram does not change the statement
that the first and second order lines meet at the TCP
without a kink. Hence, we have at the TCP:

dTw

dpw

=
dT1st

dp1st

=
dT2nd

dp2nd

(13)

We note that dH = 0 imposes that
dTw

dHw

and
dpw

dHw

are

infinite. In other words, the wing-lines approach the TCP
being vertical.

The schematic diagram in Fig. 1 illustrate this result:
all the lines are tangent to each other at the tricritical
point. For a clearer view, Fig. 2 shows projections of
such a three-dimensional diagram onto three planes. Our
argument leading to the fact that the lines are tangent
at TCP is completely general within the framework of
mean-field theories. The exact shape of the phase di-
agram can vary substantially with the variation of the
parameters A, B and C which are functions of T and p.
However, our demonstration does not use any restrictions
on these parameters.

We note that the correct behavior of the lines is ob-
tained in microscopic models for the origin of the first or-
der transition and wing-structure phase diagram.9,23,24 It
is not a surprise since renormalized Landau theories can
be simplified as a Landau expansion to the 6th order.25

However, experimentally, the wing-lines are determined
in a discrete manner: at a given pressure p, magnetic
field (or temperature) sweeps are performed at discrete
temperature (or magnetic field) values. The wing-lines
are interpolated between the experimental points so that
the tangent merging of the lines at the TCP can be over-
looked.16–18

Our results have implications for a precise determina-
tion of the position of the tricritical point. For UGe2,
a first order transition with a field induced recovery of
a second-order like anomaly was observed at 1.46 GPa,
whereas no such behavior was observed at 1.37 GPa.16

Hence, the position of the tricritical point was given as
ptcp ≈ 1.42 GPa. This value was also consistent with a
linear extrapolation of the wing-line to H = 0, whereas,
according to the present study, a linear slope in this re-
gion is not physical. The TCP is thus at lower pressures
than 1.42 GPa. In fact, the magnetic field step used at
1.37 GPa being 0.2 T, one can only say that, if the TCP
is under 1.37 GPa, the wing-line is below 0.2 T. Inter-
estingly, a recent microscopic modeling of the wing-lines
based on the Anderson lattice model was proposed,23,24

in which the position of the tricritical point was imposed
at 1.42 GPa. Perhaps a better agreement with the ex-
periments can be obtained if the TCP is at lower pres-
sures with the condition that the wing-line at 1.37 GPa
(24.5 K) is below 0.2 T.

In several reports, the term quantum critical end point
was misused to label the point at which the wing-lines
reach T = 0 K.7,13,16,17,26–28 This was pointed out re-
cently in Ref.5,6 and the name quantum wing critical
point was proposed.6 One important difference with a
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FIG. 2. (Color online) Schematic projections of the temperature-pressure-magnetic field (T -p-H) phase diagram in the T -p
(H = 0), H-p (T = 0) and T -H (p = 0) planes.

QCP is that there is no spontaneous symmetry breaking
at the QWCP.26 In some situations, a Lifshitz transi-
tion can occur simultaneously with the quantum phase
transition. Such a change of Fermi surface topology at
T = 0 K cannot be achieved continuously via a crossover
around the QWCP. This means that a quantum critical
line continues to exist at T = 0 K at larger magnetic-field
and pressure. The term marginal quantum critical point
has been used in this case.18,29,30

In conclusion, we have shown that all transition lines
merging at a tricritical point are tangent. This was
known for the first and second order lines at H = 01

and our results extend it to the three-dimensional T -p-
H space. In particular, the wing-lines, that emerge in a

three-dimensional phase diagram, have a tangent slope
at the tricritical point. This result implies that very low
field measurements need to be performed in order to pre-
cisely determine the position of the tricritical point. We
hope that our work will help improve the accuracy of
determination of phase diagrams.
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