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The anharmonic phonon properties of SnSe in the Pnma phase were investigated with a combi-
nation of experiments and first-principles simulations. Using inelastic neutron scattering (INS) and
nuclear resonant inelastic X-ray scattering (NRIXS), we have measured the phonon dispersions and
density of states (DOS) and their temperature dependence, which revealed a strong, inhomogeneous
shift and broadening of the spectrum on warming. First-principles simulations were performed to ra-
tionalize these measurements, and to explain the previously reported anisotropic thermal expansion,
in particular the negative thermal expansion within the Sn-Se bilayers. Accurate treatment of the
phonon free energy, in addition to the electronic ground state energy, is essential to reproduce the
negative thermal expansion. From the phonon DOS obtained with INS and additional calorimetry
measurements, we quantify the harmonic, dilational, and anharmonic components of the phonon
entropy, heat capacity, and free energy. The origin of the anharmonic phonon thermodynamics is
linked to the electronic structure.

PACS numbers: 63.20.kg, 63.20.Ry, 63.20.dk, 65.40.De

I. INTRODUCTION

Thermoelectric materials are of current interest for
cost-effective, reliable power generation applications, ei-
ther by utilizing natural sources or recovering man-made
waste heat [1, 2]. In order to increase their heat-to-
electricity conversion efficiency, thermoelectric materials
need to have a low thermal conductivity, while main-
taining a high electrical conductivity. A detailed un-
derstanding of phonons is necessary to rationalize both
the thermodynamics and the thermal transport proper-
ties in thermoelectrics. Phonons are the main contribu-
tors to the entropy and heat capacity [3–6]. In addition,
phonons are the dominant heat carriers in semiconduc-
tors, and understanding deviations from harmonic lattice
dynamics is necessary to account for the bulk lattice ther-
mal conductivity, κlat. From a fundamental standpoint,
phonons are sensitive to the nature of chemical bonding
[7–10] and the temperature dependence of phonon spec-
tral functions often provides important insights into the
anharmonicity of the interatomic potential, directly af-
fecting thermal resistivity through phonon-phonon scat-
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tering [10–12]. The coupling between phonons and elec-
tronic structure also has an important effect on phonon
frequencies (and linewidths) [5, 13–16], and electronic
instabilities can produce large anharmonicity, helping
to suppress κlat and improve thermoelectric efficiency
[9, 10, 17].

Tin-selenide was recently reported to achieve an out-
standing thermoelectric figure-of-merit, with Na-doped
samples maintaining a high power factor over a broad
range of temperatures [18–21]. At high temperature,
SnSe undergoes a continuous structural phase transition
between the low-symmetry Pnma (below Tc ' 805 K)
and the higher-symmery Cmcm phases (above Tc). This
phase transition has been the subject of a number of early
crystallographic and thermomechanical experimental in-
vestigations [22–31]. More recently, the ultra-low lattice
thermal conductivity of SnSe has attracted great inter-
est for thermoelectric applications, and has been studied
both experimentally and through ab-initio simulations
[10, 18–20, 32–42]. The coupling between lattice distor-
tion and electronic structure was recently shown to be
responsible for the large anharmonicity, which persists
in a broad range of temperatures, and leads to the low
thermal conductivity [10, 17].

The crystal structure of SnSe is illustrated in Fig. 1.
Importantly, x-ray and neutron diffraction studies
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FIG. 1. Crystal structure of SnSe in Pnma (a) and Cmcm (c)
phases, illustrating the double bilayer structure and Pnma
distortion, and corresponding Sn-Se bonding state (b,d). Sn
atoms are in grey and Se atoms in green. d1 and d2 are
labels for bonds in out-of-plane and in-plane directions. The
orientation of crystal axes in the Cmcm structure is chosen to
match the Pnma phase, in order to facilitate the comparison.
The rotation of pyramids (shaded in (a)) θ and the angle
between two d2 bonds φ in the Pnma structure are also shown
in (a). The conventional unit cell edges are indicated by black
square box.

showed that, in the Pnma phase, the c axis, parallel to
the direction of corrugation of Sn-Se bilayers below Tc,
exhibits a negative thermal expansion (NTE) coefficient
[22–24]. The thermodynamic and atomistic origins of
this effect in SnSe remain to be established. The NTE
implies that the thermodynamic generalized Grüneisen
tensor must have negative values for the diagonal element
corresponding to the in-plane layer [5]. Yet, this is in
contrast to positive values predicted from quasiharmonic
ab-initio simulations [10, 18, 36]. Further, our inelas-
tic neutron scattering measurements showed pronounced
differences in the behaviors of phonons propagating along
in- and out-of-plane crystallographic axes [10]. Since the
coupling between the lattice distortion and the electronic
structure is a strong source of anharmonicity [17], it is
important to understand its role in the unusual thermal
expansion of SnSe.

Here, we investigate the origin of the NTE and anhar-
monic phonon thermodynamics in SnSe, focusing on the
Pnma phase, using inelastic neutron scattering (INS) and
nuclear resonant inelastic X-ray scattering (NRIXS) mea-
surements, and first-principles simulations. Our mea-
surements show a strong temperature dependence of the
phonon frequencies, revealing a high degree of anhar-
monicity in the interatomic potential. We show how this

anharmonicity is related to the structural phase transi-
tion. We model the thermal expansion and its anisotropic
behavior, from first-principles, especially the lattice con-
traction parallel to the Sn-Se layers, and find good agree-
ment with reported lattice parameter measurements. In
addition, we quantify the harmonic, dilational, and an-
harmonic contributions of phonons to the entropy, inter-
nal energy and free energy.

II. SAMPLE PREPARATION

Single crystals of SnSe were synthesized from high pu-
rity Sn and Se (Alfa Aesar, 99.999%) in fused silica am-
poules. After an initial reaction, a polycrystalline pre-
cursor was melted and subsequently crystallized while
cooling at 0.4-0.5◦C/h; a 24 hr annealing at ∼ 830◦C oc-
curred before cooling to room temperature. One of the
single crystals was ground into a fine powder for neu-
tron scattering measurements of the phonon density of
states. Some properties of these samples were previously
reported, and further details can be found in Ref. 10

III. SPECTROSCOPY

A. Inelastic Neutron Scattering

We measured the phonon DOS of polycrystalline SnSe
(mass ∼ 8 g) using the time-of-flight wide angular-range
chopper spectrometer (ARCS) at the Spallation Neutron
Source (SNS) at Oak Ridge National Laboratory [43].
The powder sample was contained in a standard thin-
walled aluminum can. Measurements at low (5 ≤ T ≤
300 K) and high temperature (300 ≤ T ≤ 750 K) were
performed using aluminum can inside a closed-cycle he-
lium refrigerator and low-background resistive furnace.
At low temperatures, we filled the sample chamber with
low pressure of helium to facilitate cooling. We used two
incident energies, Ei = 30 meV and 55 meV, when com-
bined it provided an entire phonon spectrum and high
resolution datasets to distinguish between closely spaced
phonon peaks. An oscillating radial collimator was em-
ployed to minimize scattering from the sample environ-
ment. We followed the similar steps in data normaliza-
tion, reduction to Q-E (momentum and energy transfer)
space, background subtraction, multiphonon scattering,
and removal of elastic peak as described in our previous
work [16].

The neutron scattering cross-sections are different for
different elements. The phonon DOS derived from INS
measurements is weighted by the respective scattering
cross-sections (σ) and mass (m). The neutron-weighting
factors for Sn, and Se are σSn/mSn = 0.0412, and
σSe/mSe = 0.1051, respectively (in units of barns/amu).
Due to the larger neutron-weighting factor for Se in com-
parison to Sn, phonon DOS is over-weighted by Se vibra-
tional contributions. Accordingly, the neutron-weighted
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phonon DOS can be expressed as following:

gNW =
( σSn
mSn

gSn +
σSe
mSe

gSe

)
/
( σSn
mSn

+
σSe
mSe

)
, (1)

where gSn(E), and gSe(E) are the partial densities of
states of Sn, and Se. For comparison of the experimental
phonon DOS with the simulations, the neutron-weighting
factor can be applied to the partial phonon DOS.

B. Nuclear Resonant Inelastic X-ray Scattering

NRIXS experiments on single-crystal SnSe platelets
(natural Sn) were performed at Sector 30 beamline at
the Advanced Photon Source, Argonne National Labora-
tory. Since SnSe exhibit anisotropic behavior, we could
extract the direction-projected phonon DOS by chang-
ing the orientation of the sample with respect to the
incident x-ray beam. For the a-axis projected phonon
DOS, the sample was mounted such that the incident
x-ray beam was parallel to a-axis, while for the pro-
jected phonon DOS perpendicular to a-axis, the inci-
dent beam was parallel to the b-c plane. The incident
x-ray energy was 23.88 keV, the nuclear resonance en-
ergy of 119Sn. The energy bandpass of incident beam
was reduced to 1.2 meV using a high resolution crys-
tal monochromator [44]. The inelastic signal collected
is comprised mainly of 23.88 keV nuclear fluorescence
signal, delayed in time relative to the prompt pulse by
20-130 nsec. The inelastic spectra were collected over
an energy range of 160 meV with 0.25 meV steps. Re-
peat scans were taken and data were subsequently added.
The 119Sn specific phonon DOS was extracted from the
NRIXS data using the PHOENIX package [45]. The sam-
ples were single-crystal SnSe platelets (no isotopic en-
richment), cut from INS crystals. The platelet samples
were mounted with either transmission geometry (beam
along a–axis) or grazing geometry (beam nearly parallel
to b − c plane). Because of the crystalline anisotropy,
the direction-projected partial DOS for each configura-
tion provides information about different Sn motions (||a
or ⊥ a, respectively).

IV. MODELING

A. Structural Relaxation and Phonon Dispersions

First-principles simulations were performed in the
framework of density functional theory (DFT) as im-
plemented in the Vienna Ab initio Simulation Package
(VASP 5.3) [46–48]. A 6 × 12 × 12 Monkhorst-Pack
electronic k -point mesh was used for all of our simula-
tions, with a plane-wave cut-off energy of 500 eV. The
projector-augmented-wave potentials explicitly included
four valence electrons for Sn (5s25p2), and 6 for Se
(4s24p4). The lattice parameters and atomic positions
were optimized until forces on all atoms were smaller

than 1 meV Å−1. We carefully evaluated the accuracy of
our phonon calculations, comparing the local-density ap-
proximation (LDA) exchange-correlation (XC) functional
[49] and the generalized gradient approximation (GGA)
with XC functional given by the Perdew-Burke-Ernzerhof
(PBE) parametrization [50]. The relaxed unit cell pa-
rameters are compared with the experimentally reported
structure (Ref. 23) at 300 K in Table I. The agreement
between the LDA and PBE structures and the experi-
mental structure is good, with, as expected, LDA under-
estimating the lattice constants and PBE overestimating
them, by opposite amounts.

The phonon dispersions were calculated in the har-
monic approximation, using the finite displacement ap-
proach as implemented in Phonopy [51], with the atomic
forces in the distorted supercells obtained with VASP.
To construct the force-constant tensor using the finite
displacement approach in Phonopy [51], we computed
8 independent atomic displacements, each with atomic
displacement amplitudes of one hundredth of lattice con-
stants. The LDA phonon calculations used a 2×4×4 su-
percell of the primitive cell, containing 256 atoms, while
GGA calculations used up to 3×5×5 supercells contain-
ing 600 atoms. We compare the phonon dispersion and
phonon DOS of SnSe at 300 K with experimental phonon
dispersions measured with INS in Fig. 2, and with the
NRIXS and INS phonon DOS in Fig. 11 and 6, respec-
tively. The experimental phonon dispersions in Fig. 2
were extracted from INS datasets originally reported by
our group in Ref. 10. From these comparisons with INS
measurements, one can see how the PBE simulations sys-
tematically underestimate the phonon frequencies in this
material, while LDA simulations are much more accu-
rate. Even with the larger supercell, the GGA phonon
frequencies show a worse agreement with INS data than
the LDA calculations. The mean phonon energy calcu-
lated from experimental phonon DOS at 300 K (corrected
for neutron weighting), GGA simulations, and LDA sim-
ulations are 12.92, 12.15, and 12.90 meV, respectively.
Additionally, the GGA phonon group velocities vq,j are
on average ∼10% lower than the LDA values near the
Γ point. Thus, first-principles calculations of the lattice
thermal conductivity (κlat) using GGA (Refs. 32, 33) are
expected to carry a sizeable systematic error, since κlat is
proportional to v2

q,j , with a further dependence of phonon
scattering rates on the dispersions, while LDA calcula-
tions are expected be more accurate [36].

B. Negative Thermal Expansion

Non-cubic materials often exhibit anisotropic thermal
expansion coefficients, reflecting the anisotropy in crys-
tal structure and bonding. In the case of orthorombic
SnSe, the anisotropy is particularly striking, with nega-
tive thermal expansion (NTE) of the c axis, parallel to
the direction of corrugation of Sn-Se layers (also corre-
sponding to the direction of atomic motions across the
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TABLE I. Lattice constants and internal atomic coordinates
for Pnma phase from DFT simulations compared with exper-
imental data at 300 K. Internal coordinates are normalized to
the lattice constants. The number in parentheses are percent-
age deviation from the experimental data reported in Ref. 23.
Details are provided in the text.

LDA GGA Exp. [23]

a (Å) 11.309 (1.68) 11.756 (-2.20) 11.502
b (Å) 4.119 (0.82) 4.205 (-1.25) 4.153
c (Å) 4.300 (3.37) 4.547 (-2.18) 4.450

V (Å3) 200.302 (5.77) 224.776 (-5.74) 212.567

LDA GGA Exp. [23]
x z x z x z

Sn 0.1169 0.0908 0.1206 0.1144 0.1208 0.1060
Se 0.8580 0.4753 0.8551 0.4754 0.8551 0.4760
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FIG. 2. Phonon dispersions of SnSe from DFT simulations
with either LDA or GGA exchange-correlation functionals (re-
laxed unit cells), compared with experimental INS data at
300 K.

phase transition), while the other in-plane axis (b) and
the out-of-plane a–axis show normal, positive expansion
[22–24]. The relative change of lattice parameters with
temperature reported by Adouby et al. in Ref. 23 are
shown in Fig. 3. This distortion can also be analyzed as
a rotation of SnSe3 tetrahedra, as illustrated in Fig. 1
and further discussed below. We proceed to rationalize
this behavior based on first-principles thermodynamics
and a microscopic analysis of bonding.

We start by noting that simple Grüneisen parame-
ter calculations are insufficient to explain the anisotropy
and NTE along one or more crystallographic axes. In-
stead, one needs to compute the 3-D total free energy
surface, whose temperature dependence is dominated by
the phonon entropy. In order to clearly make this point,
we start by performing the computation of Grüneisen
parameters. A generalized Grüneisen tensor γpij(q) for a
given polarization index p and wave vector q is given by:

[52, 53]

γpij(q) = −
{

1

ωp(q)

[
∂ωp(q)

∂ηij

]
T

}
η=0

, (2)

where, ηij is the (i, j) component of applied isothermal
strain, and ωp(q) is the atomic vibration frequency. Sum-
mation over polarization index and wave vector, weighted
by heat capacity at constant configuration Cη, yields an
average value of a generalized Grüneisen tensor. We have
calculated the generalized Grüneisen tensor from our
DFT simulations of phonons γavg

ij,DFT. In the case of SnSe,
considering the symmetry of the second order tensor for
the orthorhombic unit cell, non-diagonal components are
exactly zero. Thus, the only isothermal strains required
are η11, η22, and η33, corresponding to stretching or com-
pressing the lattice along crystallographic axes a, b, and
c, respectively. Subsequently, the generalized Grüneisen
tensor, γavg

ij,DFT is obtained by averaging over all polariza-
tions and wave vectors, with each mode weighted by its
heat capacity at constant configuration as follows:

γavg
ij,DFT =

1.44 0 0
0 1.35 0
0 0 0.64

 . (3)

We have also calculated the Grüneisen tensor along
high symmetry directions by averaging over polarizations
only. Results are listed in Table II. As can be seen
from table II, isothermal strains along a, b, and c axes
lead to positive Grüneisen parameters i.e., softening of
phonon branches along all directions, except for isother-
mal strain along the c axis, which produces a stiffening
of phonon modes along Γ−X and Γ− T. However, sum-
mation over the entire Brillouin zone at constant config-
uration yields positive effective Grüneisen parameters for
all cases of isothermal strain as noted in Eq. (3) and Ta-
ble II, which is at odds with the experimentally observed
negative thermal expansion along the c axis.

Alternatively, the relationship between the thermody-
namic generalized Grüneisen tensor and the thermal ex-
pansion tensor, αkl, can be expressed in terms of the
isothermal bulk modulus BT , volume V , and heat ca-
pacity at constant configuration Cη, as following: [3]

γavgij =
V

Cη

∑
kl

BTijklαkl. (4)

The isothermal bulk modulus tensor, BTijkl, can be deter-
mined either from the phonon group velocities along dif-
ferent crystallographic directions, or from DFT simula-
tions by applying isothermal longitudinal and transverse
strains. We have calculated BTijkl with both approaches.

The independent components of BTijkl, constrained by the
orthorhombic symmetry, are shown in Table III. The
phonon group velocities at 300 K were obtained from INS
on single crystals, previously reported by our group in
Ref. [10]. The tensor components not listed in table III
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TABLE II. Anisotropic Grüneisen parameter (γ) of tin-
selenide calculated by expanding and compressing the lattice
along a, b, and c axes. The Brillouin-zone integrated values
are averages of γ over the entire 41×41×41 Monkhorst-Pack
q-point mesh, while the values along specific segments of the
Brillouin zone (e.g. Γ − X) are averages over polarizations
only. Further details are provided in the text.

γavgDFT

Isothermal strain
η11 (a–axis) η22 (b–axis) η33 (c–axis)

BZ integration 1.44 1.35 0.64
Γ−X 3.26 1.34 -1.01
Γ−Y 1.58 1.48 0.27
Y − P 1.27 1.35 0.69
Γ− P 1.69 1.38 0.61
Γ−A 1.66 1.43 0.88
A− Z 1.05 1.59 1.97
Γ− Z 1.66 1.40 0.85
Γ− T 1.71 1.13 -0.06

TABLE III. Fourth order isothermal bulk modulus tensor
BTijkl calculated from DFT simulations and experimental in-
elastic neutron scattering (INS) data. Experimental INS data
is at T = 300 K. More details in text.

BTijkl DFT (GPa) Exp. (GPa)
BT1111 85.5 82.5
BT2222 89.1 97.6
BT3333 52.0 · · ·
BT3322 = BT2233 41.2 · · ·
BT3311 = BT1133 23.5 · · ·
BT1122 = BT2211 19.7 · · ·
BT3223 = BT2323 = BT2332 = BT3232 49.8 31.4
BT3113 = BT1313 = BT1331 = BT3131 22.9 17.9
BT2112 = BT1212 = BT1221 = BT2121 19.1 23.7

are zero. As can be seen in table III, the values for BTijkl
obtained from the two approaches are in fair agreement.

From the experimentally measured thermal expansion
coefficient [24], heat capacity (calculated from experi-
mentally measured phonon DOS, see Fig. 6), volume [23],
and bulk modulus (DFT values were used when experi-
mental values were unavailable) at T = 300 K, the ther-
modynamic generalized Grüneisen tensor computed from
Eq. (4) is:

γavg
ij,Exp =

1.03 0 0
0 0.22 0
0 0 −0.10

 . (5)

Thus, γavg
ij,Exp (Eq. (5)), and γavg

ij,DFT (Eq. (3)) are quite
different. The Grüneisen parameter estimated from ex-
perimental data is negative along the c axis, but the DFT
prediction is positive. Importantly, while we do observe a
substantial negative γ along Γ−X by applying the strain
along c (cf Table II), this alone is insufficient to produce
negative γ along c as a whole, once the integration is per-

formed over the entire Brillouin zone. We note that this
is not a failure of the DFT calculation per se, but rather
arises because of the omission of couplings between dif-
ferent crystallographic axes.

The difficulty to capture the NTE along c from the
Grüneisen parameter prompted us to instead compute
the three-dimensional free energy surface, on a 3D grid
of isothermal strains. To construct the total 3-D free
energy surface, we created a 3 × 3 × 3 grid of lattice
parameters with 1% expansion and compression of lat-
tice parameter along each crystallographic axes with to-
tal of 27 grid points. The inherent advantage of this ap-
proach is that it captures the evolution of both electronic
and vibrational free energy by varying lattice parameters
individually (i.e., {a ± ∆a, b, c}, {a, b ± ∆b, c}, and so
on), as well as coupled terms (i.e., {a ± ∆a, b ± ∆b, c},
{a±∆a, b±∆b, c±∆c}, and so on), and determine the
total free energy minima. The total free energy is a sum
of electronic free energy, Fel, and vibrational free energy,
Fvib, which can be expressed as following:

Fel = Egs − TSel, (6)

and

Fvib =
1

2

3N∑
i

εi + kBT

3N∑
i

ln

{
1− exp(− εi

kBT
)

}
, (7)

where electronic entropy, Sel, and the Fermi-Dirac occu-
pation function, f , are given by:

Sel = −kB

∞∫
−∞

[(1− f) ln(1− f) + f ln f ], (8)

and

f =
1

exp{(E − EF )/kBT}+ 1
, (9)

respectively. Here, Egs is ground state energy, εi is
phonon energy of ith mode, EF is the energy at Fermi
level, kB is Boltzmann’s constant, and N is the number of
atoms in the unit cell. We obtain the ground-state elec-
tronic energy, and the electronic density of states (eDOS)
from DFT simulations for all points on the (a, b, c) grid.
The electronic entropy was determined from eq. (8),
and (9). The vibrational free energy was obtained from
eq. (7), using the phonon density of states (phonon DOS)
calculated as described in section IV A.

The measured thermal expansion between 300 K and
813 K along a, b, and c is approximately 1.8%, 3.5%, and
-3.1%, respectively [23]. Additional points were added to
extend our grid to larger expansions/compressions of 3%
along a, 5% along b, and 5% along c. However, phonons
become unstable for extended grid points. Thus, we limit
our procedure to the original 27-point grid, extended with
the seven new points for which phonons are stable, shown
in Fig. 3(b). To capture the NTE along c over a wider
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range of temperature, we performed a quadratic extrap-
olation of the free energy surface (see Eq. (10)). We note
that the computational cost scales cubicly with the linear
grid size, hence the practicality of finer grids is limited.

We determine the equilibrium lattice parameters, aeq,
beq, and ceq by minimizing a second-order polynomial fit
to the free-energy, F (a, b, c, T ), with respect to lattice
parameters at T = T0,

F (a, b, c, T0) = C0 + C1a+ C2b+ C3c+ C4ab

+ C5bc+ C6ca+ C7a
2 + C8b

2 + C9c
2

∂F (a, b, c, T0)

∂a
= 0 ∀ a = aeq

∂F (a, b, c, T0)

∂b
= 0 ∀ b = beq

∂F (a, b, c, T0)

∂c
= 0 ∀ c = ceq . (10)

The results are shown in Fig. 3(a). As can be seen on this
figure, the experimental temperature dependence of lat-
tice parameters is qualitatively captured, including the
NTE along c. This indicates an interplay between elec-
tronic and vibrational components of the free energy,
which ultimately controls the minima of F . The devia-
tion between calculated and experimental lattice param-
eters at high T is partially due to the fact that the the-
oretical lattice parameters at T = 0, a = 11.309, b =
4.119, c = 4.300 Å, are smaller than the experimental
values: a = 11.502, b = 4.153, c = 4.450 Å, leading to
shorter theoretical bond lengths, especially in the b − c
plane. In addition, strong anharmonic effects, not in-
cluded in our quasiharmonic calculations of phonon spec-
tra for strained cells, are seen to occur in the last ∼ 200 K
below Tc in our heat capacity measurements (see be-
low). One could also include anharmonic effects in the
phonon calculations, for example with ab initio molecu-
lar dynamics or other methods incorporating anharmonic
phonon renormalization occurring because of the ther-
mal bath [10, 18, 32]. However, our goal is not to ex-
actly match the measured thermal expansion coefficient,
but rather to rationalize the origin of the anisotropy and
NTE along c, which can be explained with this simple
and insightful approach.

The electronic ground state energy at T = 0 K is min-
imum for the fully relaxed configuration (relaxed lattice
parameters and atomic positions), (a0, b0, c0), and in-
creases with any strain. We note that, for the strained
configurations, the minimum in the electronic ground
state energy is related to the lattice parameters such that
there are two possible scenarios: (∆a,∆b > 0,∆c < 0) or
(∆a,∆b < 0,∆c > 0). Hence, the electronic ground state
energy alone can not uniquely define the equilibrium lat-
tice structure. Thus, it is the vibrational free energy that
brings the minimum of F towards (∆a,∆b > 0,∆c < 0).
The calculated phonon DOS for three different configu-
rations is shown in Fig. 4. From this figure, we observe
that (∆a,∆b > 0,∆c < 0) leads to additional spectral
weight at low energy in the phonon DOS (“softening”),

 T (K)
0 200 400 600 800

a
/a

3
0

0
K

, 
b

/b
3

0
0

K
, 

c
/c

3
0

0
K

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04 DFT a/a
300K

DFT b/b
300K

DFT c/c
300K

Exp. a/a
300K

Exp. b/b
300K

Exp. c/c
300K

(a)

 T (K)
0 200 400 600 800

a
/a

3
0
0
K

, 
b

/b
3
0
0
K

, 
c
/c

3
0
0
K

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

DFT a/a
300K

DFT b/b
300K

DFT c/c
300K

Exp. a/a
300K

Exp. b/b
300K

Exp. c/c
300K

3
2

 ∆ a/a %

1
0

-1-1
0

1

 ∆ b/b %

2
3

4

1

-1

0

5

 ∆
 c

/c
 %

c

a

b

(a) (b)

FIG. 3. (a) Lattice parameters calculated (open markers)
from minimization of the free energy surface at different tem-
peratures, compared with experimental data (solid markers)
from Adouby et al. [23]. (b) Grid of isothermal strains com-
puted with DFT to sample the free-energy surface.

while (∆a,∆b < 0,∆c > 0) results in a stiffening. The
softening in the first case increases the phonon entropy,
and thus lowers F . As further discussed below, the con-
figuration (∆a,∆b > 0,∆c < 0) leads to considerable
softening of high energy phonons.

C. Structural Evolution and NTE

We now investigate the structural changes inside the
unit cell in connection with the NTE. In particular, we
show that the NTE of SnSe is closely related to the elec-
tronic instability and its coupling to the anharmonic vi-
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TABLE IV. Rotation of pyramidal induces NTE along c.
Bond length and lattice constant in Å. All data is from
Ref. [23] except for the calculated value b and c. The small
discrepancy between calculated c and cexp results from the
ignorance of tilt of two d2 bonds plane.

d1 θ d2 φ c b cexp bexp
Cmcm 2.75 0 3.05 89.85 4.32 4.31 4.31 4.31
Pnma 2.72 7.71 2.80 95.67 4.49 4.15 4.45 4.15

brations of Sn atoms along c. In a separete work, we
showed the strength of d3 bonds is considerably weak-
ened in Pnma compared to Cmcm, as the chemical bond
between Sn and Se in d3 essentially breaks [17]. Thus,
the apical d1 bond and the two in-plane d2 bonds can be
seen to form triangular pyramids with Sn at the apex,
as shown in Fig. 1. The phase transition from Cmcm
to Pnma is driven by the electronic instability, which
reduces the energy by lifting the degeneracy of four d2

bonds in-plane in the Cmcm phase, favoring the off-
centering of Sn along c, and breaking a mirror plane sym-
metry. [17] This distortion overlaps most strongly with
a strongly anharmonic soft-mode at the zone-boundary
(optic mode at Y point), coupled to another anharmonic
zone-center (Ag) optic mode, which together induce ro-
tations of those pyramids as pseudo-rigid units [17], and
cause an increase in c upon cooling.

In Fig. 1a, we introduce θ as the rotation angle of
d1with respect to a, and the angle φ between the d2 bonds
in the pyramid. For simplicity, we ignore the tilt of the
plane formed by two d2 bonds, away from b − c plane.

FIG. 5. Temperature dependence of bond length (a) and
the rotation angle of triangular pyramids (b) extracted from
structure data in Ref. 23. (c) Solids dots is the lattice param-
eters in Ref. 23, the curves are derived from Eq. 11 and 12.
(d) The c lattice change with temperature, the change is di-
vided by the tilt of d1 bond (θ) and rotation of d2 bond (φ),
according to Eq. 11, c0 is the lattice constant at 813 K from
data in Ref. 23.

Within a close approximation, we have:

c ' 2d1 sin θ + 2d2 cosφ/2 (11)

b = 2d2 sinφ/2 (12)

From Table IV we can see that 2d2 cos(φ/2) decreases
from Cmcm to Pnma structure, and therefore, the ex-
pansion along c can be seen to result from the rotation
of pyramids (θ), which couples strongly to the Y + Ag
mode (d1 almost remains constant). From the plots in
Fig. 5, we can confirm that the NTE along c is indeed
induced by the rotation of pyramids, which is strongly
coupled to the anharmonic modes (soft-modes in Cmcm
phase generating zone-center soft-modes in Pnma phase)
[17]. The strongly anharmonic character of these modes
partly explains the shortcomings of the quasiharmonic
free-energy calculations near the phase transition, seen
in Fig. 3.
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V. ANHARMONIC PHONON
THERMODYNAMICS

A. Phonon DOS and Phonon Entropy

Much of the free-energy discussion above was limited
to a quasiharmonic approximation. In order to estimate
the anharmonic component of the vibrational entropy,
we investigate the temperature dependence of the mea-
sured phonon DOS. Fig. 6a and 6b show the experimen-
tal phonon DOS measured at different temperatures for
Ei = 55 meV and 30 meV, respectively. The low and high
energy phonon peaks soften by ∼0.3 and ∼1.0 meV, re-
spectively as the sample temperature is increased from
10 to 750 K. One can observe a drastic broadening of
the spectrum with increasing T , in particular for opti-
cal modes above 13 meV. While the lowest energy zone-
center TO mode has been shown to soften strongly with
increasing T in Pnma in our previous INS dispersion mea-
surements (Ref. 10), that mode is confined to the zone-
center and has a limited spectral weight in the DOS.
We note that the neutron-weighted phonon DOS from
harmonic DFT simulations agrees well with the total
and direction-projected phonon DOS measured at 300 K
(Fig. 11 and 6). The direction-projected experimental
phonon DOS measurements (Fig. 11) provide substantial
information in separating the two low energy Sn domi-
nated phonon peaks at ∼6 and ∼11 meV. The low en-
ergy (∼6 meV) phonon peak include both out-of-plane
(along a-axis) and in-plane (b-c plane) Sn vibrations,
while ∼11 meV phonon peak primarily originates from
in-plane (b-c plane) Sn vibrations. Both Sn dominated
phonon peaks show substantial broadening in the phonon
spectrum with increasing temperature (Fig. 6).

With increasing temperature, it is the coupling be-
tween lattice distortion (especially the large Sn in-plane
displacements) and the electronic structure that gener-
ates strong anharmonicity (leading to phonon-phonon
interactions) [10], primarily responsible for a significant
phonon softening of high energy phonons and phonon
broadening of entire phonon spectra seen in Fig. 6. This
conclusion is further supported by our DFT simulations
of NTE modeling where we identify that the minimiza-
tion of electronic free energy alone is not sufficient to
obtain the experimental lattice parameters with temper-
ature, and including the change in vibrational free energy
due to lattice distortions is necessary to reach equilib-
rium. As we have detailed in Ref. 17, the origin of the
anharmonicity for Sn in-plane motions is the Jahn-Teller
instability involving the Se p-states.

To quantify the anharmonic contribution to Svib, we
estimated a phonon broadening parameter, ΓTQ, by con-

volving the generalized (neutron-weighted) phonon DOS
from DFT, g(E), with a damped harmonic oscillator
function, B(E,E′, T ), [55]

g(E, T ) =

∫
B(E,E′, T )g(E′ −∆E′(T )) dE′, (13)

and matching the result with the measured phonon DOS.
Here,

B(E,E′, T ) =
2ΓTQ

(πEE′)

[{
E
E′ − E′

E

}2
+
{

2ΓT
Q

E′

}2
] , (14)

and ∆E′ is a shift in phonon energy calculated by
fitting the Lorentzian to the peaks in the measured
phonon DOS. The resulting phonon DOS, g(E, T ), with
temperature-dependent phonon broadening parameter,
ΓTQ, is shown in Fig. 7. This model reproduces the tem-
perature dependence of the experimental phonon DOS
well, and enables us to assess the anharmonic Svib. For
this purpose, we use the non-neutron-weigthed version of
g(E, T ).

The vibrational entropy Svib can be expressed as [3, 4,
6],

Svib = 3N kB

×
∫
g(E, T ) [(1 + nT ) ln(1 + nT )− nT ln(nT )] dE ,

(15)

where nT (E) = [eE/kBT −1]−1 is the Bose-Einstein occu-
pation factor for phonons, and N is the number of atoms
in the crystal.

The harmonic phonon entropy, Svib,h, was calculated
by convolving the harmonic phonon DOS from DFT with
a damped anharmonic oscillator function B(E,E′, T ) at
T = 10 K. The resulting phonon DOS was substituted
in Eq. (15) to evaluate Svib,h at different temperatures.
To evaluate the total entropy, Svib, at different tem-
peratures, the T–dependent damped anharmonic oscil-
lator function B(E,E′, T ) was convolved with the DFT
phonon DOS, and substituted in Eq. (15). The vibra-
tional entropy due to thermal expansion of the lattice is
given by

Svib,d =

T∫
0

(Cp − Cv)
T ′

dT ′

=

T∫
0

αvib(T
′)2V (T ′)

χ(T ′)
dT ′, (16)

where αvib is the volumetric thermal expansion coeffi-
cient, χ is the compressibility (inverse of bulk modulus),
and Cp and Cv are specific heat capacity of material at
constant pressure and temperature.

Using the total Svib, harmonic Svib,h, and dilational
Svib,d components of the vibrational entropy, the non-
harmonic and anharmonic entropy were calculated as:
Svib,nh = Svib−Svib,h, and Svib,ah = Svib−Svib,h−Svib,d,
respectively. For the calculation of dilational entropy, we
used the thermal expansion coefficient from Wiedemeier
et al. [24], and temperature dependent compressibility
from He et al. [56]. In addition, we have also estimated
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FIG. 6. Neutron-weighted phonon DOS of SnSe measured
with inelastic neutron scattering at different temperatures for
incident neutron energies of a) 55 meV and b) 30 meV, com-
pared with neutron weighted and experimental resolution con-
voluted DFT simulations.

the total entropy from our experimental heat capacity
measurements (SDSC) using the following expression,

SDSC =

T∫
T0

Cp
T
dT. (17)

The calculated harmonic, dilational, non-harmonic, an-
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cillator function, as detailed in the text.

harmonic, and total vibrational entropy values are shown
in Fig. 8.

As we can observe from Fig. 8, the main entropic con-
tribution is the harmonic term. However, as temperature
increases, the nonharmonic contribution becomes signifi-
cant and cannot be ignored. The nonharmonic entropy is
a summation of dilational and anharmonic entropy con-
tributions. We have also calculated nonharmonic con-
tributions to the vibrational internal energy and vibra-
tional free energy following methods recently reported in
Ref. 57. We should note that since tin-selenide is a in-
direct band gap semiconductor (band gap of 0.86 eV in
Pnma phase at room temperature)[18], we could expect
the contribution of electronic excitations to specific heat
capacity/thermal expansion coefficient to be negligible at
room temperature. The band gap in SnSe is temperature
dependent, and reduces to ∼ 0.4 eV in Cmcm phase [18].
While the temperature dependence of band gap may af-
fect our results slightly, we do not expect this effect to
be significant. From these calculations, a similar trend is
observed in vibrational internal energy (Fig. 9) and vi-
brational free energy (Fig. 10), with the anharmonic con-
tribution rising as Tc is approached. As we can observe,
at high T , thermal expansion (dilation) alone cannot ac-
count for nonharmonic contributions, and anharmonicity
plays a large role near the instability.

It is interesting to note that in the experimental
phonon DOS (Fig. 6), there is considerably larger soft-
ening, ∆E/〈E〉 ∼ −5.2%, of high energy phonons
(E ≥ 13 meV) compared to the softening of low en-
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ergy phonons, ∼ −3.8%, between T = 10 and 750 K.
As evident from Fig. 11a, low energy and high energy
modes are dominated by Sn and Se, respectively. We se-
lectively investigate the change in low and high energy
phonon energies by applying 1% isothermal strain along
∆a/a = ∆b/b = +1%,∆c/c = −1% (3-D free energy sur-
face minima direction as described earlier), and find that
high energy phonons soften by ∼ −2.1% in comparison
to ∼ −1.0% for low energy phonons.

The values of Grüneisen parameter along high-
symmetry directions are reported in Table V. The large
values of Grüneisen parameter across the various high
symmetry directions in SnSe reflect the pronounced an-
harmonicity, which is also shown quantitatively in the
anharmonic vibrational entropy, internal energy and free
energy calculations, while the significant variation in val-
ues across different directions is attributed to the struc-
tural anisotropy in this material.

B. Partial Phonon DOS and Thermal
Displacement Parameters

Fig 11-a shows the partial phonon DOS of tin and se-
lenium calculated from DFT simulations for a0b0c0, the
ground state equilibrium lattice parameters for fully re-
laxed structure with Sn and Se atoms predominantly oc-
cupying the low and high energy phonon spectrum, re-
spectively. To enable the direct comparison with experi-
mentally measured NRIXS Sn partial phonon DOS par-
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TABLE V. Grüneisen parameter (γ) of tin-selenide calculated
by applying 1% isothermal strain along ∆a/a = ∆b/b =
+1%,∆c/c = −1% (a ↑ b ↑ c ↓). Average along particular
direction such as Γ−X represents the values of γ averaged
over q-point along that direction weighted by specific heat
capacity. More details in text.

γavgDFT

Isothermal strain along: (a ↑ b ↑ c ↓)
All modes modes < 13 meV modes ≥ 13 meV

Γ−X 5.51 6.49 4.49
Γ−Y 2.79 2.92 2.66
Y − P 1.91 1.39 2.46
Γ− P 2.46 2.08 2.86
Γ−A 2.20 1.79 2.63
A− Z 0.63 -0.39 1.68
Γ− Z 2.21 1.83 2.61
Γ− T 2.90 2.59 3.23

allel and perpendicular to a-axis, we have also calculated
the projected phonon DOS of Sn as shown in Fig 11-
b, and 11-c. The good agreement between experiment
and simulations further validates the accuracy of DFT-
LDA. Additionally, from the partial phonon DOS and f-
factor (Lamb-Mössbauer factor) measured from NRIXS
[45, 54], the mean square thermal displacement of Sn
can be calculated. The f-factors corresponding to par-
tial phonon DOS parallel and perpendicular to a-axis
are 0.1370±0.0098 and 0.1487±0.0095, respectively. We
should note that, the exact sample orientation for in-
plane (⊥ a) was not known; however, the in-plane NRIXS
measurement agrees well with the simulation for the b-
axis and we believe this was the likely orientation.

Furthermore, we have calculated the mean square
thermal displacement parameter, 〈|Uα(j)|2〉, from DFT
phonon spectra, as:

〈|Uα(j)|2〉 =
~

2Nmj

∑
q,s

ωs(q)−1(1 + 2ns(q))|es,α(j, q)|2,

(18)

where, α denotes thermal displacement direction, mj is
mass of atom at location j, ωs(q) is phonon frequency of
sth phonon branch at wave vector q, ns is the mean Bose-
Einstein occupation factor, and es,α(j, q) is phonon wave
vector. The results for T = 300 K, listed in Table VI,
are consistent with values measured by Chattopadhyay
et al. at room temperature with neutron diffraction [22].
The thermal displacement parameters for Sn and Se have
similar magnitudes at 300 K, thus indicating that the av-
erage bond stiffness at each site is comparable. Indeed,
our DFT simulations give a small increase ( ∼12%) in the
trace of Se on-site force-constant matrix in comparison
to Sn. The ratio of average frequency for Se and Sn vi-
brations calculated from DFT is 1.38, close to the effect
of mass ratio,

√
M(Sn)/M(Se) ≈ 1.23. It is worth em-

phasizing, that while the magnitude of thermal displace-
ments of Se atoms reported by Chattopadhyay et al. in-
creases linearly with temperature, off-centered Sn atoms

show a superlinear increase for in-plane thermal displace-
ments near the phase transition [22, 23], which reflects
the strong anharmonicity in this regime.

C. Heat capacity

To further investigate the nature of the phase transi-
tion and anharmonic effects in SnSe, we measured the
heat capacity. The measurements were performed with a
Netzsch DSC 404C differential scanning calorimeter, with
the sample loaded inside a Pt crucible, under an ultra-
pure Ar purge gas cycled through a Ti gettering furnace.
The scans were performed after careful evacuation and
purging of the sample chamber. The heating and cool-
ing rates were 20 K/min and 20 K/min, respectively. A
sapphire standard and empty-crucible baseline measure-
ments were performed in identical conditions. The heat
capacity curves measured during heating and cooling are
shown in Fig. 12. The heat capacity exhibits a lambda
shape in the vicinity of the phase transition, akin to the
classic case of liquid helium [58]. This behavior is gen-
erally indicative of a second-order phase transition, in
agreement with the nearly continuous evolution of struc-
tural parameters observed with diffraction [22–24]. The
c-polarized lowest-energy transverse optic soft-mode was
also shown to continuously condense across Tc in our pre-
vious INS study [10]. The phase transition temperature,
Tc ∼ 795 ± 4 K, obtained from our heat capacity mea-
surements is in good agreement with values (802–813 K)
reported in the literature [22–24]. A slight hysteresis in
Tc of about 4 K was observed in our DSC. Some of the
hysteresis may possibly be caused by some Se evapora-
tion at high T , oxidation, or temperature lags in the in-
strument. However, it is also possible for the transition
to exhibit a partially first-order character, since there is
some reported evidence for a small latent heat [27–29].

We calculated the harmonic and dilational heat capac-
ity from INS phonon DOS and thermal expansion coef-
ficient measurements. The harmonic (Cv)and dilational
(Cd) heat capacity are given by,

Cv = kB

(
εi
kBT

)
exp(εi/kBT )

(exp(εi/kBT )− 1)2
, and (19)

Cd = Cp − Cv =
αvib(T

′)2V (T )T

χ(T )
, (20)

respectively [3, 6]. To calculate the harmonic heat capac-
ity from Eq. (19), we have used the non-neutron-weigthed
version of phonon DOS at 10 K, as described earlier for
the entropy calculations. The comparison of experimen-
tal measurements with harmonic and dilational heat ca-
pacity is shown in Fig. 12. For T < 500 K, the quasi-
harmonic (harmonic+dilational) heat capacity accounts
well for the measured Cp. However, as the phase transi-
tion is approached, the difference between the two curves
increases significantly, reflecting the growing contribution
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TABLE VI. Mean square thermal displacement parameter 〈|Uα(j)|2〉 of tin and selenium calculated from DFT (LDA) simula-
tions at T = 300 K compared with experimental neutron diffraction and NRIXS data.

〈|Uα(j)|2〉 Sn Se
(in Å2) This work (DFT) This work (NRIXS) Ref. [22] This work (DFT) Ref. [22]

U11 0.0165 0.0136 0.0151 0.0143 0.0130
U22 0.0148 0.0130 0.0130 0.0118 0.0107
U33 0.0170 – 0.0177 0.0126 0.0143

of anharmonicity. A similar behavior was also seen in en-
tropy, internal energy and free energy (Fig. 8, 9, and 10).

VI. CONCLUSION

We have investigated the anharmonic thermodynamics
and negative thermal expansion in SnSe with a combi-
nation of INS, NRIXS, calorimetry measurements, and
first-principles simulations. We identified a pronounced
contribution of anharmonicity at high temperature, espe-
cially within ∼ 200 K of the structural phase transition.
The NTE along the c–axis, the direction of corrugation
of Sn-Se bilayers in the Pnma phase, can be qualita-
tively accounted for with a quasiharmonic free energy
minimization, but deviations from strong anharmonicity
are evident at high temperatures. The structural distor-
tion accompanying the NTE can be traced to rotations
of SnSe3 tetrahedra, which overlap with the strongly an-
harmonic soft-modes condensing at the phase transition.
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