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We investigate the non-equilibrium charge dynamics of a triple quantum dot and demonstrate how
electron transport through these systems can give rise to non-trivial tunnelling paths. Using a real-
time charge sensing method we establish tunnelling pathways taken by particular electrons under
well-defined electrostatic configurations. We show how these measurements map to the chemical
potentials for different charge states across the system. We use a modified Hubbard Hamiltonian to
describes the system dynamics and show is reproduces all experimental observations.

I. INTRODUCTION

The sensing of individual electron charges confined to
quantum dots (QD) forms the basis of many important
quantum mechanical measurements in solid state systems
such as spin readout, transfer and coherent manipula-
tion [1–4]. As the complexity of coupled QD devices in-
creases so does the electronic tunnelling processes that
occur within them [5–7]. In particular, for multi-QD sys-
tems the tunnelling of electrons from dot-to-dot will often
occur in multiple stages resulting in non-trivial tunnelling
paths. Establishing the path an individual electron takes
is important when quantum information is being stored
on specific particles within a multi-QD system [8–10].

In any multi-QD architecture, measurement of the
steady state charge occupation via a charge stability
map [10–14] is a prerequisite for more complex measure-
ments such as spin readout [8, 9, 15]. However, these
maps only present the long-term charge equilibrium of
the system. This is because a charge stability measure-
ment reveals information about the chemical potential
of quantum dots with respect to their electron reservoir,
not with respect to one another leaving the tunnelling
path taken by an individual electron through the system
unknown, see Fig. 1 [16]. In order to determine the ac-
tual tunnelling path a particular electron has taken it is
necessary to perform time resolved charge sensing [17]
thereby measuring the non-equilibrium dynamics of the
QD system [18].

The smallest system where non-trivial electron tun-
nelling paths can occur is a triple quantum dot (TQD).
Since their first realisation, a host of new physics has
been investigated using the TQD [19] including new tun-
nelling regimes [20–22], novel spin-blockade effects [23],
and complex coherent spin physics [10, 24, 25] for use in
quantum information. In this paper we investigate the
non-equilibrium behaviour of single-electron tunnelling
in a TQD fabricated using precision placed donor atoms
in silicon [20, 26, 27]. We use real-time charge sensing
to determine the preferred tunnelling paths of electrons
over a range of electrostatic potentials. Importantly we
develop a Anderson-Hubbard model that describes the
various electron pathways through multi-QD structures.

The paper is set out as follows: In section II we out-
line the model used to describe the electronic tunnelling
pathways in multi-QD systems. Importantly, the device
has been designed so that dot-dot tunnel rates are much
greater than dot-reservoir tunnel rates. This means that
the individual dot-reservoir rates are the limiting inputs
for this model. From it we show we can accurately de-
termine the tunnelling pathways under any electrostatic
configuration. In section III we describe the device design
and fabrication used to demonstrate our real-time charge
sensing technique, the results of which are presented in
section IV. Finally in section V we discuss our results
in the context of an increasingly complex QD architec-
ture and show how our results can be used to elucidate
tunnelling pathways in multi-electron systems.

II. THEORY OF MULTI-DOT TUNNELLING

The most natural way to describe the tunnelling dy-
namics of electrons from multiple QDs is to use a net-
work of coupled ‘sites’, where each site has both an intra-
and inter-site energy ε and U respectively. For M QDs
each hosting at most n=1 electrons coupled to a single
reservoir the system is embodied by a modified Hubbard
Hamiltonian given by,

H =

M∑
j

(εj − µj)n̂j +
∑
j 6=k

Uj,k
2
n̂j n̂k +

∑
i

εin̂i, (1)

where εj is the detuning, µj is the chemical potential of
QD j, the number operator for QD j is n̂j and Uj,k is the
inter-Coulomb repulsion between QDs j and k. The last
term represents the electronic states of the reservoir. In
this work we consider QDs on a linear graph with nearest-
neighbour coupling, however, the model can be extended
to an arbitrarily complex graph of QDs and reservoirs.
The detunings εj are determined by voltages applied to
gates, Vg, surrounding the device,

εj =
∑
g

αj,gVg, (2)

where αj,g is the conversion factor (or lever arm) from
applied voltage to energy from gate, g to QD j [28].
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FIG. 1: A triple quantum dot in Si:P with an adjacent
single-electron-transistor used as a charge sensor. a)
A scanning tunnelling micrograph of three small Si:P QDs
incoherently tunnel coupled to a larger QD which itself is
coupled to source (S) and drain (D) leads and acts as a sens-
ing single electron transistor (SET). A gate GSET is used to
control the SET while gates {G1, G2, G3} are used to control
the QDs {1, 2, 3}. Inset shows a close up image of the three
QDs. From the lithographic area it is estimated that they
contain ∼ 5 donors each. The distances between the QDs as
well as their individual distances to the SET are shown in
nanometers. b) The conductance of the SET as a function of
the gates {G1, G3} for G2 = 0.9 V and GSET = 0.5 V. Breaks
in the Coulomb blockade peaks (lines running at −45◦) of the
SET show where a charge transition from one of the QDs to
the SET occurs. The inset provides a guide for where the
charge transitions occur. The equivalent charge numbers on
the QDs are given by (n1, n2, n3). c) A schematic represen-
tation of the modified Hubbard model showing the energies
(not to scale) of different charge configurations at a detuning
given by the star, also shown in (b). The incoherent tunnel
rate Γs,s′ couples two charge configurations s and s′.

The complete electrostatic configuration is therefore de-
duced by considering all QD detunings which we will la-
bel Λ={ε1, ...εj , ...εM}. We omit the coherent coupling
terms between the QDs and instead assume that tun-
nelling between them is completely incoherent. This as-
sumption is valid over the energy scale investigated in
this work (∼ 10 meV) which is much larger than regions
where coherent tunnelling can occur (∼ 10 µeV) i.e. at
inter-dot transitions.

Finally, to incorporate the incoherent tunnelling in the
system we transform the system from Hilbert space to
Liouville space [29] and introduce the incoherent rates
Γs,s′ for the charge transition s→s′. By doing this we
can neglect the many charge states of the reservoir and
consider only the 2M possible charge states over the M
QDs. Importantly, the rates Γs,s′ represent direct transi-
tions only, i.e. dot-to-dot or dot-to-reservoir, and do not
represent any indirect tunnelling of an electron involving
multiple tunnelling events. A schematic representation
of the model is shown in Fig. 1c.

These incoherent tunnel rates Γs,s′ follow a Fermi-
distribution dependent on the difference in energy ∆Es,s′
between the charge states s and s′,

Γs,s′(Λ)=


ηj,k

1+exp[∆Es,s′ (Λ)/kBT ] , ∆N = 0

γj−β(∆Es,s′ (Λ)−µRES)

1+exp[(∆Es,s′ (Λ)−µRES)/kBT ] , ∆N = 1,

(3)

where N is the total number of electrons across all
QDs; ηj,k is the tunnel rate from QD j→k for a change
∆N=0 and γj is the tunnel rate from QD j to the
reservoir for ∆N=1 [27]. Here we denote the chemi-
cal potential of the reservoir as µRES. The thermal en-
ergy is kBT at a temperature, T , and the energy differ-
ence between two charge states, s and s′, is given by,
∆Es,s′(Λ)=Es(Λ)−Es′(Λ). To account for an observed
linear increase in tunnel rates from the QDs to the reser-
voir as a function of detuning we include a phenomenolog-
ical dimensionless factor, β, that increases the tunnel rate
for large values of ∆Es,s′(Λ)−µRES. From a cut in the
experimental data shown in Fig. 2e as the white dashed
line, we estimate this value to be, β=2×10−3. Following
Fermi’s golden rule, this factor accounts for the change
in matrix element coupling the QD and the reservoir as
the QD is detuned from the µj=µRES condition [5].

Using this model the tunnel rate from an initial ex-
cited charge state ρi to the ground state ρgs for the elec-
trostatic configuration Λ is determined by solving the
Lindblad master equation [30, 31],

dρ

dt
= (Lc + LΓ)ρ, (4)

where Lc = i(I⊗H−H⊗I) is the coherent time evolution
and the incoherent term is given by,

LΓ =
∑
s,s′

Γs,s′(Λ)

2
(2Ls,s′ ⊗ Ls,s′ − L′s,s′Ls,s′ ⊗ I

− I⊗ L′s,s′Ls,s′), (5)

where Ls,s′ = |s〉〈s′|. The thermal ground state of the
system at Λ is then determined by,

ρgs(Λ) =
1

Z
e−H(Λ)/kBT , (6)

where, ρgs(Λ) is the density operator for the thermal

ground state and Z=Tr(e−H(Λ)/kBT ) is the partition
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function of the system. For our model we assume an elec-
tron temperature of T=200 mK, which is a typical value
for our devices measured in a dilution fridge [9, 27, 32].
After allowing the system to evolve from ρi→ρgs, the tun-
nel time, 1/Γ(Λ) is taken to be the time when the proba-
bility of the charge ground state ρgs reaches 1− e−1. By
repeating this procedure under different electrostatic con-
figurations, Λ, we can produce a so-called tunnel rate map
for the multi-QD system. Unlike the canonical charge
stability map, the tunnel rate map can reveal informa-
tion about the position of QD chemical potentials with
respect to one another over the available gate range.

III. EXPERIMENT

The device studied in this work is a TQD fabricated
using scanning tunnelling microscopy hydrogen lithog-
raphy. The methods of this fabrication technique have
been reported in detail previously [33–35]. The TQD de-
vice shown in Fig. 1 is comprised of three small QDs,
labelled 1, 2, and 3 (left, middle, and right respectively),
consisting of ∼ 5 P donors each, determined by examin-
ing the extent of the exposed lithographic area [9, 32].
These small donor clusters are tunnel coupled to a large
quantum dot made up of ∼ 1000P atoms and placed at
a distance of 17–21 nm from it, see Fig. 1a. In turn this
larger dot is coupled to source (S) and drain (D) leads
allowing electrons to flow across its tunnel junctions on
either side, therefore acting as a single-electron-transistor
(SET) charge sensor [26, 36]. The SET has a charging en-
ergy of 5±1 meV and is operated with a source-drain bias
of 0.3 mV. The electrostatics of the SET are controlled
by the gate GSET , whereas the QDs are predominantly
tuned using the gates G1, G2 and G3. The SET island
serves as the electron reservoir in this system and the in-
coherent coupling rates of the QDs {1, 2, 3} are given by
{γ1, γ2, γ3}, respectively.

For the experiments presented in this letter G2 is used
as a global gate to shift the potential of all the QDs,
while G1 and G3 are used to detune the potential of the
QDs with respect to the SET. As such, the relevant lever
arms, αj,g for Eq. 2 are those of G1 and G3. A charge
stability diagram of the TQD system, showing the SET
conductance as a function of G1 and G3, is presented in
Fig. 1b. Lines running at ∼45◦ in the data show the
Coulomb blockade of the SET and breaks in these lines
correspond to charge transitions between the SET and
the three QDs. Due to the different capacitive coupling
of the gates {G1, G3} to each of the QDs, three distinct
lines of SET breaks with different slopes are visible in
this gate space. In addition a characteristic pentagon
structure associated with the quadruple point of a TQD
around (0,1,0) can be seen (see inset of Fig. 1) [2, 20,
23]. We note that the absolute electron number are not
known for this device; however, for the purpose of this
work we assign the charge states shown in Fig. 1b where
(n1, n2, n3) represent the electron numbers on QDs 1,

2 and 3, respectively. This does not affect the physics
discussed in this work.

IV. RESULTS

Using the model described in section II and initial-
ising the system in the s=(1, 1, 1) charge configuration
we obtain a theoretical tunnel rate map for this device
shown in Fig. 2a. The electrostatic configuration Λ in
gate space VG1−0.6VG3 vs VG1+VG3 was determined by
calculating the lever arms, αj,g using a capacitance mod-
elling program [37]. This theoretical tunnel rate map
takes as an input the individual tunnel rates of the three
QDs to the SET reservoir which, due to both their dif-
ferent distances from the SET and donor numbers, are
given approximately by γ1=150 Hz, γ2=1200 Hz and
γ3=1000 Hz (obtained from experiment). In another
work on the same device [27] the tunnel couplings be-
tween dots 1 and 2 and between dots 2 and 3 were mea-
sured to be 5.5 GHz and 2.2 GHz respectively, which are
much greater than any dot-reservoir rate. Thus, as an
input for the model it is sufficient to use a incoherent
dot-dot rate that is much larger than any dot-reservoir
rate in order to obtain the correct system dynamics, here
we assume η1,2=η2,3=1000γ1. This argument is valid for
any device with inter-dot separations of ∼ 15nm in donor
based systems, which typically results in tunnel coupling
rates of the order 106-109 Hz [32, 38].

A tunnel rate map can be obtained experimentally fol-
lowing the procedure shown schematically in Fig. 2c. At
t=0 the device is initialised in the equivalent (1, 1, 1)
charge region, at the position labelled by the solid red
square, from here an initial pulse is applied simultane-
ously to gates G1 and G3 to a position marked by the
solid green square. During the first pulse phase, in cases
where the ground state of the system contains a total
electron number <3, one or more electrons will tunnel
off the QDs to the SET reservoir during this pulse. Im-
portantly, the length of this pulse, t1=30 ms, is longer
than any dot-to-reservoir tunnelling time, thus always
allowing the system to reach its ground state charge con-
figuration. A subsequent pulse is applied at time t=t1
of length t2=30 ms to reinitialise the charge state of the
QDs into the (1, 1, 1) charge configuration. Again, t2 is
much longer than any of the reservoir-to-dot tunnelling
time. The same two level pulse sequence is repeated 200
times and the average current of the SET is recorded over
the duty cycle of one complete pulse sequence from t=0
to (t1+t2), see Fig. 2d.

In cases where at least one electron has tunnelled to
the SET during the first phase of the pulse cycle the
SET current will show an exponential change from which
the experimental tunnel rate ΓE(Λ) is extracted. Note
that, although theoretically multiple exponents of decay
should be observed, in practice tunnelling will be domi-
nated by the slowest rate, we therefore fit to a single ex-
ponential decay. The position of the first pulse is stepped
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FIG. 2: Comparison of theoretical and experimental tunnel rate maps. a) The theoretically predicted tunnel rate
map for the TQD device scaled by the highest dot-reservoir tunnel rate, γ2. Solid magenta lines show the charge transitions
visible in standard charge stability maps (see Fig. 1b) while the dashed and dotted black lines correspond to transitions that
can only be obtained from the tunnel rate map. The inset shows a zoom-in around the (0,1,0) charge region. b) The points (i),
(ii), (iii), and (iv) corresponding to those shown in (a) are examined in terms of the chemical potentials of the QDs and the
SET Fermi level (shown by the grey shaded region on the right of each panel). The levels shown in red and green correspond
to the chemical potentials of those charge states at the points shown by the red and green circles in (a). The dashed lines in (i)
and (ii) represent the SET Fermi level and corresponds to the dashed equivalent line shown in (a). Likewise, the dotted lines in
(iii) and (iv) represent the relevant chemical potentials of charge states also shown in (a). c) The experimental procedure used
to produce a tunnel rate map involves a two-level pulse from the (1,1,1) charge region (red square) to the detuning position Λ
(green square). The position marked by the red square is stepped across the VG1−0.6VG3 direction, while the final detuning
position shown by the green grid is stepped across the charge transitions (magenta lines). d) The SET current is monitored
in time to detect any electron tunnelling during the two level pulse. All data (blue circles) is comprised of 200 repetitions of
the two level pulse (black line). A measure of the tunnel rate Γ(Λ) is obtained from an exponential fit (green line) during
the first phase of the two level pulse. The second phase of the pulse indicates the reloading of the electrons into the (1,1,1)
charge region. e) A tunnel rate is obtained for different final detuning positions (green marker in (c)) Λ. There is a good
qualitative agreement between the theoretical tunnel rate map shown in (a) which predicts all of the features obtained from
the measurement. The areas enclosed by the white lines indicate the regions in gate space where an electron initially on QD-1
can only tunnel directly to the SET. The dashed white line indicates the cut used to calculate β for Eq. 3.

across the charge stability region in segments shown by
the subsequent green squares in Fig 2c. In doing so, a
tunnel rate can be deduced for every detuning position,
Λ. Our measured tunnel rate map shown in Fig 2e agrees
very well with the theoretical map in Fig. 2a. As well as
showing the direct dot-reservoir charge transitions ap-
parent in the standard charge stability map in Fig. 1b,

the tunnel rate map reproduces features that arise from
indirect tunnelling pathways.

As we show below, because the tunnel rates of the in-
dividual QDs to the SET reservoir have the relationship
γ1�γ3<γ2, in some circumstances it will be favourable
for electrons to tunnel via other QDs as a means to reach
the ground state in the shortest time possible, rather
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than tunnel directly to the SET. Importantly, whether or
not these types of tunnelling paths are allowed depends
on the relative positions of the QD chemical potentials,
which can be calculated using the constant interaction
model [28] (see Fig. 2b). The positions of these chemi-
cal potentials can therefore be deduced directly from the
tunnel rate map and we now discuss in detail the four
points labelled in Fig. 2a as (i-iv) that result in non-
trivial tunnelling pathways.

At position (i) in Fig. 2a the ground-state charge con-
figuration is (0,1,1) and the chemical potentials of the
QDs and SET at the position shown by the red circle
are related by µ1(1,1,1)>µ2(1,1,1)>µRES>µ3(1,1,1) (where
the subscript refers to an electron transition from this
dot), see Fig. 2b. Since the tunnel rates for QD-1 and
QD-2 are related by γ1<<γ2 an electron is much more
likely to tunnel to the SET from QD-2 first before the
tunnelling of an electron from QD-1. The charge state
will now be (1, 0, 1), leaving the electron on QD-1 free to
tunnel across to QD-2 because µ1(1,0,1)>µ2(0,1,1). That
is, the system will effectively make the following state
transitions: (1, 1, 1)→(1, 0, 1)→(0, 1, 1). The reduction
in tunnel rates at the point indicated by the green circle
indicates where µ2(1,1,1) < µRES where a slower tunnel
rate results because an electron can only tunnel to the
SET from QD-1 at this point. The boundary between
these two regions (black dashed line) indicates where
µ2(1,1,1)=µRES.

The situation at position (ii) is almost identical to that
at position (i), only here the ground-state charge config-
uration is (1,1,0) i.e. QD-3 takes the place of QD-1 at
position (i). Again, the interface between the regions at
(ii) µ2(1,1,1)=µRES is given by the black dashed line. At
the point labelled with the red circle the charge tran-
sitions (1, 1, 1)→(1, 0, 1)→(1, 1, 0) are made, whereas at
the green circle the electron initially on QD-3 tunnels
directly to the SET. It is worth noting that the same
µ2(1,1,1)=µRES line can be mapped all the way through
from the (1,1,0) to the (0,1,1) charge region.

At position (iii) the ground-state charge configura-
tion is (0,1,0) and tunnelling from this region involves
multiple tunnelling events over numerous possible path-
ways. Unlike at positions (i) and (ii) however, the
tunnelling via different pathways depends on the rela-
tive inter-dot chemical potentials. To illustrate this we
will discuss one such tunnelling path in detail, the rele-
vant energy diagram for which is shown in Fig. 2b (iii).
Here, µ1(1,1,1)>µ2(1,1,1)>µ3(1,1,1)>µRES, i.e. any elec-
tron on any dot can in principle tunnel to the SET.
In the case where QD-3 tunnels first, we are left with
(1,1,0), and at the point shown by the red circle we
have µ2(1,1,0)>µ3(1,0,1) such that an electron will tunnel
from QD-2 to QD-3. Finally, because µ1(1,0,1)>µ2(0,1,1)

the electron originally on QD-1 tunnels across to QD-
2. The total electron movement in the system is:
(1, 1, 1)→(1, 1, 0)→(1, 0, 1)→(0, 1, 1)→(0, 1, 0). At the
detuning position marked by the green circle however,
we have µ3(1,0,1)>µ2(1,1,0), which restricts the electron

on QD-2 tunnelling over to QD-3 therefore forcing the
electron on QD-1 to tunnel from there to the SET reser-
voir. This restriction reduces the observed tunnel rate
because some of the tunnelling pathways will be limited
by the slowest rate γ1. A line separating two regions at
(iii) indicates an alignment of the QD chemical potentials
µ2(1,1,0)=µ3(1,0,1).

The last position we discuss is far outside of the TQD
quadruple point itself and is shown by position (iv) in
Fig. 2a. Here the ground state is (0,0,0), and between
the green and red circles a transition can be seen where
the two QD chemical potentials µ1(1,0,0)=µ2(0,1,0), i.e.
where an inter-dot electron transition can occur. Here,
all three electrons can tunnel off to the SET, but the
order in which they do so depends on the relative posi-
tion of the QD chemical potentials with respect one an-
other. At the position labeled by the green circle where
µ1(1,0,0)<µ2(0,1,0) the electron on QD-2 and 3 tunnel
to the SET first, followed by the slow tunnelling of the
QD-1 electron at the rate γ1. However, at the red cir-
cle after the electron from QD-2 has tunnelled the elec-
tron now residing on QD-1 can tunnel across to QD-2
where it will finally tunnel to the SET but now at the
much faster rate of γ2. A similar effect cannot be seen at
the equivalent transition between QD-2 and QD-3 where
µ3(0,0,1)=µ2(0,1,0) because the tunnel rates, γ2 and γ3,
are not different enough.

It is worth noting that the same information can be
obtained from a tunnel rate map for an arbitrary set
of tunnel rates, γi despite different preferred tunnelling
pathways. However, the visibility of the transitions will
be reduced as the difference between the tunnel rates
approaches zero.

To further reveal the non-equilibrium dynamics of elec-
tron movement across the TQD, we examine the instanta-
neous conductance through the SET charge sensor dur-
ing the first pulse phase, between t=0 and t1. These
time resolved charge stability maps are shown in Fig. 3.
Figure 3a shows the instantaneous current through the
SET at time t=0.32 ms. At this time no clear breaks in
the SET Coulomb blockade peaks are apparent indicat-
ing that no electrons have tunnelled from the TQD sys-
tem to the SET reservoir before this time, and therefore
the system remains in the (1,1,1) charge configuration.
In contrast, at t=2.43 ms, shown in panel (b), multiple
SET breaks corresponding to charge transitions from the
TQD to the SET reservoir can be seen. Not surprisingly,
the line breaks observed at this time are associated with
electron transitions from QD-2 and 3 because they have
the fastest tunnel rates.

Importantly, the map in Fig. 3b contains features seen
in the standard charge stability map as well as some addi-
tional ones not seen in Fig. 1b that arise due to non-trivial
tunnelling pathways. In particular an SET break corre-
sponding to where the chemical potentials µ2(1,1,1)=µRES

at point (i) in this map is clearly visible. This occurs
since the electron on QD-1 has not had enough time to
tunnel directly to the SET, yet the electron on QD-2 has
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FIG. 3: Time-resolved charge stability maps for a
triple quantum dot. Maps showing the conductance of
the SET charge sensor at different times from t=0.32 ms to
t=16.9 ms. The solid magenta lines show those transitions
that are apparent from a standard stability map, whereas
the dashed lines are only visible using time resolved charge
sensing. a) The conductance through the SET charge sen-
sor at 0.32 ms before any electrons have tunnelled off the
QDs. There are no SET breaks corresponding to QD tran-
sitions. b) At 2.43 ms, both the electrons from QD-2 and 3
have tunnelled to the SET creating breaks in the Coulomb
blockade where µ2 and µ3 are equal to µRES. Point (i)
shows where µ2(1,1,1)=µRES; whereas point (ii) indicates the
µ1(1,0,0)=µ2(0,1,0) condition. c) At 7.49 ms, the electron on
QD-1 begins to tunnel to the SET, thus two transitions in
the upper right corner of the map are visible at points (iii)
and (iv). At point (iii) the electron is tunnelling straight from
QD-1 to the SET. The electron on QD-1 is also able to tunnel
from the (1,0,0) charge state to the (0,0,0) on the bottom left
of the map at point (iv). d) Finally, after a time 16.9 ms
the map is equivalent to the standard charge stability map
from Fig. 1b, as it shows all three of the QD transitions at
equilibrium.

tunnelled to the SET leaving space for the electron on
QD-1 to tunnel across to this site (see discussion of (i)
of Fig. 2a above). Break (ii) in this map corresponds
to where µ1(1,0,0)=µ2(0,1,0) (see discussion of point (iv)
from Fig. 2a above).

The map shown in Fig. 3c is taken at a time where the
electron on QD-1 has started to tunnel to the SET reser-
voir, and as a result, in addition to break (i) we see an-
other transition in the top right corner of this map, break
(iii), where µ1(1,1,1)=µRES. Since we see both transitions
at this time the system must have a non-zero probability
of tunnelling via two pathways near this detuning region.
In addition, another transition line corresponding to tun-
nelling from QD-1 is observed, at point (iv). Finally, after
all the electrons have tunnelled at 16.9 ms in panel (d)

the stability map of the TQD is fully recovered.

V. DISCUSSION

In this work we consider the complex electron tun-
nelling pathways to a reservoir that arise in coupled QD
systems. We have presented a detailed theoretical model
that captures all of the non-equilibrium charge dynamics,
and one that predicts very well the observed experimental
signatures of non-trivial tunnelling processes. Although
we consider only three QDs with nearest neighbour cou-
plings, the model and results we present are applicable to
any size and form of graph, including multiple QDs cou-
pled to multiple reservoirs [10, 39, 40]. In these cases, one
must add additional tunnel rates for individual reservoirs
to Eq. 3. We also note that a reversal of our protocol, i.e.
the loading of electrons from a reservoir to the dots, will
reveal an equivalent map of interdot chemical potentials.

Our experimental method relies upon individual QDs
having different tunnel rates to distinguish between dif-
ferent tunnelling pathways. For donor based architec-
tures, this caveat is easily fulfilled due to the sensitive de-
pendency of tunnel rates on dot-reservoir distances (sen-
sitive to the order of the order of 1 nm displacements). In
gate defined QDs, incoherent tunnel rates can be tuned
using external gate biases such that a sufficiently large
difference between individual QDs may be attained [19].
However, any measurable difference in tunnel rate is suf-
ficient in order to establish a tunnel rate map.

The time resolved charge stability maps presented in
Fig. 3 give a direct image of the inter-dot chemical po-
tentials, which can later be used to elucidate the complex
tunnelling pathways that occur in these systems. Impor-
tantly, electron pathways from dot-to-reservoir can be
dependent on the inter-dot chemical potential structure,
both deep inside a stable charge region as well as near
dot-reservoir transitions. Understanding and controlling
electron pathways is a vital component of multi-electron
physics, and to this end tunnel rate maps provide an
important characterisation tool for solid-state quantum
information processing. For example, some spin readout
schemes require the transfer of an electron from one QD
to another before readout can be carried out [10, 41].
In these cases it becomes imperative to characterise the
movement of specific electrons under all electrostatic con-
ditions in order that the location and movement of quan-
tum information in the system can tracked and processed
correctly.
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