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Abstract

The light elemental solutes B, C, N, and O can penetrate the surface of Mg alloys and dif-

fuse during heat treatment or high temperature application, forming undesirable compounds. We

investigate the diffusion of these solutes by determining their stable interstitial sites and the inter-

penetrating network formed by these sites. We use density functional theory (DFT) to calculate

the site energies, migration barriers, and attempt frequencies for these networks to inform our

analytical model for bulk diffusion. Due to the nature of the networks, O diffuses isotropically,

while B, C, and N diffuse anisotropically. We compute the elastodiffusion tensor which quantifies

changes in diffusivity due to small strains that perturb the diffusion network geometry and the

migration barriers. The DFT-computed elastic dipole tensor which quantifies the change in site

energies and migration barriers due to small strains is used as an input to determine the elasto-

diffusion tensor. We employ the elastodiffusion tensor to determine the effect of thermal strains on

interstitial diffusion and find that B, C, and N diffusivity increases on crystal expansion, while O

diffusivity decreases. From the elastodiffusion and compliance tensors we calculate the activation

volume of diffusion and find that it is positive and anisotropic for B, C and N diffusion, whereas it

is negative and isotropic for O diffusion.

PACS numbers: 66.10.C-, 66.10.cg, 66.30.J-, 66.30.Ny
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I. INTRODUCTION

Magnesium and its alloys have found increased application in the automotive industry due

to their higher strength-to-weight ratio than steel and aluminum alloys, which reduces vehicle

weight leading to increase in fuel efficiency1–3. Mg alloys interact with the surrounding

gaseous atmosphere during their application which can lead to the penetration of light

impurity elements. These impurities can also get introduced due to interaction with reactive

gases during heat treatment, leading to the formation of oxide layers on the surface or

precipitates at grain boundaries which can be detrimental to strength2,4. Experiments have

shown that O, C and N can react with Mg to form oxides, carbides and nitrides2. Boron is

used for Fe removal during Mg processing2, but a small amount of B may be retained as an

impurity. The penetration of these impurities into bulk is governed by thermally activated

processes and a detailed study of their diffusion mechanisms can provide insights that may

help to mitigate them.

There have been few theoretical studies on the behavior of light elements in hcp metals.

Wu et al. studied the influence of substitutional B, C, N and O on the stacking faults and

surfaces of Mg5 using density functional theory (DFT). All four elements reduce the unstable

stacking fault energy and surface energy of Mg and enhance the ductility according to the

Rice criterion, with O having the largest impact5. Atomisitic studies of light elements in

hcp metals—O in α-Ti6,7, O and N diffusion in α-Hf8, and O in multiple hcp metals9—

modeled the diffusion of solutes through the networks formed by interstitial sites. However,

a theoretical or experimental study of interstitial diffusion in Mg is absent except for the

limited experimental data for C diffusion10.

We analyze the diffusion of B, C, N and O in the dilute limit in hcp Mg using DFT

calculations to inform an analytical diffusion model11,12. We also study the changes in

diffusivities due to strain from thermal expansion. Section II details the DFT parameters

used to determine the energetics of interstitial sites and the migration barriers between

them. Section III lays out the inputs for the diffusion model: probabilities of occupying

sites, connectivity networks between these sites and the transition rates for these networks.

We derive analytical expressions for interstitial diffusivity in hcp crystals and apply them to

diffusion of B, C, N and O in Mg. We find that the O diffusion is isotropic while B, C, and N

diffusion is anisotropic. Section IV discusses the elastic dipole tensors of solutes at interstitial
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sites and transition states, which determine the changes in the transition energetics of solutes

due to small strains. Section V defines the elastodiffusion tensor11,13–15, which quantifies the

effect of small strains on diffusivity and discusses the sign inversion behavior of elastodiffusion

components with temperature. We find that the activation volume of O diffusion is negative

which leads to an increase in O diffusion under hydrostatic pressure. We also find that

the diffusivity of O decreases with thermal expansion while the diffusivity of B, C and N

increases.

II. COMPUTATIONAL DETAILS

We perform the DFT calculations using the Vienna ab-initio simulation package vasp16

which is based on plane wave basis sets. The projector-augmented wave psuedopotentials17

generated by Kresse18 describe the nuclei and the valence electrons of solutes and Mg atoms.

The solute atoms B, C, N, and O are described by [He] core with 3, 4, 5 and 6 valence

electrons respectively. We use the [Ne] core with 2 valence electrons for Mg instead of

the [Be] core with 8 valence electrons because the energies computed using either choice

of psuedopotential differ by less than 20 meV. Electron exchange and correlation is treated

using the PBE19 generalized gradient approximation. We use a 4×4×3 (96 atoms) supercell

of Mg atoms with a 6 × 6 × 6 Monkhorst-Pack k-point mesh to sample the Brillouin zone.

Methfessel-Paxton smearing20 is used with energy width of 0.25 eV to integrate the density

of states; the k-point density and smearing width are based on convergence of the DOS

compared with tetrahedron integration. A plane wave energy cutoff of 500 eV is required

to give an energy convergence of less than 1 meV/atom. All the atoms are relaxed using a

conjugate gradient method until each force is less than 5 meV/Å. The Mg unit cell has a

hexagonal close packed (HCP) crystal structure with DFT calculated lattice parameters of

a = 3.189 Å and c/a ratio of 1.627 which agree well with values reported from experiments,

a = 3.19 Å and c/a = 1.6221.

We use DFT to calculate the energy of solutes at various sites and use the climbing-image

nudged elastic band (CNEB)22 method to locate the transition states between the sites. The

site (or solution) energy Eα of a solute X at an interstitial site α is the difference between

the energy of a Mg supercell containing solute X at site α, E(Mg96 + Xα
1 ), and the energy
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of a pure Mg supercell, E(Mg96),

Eα = E(Mg96 + Xα
1 )− E(Mg96). (1)

We also determine the site energy for a solute X as a substitutional defect, Esub,

Esub = E(Mg95 + Xsub
1 )− 95

96
E(Mg96) (2)

where E(Mg95 +Xsub
1 ) is the energy of supercell where one of the Mg atoms is substituted by

a solute atom X. Both the interstitial site energy Eα and the substitutional site energy Esub

for solute X are referenced to its elemental state. The energy differences ∆E = Eα − Esub

for the solutes B, C, N and O are –1.48, –3.23, –4.34 and –4.19 eV, where α is the interstitial

site with the lowest energy, and is independent of the reference state for the solutes. Since,

the energies of interstitial sites are lower than the substitutional site, these solutes are likely

to diffuse through networks of interstitial sites. We use CNEB with one image22 to locate

the transition state between two interstitial sites. Similar to Eq. 1, the energy Eα-β of the

transition state between site α to site β is referenced to the elemental state of X

Eα-β = Eα-β(Mg96 + X1)− E(Mg96) (3)

where Eα-β(Mg96 + X1) is the energy at the transition state obtained from a CNEB calcula-

tion. We report the interstitial site energies and the transition state energies relative to the

interstitial site with the lowest energy, which is independent of the reference state for the

solutes.

III. DIFFUSION MODEL

We calculate the occupation probabilities at interstitial sites and transition rates for dif-

fusion pathways from DFT-computed site energies, transition state energies, and vibrational

frequencies. The probability ρα of a solute occupying a particular site α at temperature T

is

ρα =
ν∗α · exp(−Eα/kBT )∑
β ν
∗
β · exp(−Eβ/kBT )

, (4)

where kB is the Boltzmann constant, in the denominator is the normalization constant

summed over all the interstitial sites in the unit cell and ν∗α is the site prefactor proportional

4



to the Arrhenius factor for formation entropy of site α, exp (Sα/kB), calculated from the

vibrational frequencies

ν∗α =
1∏3

p=1 να,p
. (5)

This expression ignores interstitial-interstitial interaction, and is exact in the dilute con-

centration limit. We compute the vibrational frequencies of a state using the one atom

approximation by diagonalizing the dynamical matrices corresponding to the interstitial

atom.23 The dynamical matrices are obtained from the forces induced on interstitial atoms

by small displacements (±0.01 Å) from their equilibrium positions, while keeping the other

atoms fixed. From transition state theory, the rate λα-β for a solute to transition from site

α to site β at temperature T is

λα-β = ν∗α-β · exp(−(Eα-β − Eα)/kBT ). (6)

The attempt frequency ν∗α-β for the α to β transition is calculated using the Vineyard

expression24, which is the product of vibrational frequencies να,p at the initial site α di-

vided by the product of real vibrational frequencies να-β,q at the transition state

ν∗α-β =

∏3
p=1 να,p∏2
q=1 να-β,q

. (7)

At equilibrium, the transition between site α and site β obeys detailed balance

ρα · λα-β = ρβ · λβ-α. (8)

Figure 1 shows the newly found distorted hexahedral dh site in Mg along with the other

interstitial sites (h, t, c, o) which have been discussed previously for O in α-Ti7. The dh

site is stable for B and C, and is located between two nearest Mg atoms in the basal plane

with a displacement of 0.17 Å for B and 0.40 Å for C towards the nearest hexahedral h

site. The h site has three basal Mg neighbors and two other Mg neighbors located directly

above and below it, which are further away. The four-atom coordinated tetrahedral t site

is stable for O and lies 0.65 Å along the c direction from an basal plane containing three of

its Mg neighbors. The six-atom coordinated octahedral o site is stable for all four solutes.

The six-atom coordinated non-basal crowdion c with lower symmetry than o site has two

nearest neighboring Mg atoms lying in adjacent basal planes which get displaced away from

the c site while the other four neighbors lying further apart get displaced towards the c site

on relaxation. The c site is stable for C and N but unstable for B and O.
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FIG. 1. (color online) Positions of interstitial sites in the unit cell of hcp Mg. The octahedral (o,

orange), tetrahedral (t, red), hexahedral (h, blue), distorted hexahedral (dh, cyan), and crowdion

(c, yellow) interstitial sites are shown relative to host Mg atoms (Mg, white). In an hcp unit cell,

there are two o, two h, four t, six c and six dh sites. The transitions between stable interstitial

sites determine the possible diffusion pathways. The unit cell vectors a1 and a2 form the basal

plane (0001) and the vector c (also referred as the c-axis ) is perpendicular to it.

Figure 2 shows the possible diffusion networks between interstitial sites for hcp systems,

which are inputs to our diffusion model11,12. A solute at a o site can jump to the following

neighboring sites: two o sites lying above and below along the c-axis with transition rate

λo-o(c); six o sites lying in the same basal plane with λo-o(b) in cases where the c site is

unstable ; six neighboring c sites with λo-c; six h sites with λo-h; six t sites with λo-t and six

dh sites with λo-dh. A solute at a h site can jump to: six o sites with λh-o; six c sites with

λh-c and three dh sites lying in the same basal plane with λh-dh. The c site is between two

h sites which lie in adjacent basal planes and also between two o sites in the same basal

plane. A solute from a c site can jump to those neighboring o and h sites with λc-o and λc-h.

A solute at a t site can jump to three neighboring o sites which are all lying either above

or below the t site with λt-o, and to one neighboring t site lying either above or below with

λt-t. A solute at a dh site can jump to one neighboring h site with λdh-h and to two nearest

dh sites in the same basal plane with λdh-dh.

Figure 3 shows the energies for the interstitial sites and the transition states of active

diffusion pathways for all four solutes. Active diffusion pathways for a solute are determined

by its set of stable sites. The set of stable sites for B is {o, dh}, for C it is {o, h, c, dh}, for

N it is {o, h, c} and for O it is {o, t}. All DFT energies are relative to the lowest-energy

site which is the ground state.25 The o site is the ground state for B, C and N, while the t
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o-o(c) o-o(b), o-c h-c o-h

t-t, t-o o-dh, dh-h o-dh, dh-dh

FIG. 2. (color online) Interstitial sites and site-to-site connectivity in hcp crystals. Connections be-

tween two neighboring sites form diffusion pathways which are shown as lines colored corresponding

to the colors of the interstitial sites. For example, o-o(c) and o-o(b) are octahedral site-to-octahedral

site diffusion pathways along the c-axis and in the basal plane of hcp Mg, respectively. The dif-

fusion pathways shown in the top row are un-correlated, while correlated diffusion pathways are

shown in the bottom row. These correlated pathways are the combined connections formed among

o and t sites, o, dh and h sites, and o and dh sites. In the last two figures of the bottom row, the

c-axis is tilted and the cell is rotated counter-clockwise around the c-axis for better visibility of

connections and sites.

site is the ground state for O. The transition between two sites is shown as a line connection

and the associated value is the transition state energy. For example, in the case of O, t is

the ground state and o is metastable with energy 0.21 eV. The active diffusion pathways for

O (refer to Fig. 2) are o-o, t-t (both along the c-axis), and t-o with transition state energies

of 1.01, 0.09 and 0.7 eV respectively. Since there is no direct o-o (b) jump in the basal

plane—which would pass through the unstable c site—basal diffusion occurs by combining

o-t and t-o jumps.

Table I lists analytical expressions for diffusivity based on the active diffusion pathways

7



0.0

0.5

1.0

1.5

2.0
Boron

o dh

1.08(c)
0.73(b)

0.00

1.06

0.90
0.905

E (eV)

0.0

0.5

1.0

1.5

2.0
Carbon

o h c dh

1.65

0.87 0.95

0.00

1.35
1.11

0.89
0.91

1.06

E (eV)

0.0

0.5

1.0

1.5

2.0
Nitrogen

o h c

1.64

0.39

0.00

1.10

0.99

E (eV)

1.04 1.04

0.0

0.5

1.0

1.5

2.0
Oxygen

o t

0.09
0.21

0.00

0.70
1.01

E (eV)

FIG. 3. Energetics of stable sites and the transition states between them, relative to the lowest-

energy interstitial site for B, C, N, and O solutes in Mg. Interstitial sites are marked on the

horizontal axis, and their relative site energies are shown in bold below the thick horizontal base

lines. Thin lines from one site to another (or the same) site denote transitions, and the associated

number is the energy at the transition state between those two sites. For example, in the case of

B, the o site is the lowest energy site and the energy of the metastable dh site relative to it is 0.90

eV. Thin lines starting and ending from the thick base line of o denotes the o-o transition. The

associated transition state energies in eV are 1.08(c) for the transition along the c-axis and 0.73(b)

for the transition in the basal plane.

formed by the stable sites, in terms of occupation probabilities and transition rates. We

follow the approach of near-equilibrium thermodynamics to calculate the diffusivity D by

finding a steady state solution for the system in equilibrium distribution with a small pertur-

bation in the chemical potential gradient of the solute11. The derived analytical expressions

for solute diffusivity are made up of bare mobilities and correlation effects. Table I lists the

term-by-term contributions to the basal diffusivity Db and the c-axis diffusivity Dc from each

type of transition. The bare mobility terms have the form of a site probability multiplied

by a transition rate. The correlation effects are present in dh-o, dh-dh and dh-h transitions

which contribute to the basal diffusivity as well as in t-o and t-t transitions which con-

tribute to the c-axis diffusivity. Each of these networks show correlation as the jumps from
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TABLE I. Analytical expressions for interstitial solute diffusivity in the basal plane (Db) and along

the c-axis (Dc) through the network formed by interstitial sites in the hcp crystal. These expressions

are functions of transition rates (λ) between interstitial sites and the occupation probability of each

type of interstitial site. The occupation probability of each type of site is the product of ρ (from

Eq. 4) and its multiplicity in the unit cell. The occupation probability for any o, h, t, dh and c site

is 2ρo, 2ρh, 4ρt, 6ρdh and 6ρc, respectively. These analytical expressions for diffusivity are valid

for any interstitial solute diffusing in an hcp crystal with lattice parameters a and c and having a

set of stable interstitial sites corresponding with that network for a Markovian diffusion process.

network a−2 ·Db c−2 ·Dc

o, dh 2ρo
3λo-o(b)

2
+ 2ρo

3λo-dhλdh-dh
2λdh-o + 3λdh-dh

2ρo
λo-o(c)

4
+ 2ρo

3λo-dh
8

o, h, dh, c 2ρo
3λo-c

4
+ 2ρh

λh-c
4

+ 2ρo
λo-dhλdh-h

2λdh-o + λdh-h
2ρo

λo-o(c)

4
+ 2ρo

3λo-dh
8

+ 2ρh
3λh-c

8

o, h, c 2ρo
3λo-c

4
+ 2ρh

λh-c
4

+ 2ρoλo-h 2ρo
λo-o(c)

4
+ 2ρo

3λo-h
8

+ 2ρh
3λh-c

8

t, o 4ρt
λt-o
2

2ρo
λo-o(c)

4
+ 4ρt

3λt-oλt-t
24λt-o + 16λt-t

particular sites (dh and t) are unbalanced : the sum
∑

β λα-βδxα−β 6= 0 for displacements

δxα−β from site α to β. This leads to a correlated random walk where, for example, if an

interstitial is in a tetrahedral site with a low t-t barrier it is very likely to be in that same

tetrahedral site after two jumps; hence, a large (anti)correlation between the displacement

vector in subsequent jumps. The analytical expressions are applicable in any hcp crystal for

any solute having a set of interstitial sites corresponding with that network for a Markovian

diffusion process. Our expression for the set of sites {o, h, c} agree with the expression for O

diffusing in α-Ti7. In the case of t-t jumps which tend to have low barriers, the assumption

of “independent” tetrahedral sites becomes invalid; instead, the pair is similar to a super-

basin which thermalizes rapidly, and the λt-t disappears from the diffusivity as λt-t → ∞.

The site energies and site prefactors, as well as the attempt frequencies and transition state

energies of all the transitions for B, C, N and O, is available in tabular form26.

Figure 4 shows that O diffuses isotropically while B, C, and N diffuse anisotropically. B

and C diffuse faster in the basal plane than along the c-axis while N diffuses faster along

the c-axis than in the basal plane. The analytical expressions in Table I give the diffusivity
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FIG. 4. (color online) Analytical results for diffusivities in the basal plane (DX
b ) and along the c-axis

(DX
c ) of Mg for interstitial solute X = B, C, N and O. Diffusion of O is isotropic while diffusion of B

and C is slower along the c-axis than in the basal plane and diffusion of N is faster along the c-axis

than in the basal plane. The analytical expressions listed in Table I are employed to compute

the variation of diffusivity with temperature. Also shown is the diffusivity of C (DC
Experiment),

determined experimentally by Zotov et.al10 at four temperatures between 773–873K.

as a function of temperature. For all temperatures from 300K to 923K (the melting point

of Mg), the basal diffusivities of the four solutes follow DB
b > DO

b > DN
b ≈ DC

b and the

c-axis diffusivities follow DO
c > DB

c > DN
c > DC

c . Zotov et.al10 measured the diffusivity

of C experimentally in the temperature range of 773–873K (500–600◦C) and our results

overestimate their measured diffusivity by a factor of 10–80. With only the single experiment

for comparison, it is difficult to assess the source of the discrepancy.

Table II lists the activation energies and diffusivity prefactors obtained from Arrhenius

fits to the diffusivity plots (Fig. 4). For each solute, the comparison between the activation

energy for diffusion Q and the migration energies of individual transitions (see Fig. 3) indi-

cates the dominant type of transition that contributes most to diffusion. In the case of O,

the migration energy of t-o transition is 0.70 eV which is close to the activation energy of

0.69 eV, so this transition contributes more than the other transitions to both diffusivities.

Similarly, o-o basal and o-c transitions dominate for basal diffusion of B and C, respectively,

while o-dh transitions dominate for c-axis diffusion of both these solutes. However, for N,

all transitions except o-o along c axis have similar energies, so it is likely that more than
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TABLE II. The Arrhenius fitting parameters for basal (DX
b ) and c-axis (DX

c ) diffusivities through

active networks of sites for interstitial solute X = B, C, N, and O. The diffusivities vary with

temperature according to the Arrhenius model D = D0 · exp(−Q/kBT ), where D0 is the diffusivity

prefactor, Q is the activation energy of diffusion, T is temperature in K, and kB is the Boltzmann

constant. The comparison of energy barriers from Fig. 3 to the activation energy Q gives the

dominant transition.

Solute Network DX
b DX

c

X D0 (m2s−1) Q (eV) D0 (m2s−1) Q (eV)

B o, dh 2.52×10−6 0.74 1.83×10−6 0.90

C o, h, dh, c 2.07×10−6 1.07 1.38×10−6 1.11

N o, h, c 1.42×10−6 1.05 1.58×10−6 1.04

O o, t 0.49×10−6 0.69 0.52×10−6 0.69

one transition type contributes to both diffusivities.

IV. ELASTIC DIPOLE TENSOR

The elastic dipole tensor quantifies the elastic interaction energy between an external

strain field and the point defect in the small strain limit. The dipole tensor is equal to

the negative derivative of elastic energy E with respect to strain ε. The elastic dipole

components Pij are computed from the stress tensor σ after relaxing the ions while keeping

the supercell shape and volume V fixed in the presence of the interstitial27,

Pij = − dE
dεij
≈ σijV. (9)

The elastic dipole tensor determines the change in site energies and transition state ener-

gies of interstitial solutes due to small strain. The site energy Eα(s)(ε) of α with orientation

vector s under small strain ε is approximated by the linear relation

Eα(s)(ε) ≈ Eα(0)−
∑
ij

Pα(s),ijεij, (10)

where Eα(0) is the site energy of α in the unstrained cell and Pα(s),ij are the elastic dipole

components of site α with orientation s. In the infinitesimal strain limit, the sites and
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network topology remains unchanged; with larger finite strains, sites may become unstable

or change the network topology, which requires a new analysis of network. The vector s

distinguishes the multiple sites of the same type which are present in an hcp unit cell. The

orientation of c site is defined as the vector connecting it to the nearest o site and the

orientation of dh site is defined as the vector connecting it to the nearest h site. In a hcp

unit cell (see Fig. 1), there are two o, two h, four t, six c and six dh sites. In an unstrained

cell, multiple sites of the same type have the same energy. However, strain can cause these

sites to become nonequivalent in energy depending on their elastic dipole tensor which may

depend on their site orientation. The dipoles for o, h, and t sites are independent of their

orientation vector while the dipole for c and dh sites depend on their orientation vector.

Similarly, the transition state energy Ev
α(s)-β(s′)(ε) for site α of orientation s to site β of

orientation s′ under strain is

Ev
α(s)-β(s′)(ε) ≈ Eα-β(0)−

∑
ij

P v
α(s)-β(s′),ijεij, (11)

where v is the vector from site α to β, Eα-β(0) is the v-independent transition state energy

in the unstrained cell and P v
α(s)-β(s′),ij are the elastic dipole components at the transition

state corresponding to v. As discussed previously in Fig. 2, there are multiple transitions

of the same type distinguished through their transition vectors v. In a strained cell, these

transitions can have different transition state energies depending on their dipole tensors

which may depend on their transition vectors.

Tables III and IV list the components of the elastic dipole tensor at representative inter-

stitial sites with orientations s, and representative transition states with transition vectors v.

We diagonalize the elastic dipole tensors along three principal axes (e1, e2, e3), and report

the diagonalized entries entries (P11, P22, P33) and principal axes. From Table III, the elastic

dipole components in the two orthogonal basal directions are equal for o, h, and t sites due

to the basal symmetry of these sites. The trace of the elastic dipole for N and O at o sites is

negative, leading to the volumetric contraction upon cell relaxation, in contrast to the other

interstitial sites. The ground state configuration of N undergoes volume contraction on cell

relaxation while the ground state configuration of B, C, and O undergoes volume expansion

on cell relaxation. In the case of the dh site, its two nearest Mg atoms experience larger

atomic forces compared to other Mg atoms therefore, the elastic dipole for the dh site has

the largest component in the [1120] direction which connects these two nearest Mg atoms.

12



TABLE III. Elastic dipole tensors P at representative interstitial sites for B, C, N, and O in Mg.

The symmetric elastic dipole tensor is diagonal along three principal axes e1, e2, and e3 and has

units of eV. For c and dh sites, the dipole tensors and their axes depend on the orientations s of the

sites with respect to the nearest o and h sites, respectively, whereas the dipole tensors for o, t and

h sites are independent of orientation. The possible orientations of dh sites with respect to an h

site are [1100], [1010] and [0110], and the orientations of c sites with respect to an o site are [2110],

[1120] and [1210]. Here the dipole tensor of each type of site is given for one representative s, and

other tensors with different s are obtained by applying the appropriate point group operations on

the representative dipole tensor.

Solute Site Orientation (s) P11 P22 P33 e1 e2 e3

B o any 2.38 2.38 2.55 orthogonal basal vectors [0001]

dh [1100] 11.03 0.04 −0.49 [1120] [1100] [0001]

C o any 1.08 1.08 0.24 orthogonal basal vectors [0001]

h any 4.74 4.74 −1.10 orthogonal basal vectors [0001]

c [2110] 6.59 4.20 −5.18 [01
3
1
3
1
2 ] [2110] [0113

4 ]

dh [1100] 8.94 −0.22 −0.86 [1120] [1100] [0001]

N o any 0.00 0.00 −1.39 orthogonal basal vectors [0001]

h any 3.22 3.22 −1.81 orthogonal basal vectors [0001]

c [2110] 4.22 4.31 −5.39 [01
3
1
3
1
2 ] [2110] [0113

4 ]

O o any −0.15 −0.15 −1.76 orthogonal basal vectors [0001]

t any 2.06 2.06 0.79 orthogonal basal vectors [0001]

From Table IV, most of the transition states break the symmetry of the crystal except for

the o-o and t-t transitions along the c-axis which obey the basal symmetry. Because of

the basal symmetry, the transition state energies of the o-o (c-axis) and t-t transitions with

different v remain equivalent in the strained cell while the same is not true for the other

types of transitions.

Elastic dipole tensors for symmetry-equivalent sites with different s, and symmetry-

equivalent transitions with different v, are obtained by point group operations on the rep-

resentative dipole tensors in Tables III and IV. For example, the three c sites in the basal

plane with different orientations ([2110], [1120] and [1210]) are all related Wyckoff sites, that
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TABLE IV. Elastic dipole tensors P at representative transition states for B, C, N, and O in Mg.

The transition state from site α to site β is denoted by α-β, and v is the vector connecting these

two sites. The symmetric elastic dipole tensor is diagonal along three principal axes e1, e2, and

e3 and has units of eV. The dipole tensor of an equivalent transition with a different v is obtained

by applying the appropriate point group operation to the given dipole tensor. The variable x for

B and C is 0.197 and 0.238, respectively, and variable z for O is 0.153. The values of x and z are

obtained from the relaxed position of dh and t sites in the Mg supercell, respectively.

Solute α-β Transition (v) P11 P22 P33 e1 e2 e3

B o-o [0001
2 ] 5.34 5.34 −3.58 orthogonal basal vectors [0001]

o-o 1
3 [2110] −3.08 2.74 8.56 [0113

4 ] [2110] [01
3
1
3
1
2 ]

o-dh [xx01
4 ] 10.99 0.19 −0.61 [1120] [1101

2 ] [1109
4 ]

dh-dh (x− 1
3)[2110] 7.69 4.25 −0.20 [0110] [2110] [0001]

C o-o [0001
2 ] 3.63 3.63 −3.22 orthogonal basal vectors [0001]

o-c 1
6 [2110]] −3.93 1.57 5.19 [0113

4 ] [2110] [01
3
1
3
1
2 ]

o-dh [xx01
4 ] −2.60 0.58 7.28 [110

√
3
8 ] [110

√
27
8 ] [1120]

h-c [01
6
1
6
1
4 ] 3.02 −0.68 4.45 [2110] [01

6
1
6
1
4 ] [0113

4 ]

h-dh (x− 1
3)[1100] 7.59 1.07 −1.01 [1120] [1100] [0001]

N o-o [0001
2 ] 2.58 2.58 −1.16 orthogonal basal vectors [0001]

o-c 1
6 [2110]] −4.08 3.23 3.58 [0113

4 ] [2110] [01
3
1
3
1
2 ]

o-h [13
1
301

4 ] −2.08 0.31 4.61 [0.57, 0.57, 0, 0.10] [0.09, 0.09, 0, 0.60] [1120]

h-c [01
6
1
6
1
4 ] 3.72 −4.14 3.94 [2110] [0113

4 ] [01
3
1
3
1
2 ]

O o-o [0001
2 ] 2.37 2.37 1.76 orthogonal basal vectors [0001]

t-t [000(12 − 2z)] 1.97 1.97 −1.67 orthogonal basal vectors [0001]

o-t [13
1
30z] 0.67 1.37 2.07 [0.12, 0.12, 0, 0.60] [0.56, 0.56, 0, 0.12] [1120]

are transformed by 120◦ rotations about the c-axis; call that transformation matrix R. The

dipole tensors for the other two equivalent sites s′ are

Pα(s′) = RPα(s)R
T (12)

where Pα(s) is the representative dipole tensor and R transforms s to s′. Similarly, the dipole
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tensors of all the other sites are calculated using their associated transformation matrices.

The same operations are carried out for all the transition state dipole tensors based on

the symmetry of the transition vectors v. The dipole data in Cartesian basis for all these

equivalent sites and equivalent transitions for B, C, N and O are available in tabular form26.

This dipole tensor data is used to estimate changes in site energies and the changes in

migration barriers of transitions under strain using Eqs. 10 and 11, which are inputs to the

elastodiffusion tensor calculations.

V. ELASTODIFFUSION TENSOR

Strain affects the diffusivity of solutes by changing the jump vectors and migration bar-

riers of the diffusion network. The first order strain dependence of diffusivity is represented

with the elastodiffusion tensor11,13–15d

dijkl =
∂Dij

∂εkl
, (13)

and is derived using perturbation theory11,12. The contribution dgeom to the elastodiffusion

tensor from the changes in jump vectors is11

dgeomijkl =
1

2
(Djk(0)δil +Dil(0)δjk +Dik(0)δjl +Djl(0)δik), (14)

where δij are the Kronecker deltas. Hence, if the diffusivity has Arrhenius temperature

dependence, then so does the geometric term in the elastodiffusion tensor. The contribution

dmb from changes in the migration barriers is determined by the elastic dipole tensors of

the migration barriers and sites. The elastic dipole tensor of a transition state relative to

initial site determines the rate of that transition under strain and the elastic dipole tensor

of interstitial site determine the occupation probability of that site under strain. The term

dmb is the sum of contributions from each transition; these contributions are proportional

to the product of the inverse temperature, transition rate, and difference of transition state

dipole and thermal average dipole of interstitial sites. The contribution from one transition

can be represented as
d0
kBT

· exp(−E/kBT ) (15)

where the elastic dipole terms are absorbed in the “prefactor” d0, which has units of eV ·

m2s−1, and E is the barrier of the dominant transition.
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TABLE V. The fitting parameters d0 and E in Eqn. 15 for the components of the B, C, N, and

O elastodiffusion tensor in Mg over 300–923K. The elastodiffusion tensor in Voigt notation has six

unique components in an hcp crystal, where d66 = (d11 − d12)/2. A subset of components change

sign with temperature; their transition temperature is listed in lieu of fitting parameters (c.f., Fig. 5

for the temperature dependence). The “activation barrier” E corresponds closely to the migration

barrier of the dominant transition. The d12 and d33 components for B, all diagonal components for

C, and d44 and d66 for N and O are negative throughout the temperature range (i.e. have negative

d0). The negative d0 implies that the increase in diffusivity caused by lowered migration barriers

is greater than the decrease in diffusivity due to reduced jump vectors under compressive strains.

For d44 of B, the geometric contribution is dominant and is best described with an Arrhenius fit

of 1.3× 10−6m2/s · exp(−0.74/kBT ).

B C N O

d0(eVm2s−1) E(eV) d0(eVm2s−1) E(eV) d0(eVm2s−1) E(eV) d0(eVm2s−1) E(eV)

d11 (854.7K) −3.0× 10−8 0.91 (398.4K) (900.9K)

d12 −2.9× 10−6 0.74 5.0× 10−8 0.94 2.5× 10−6 1.04 (678.0K)

d13 5.6× 10−6 0.74 2.0× 10−6 1.05 2.9× 10−6 1.05 (552.5K)

d31 5.5× 10−6 0.90 2.2× 10−6 1.12 1.8× 10−6 1.04 (865.8K)

d33 −5.3× 10−6 0.90 −3.3× 10−7 1.10 3.9× 10−6 1.05 (409.8K)

d44 1.5× 10−7 0.78∗ −9.7× 10−7 1.11 −1.2× 10−6 1.04 −1.0× 10−8 0.65

d66 1.5× 10−6 0.74 −4.0× 10−8 0.93 −9.3× 10−7 1.03 −5.0× 10−8 0.68

The symmetry of the hexagonal closed-packed crystal reduce the number of unique elasto-

diffusion components to six. We use Voigt notation, similar to elastic constants, to represent

the indices of the fourth rank tensor as both diffusivity and strain are symmetric second

rank tensors. The reduction by symmetry is the same as the elastic constants, except that

dij is not necessarily equal to dji. In the case of hcp, the non-zero elastodiffusion elements

are d11 = d22, d33, d12, d13 = d23, d31 = d32, d44 = d55, and d66 = (d11 − d12)/2. The change

in jump vectors contributes only to d11, d33, d44, and d66. Unlike the contribution from the

change in jump vectors, the change in migration barrier can contribute to all six independent

components of elastodiffusion tensor and need not only be positive.

Table V shows that the contribution dmb dominates over the contribution dgeom due to the
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relatively larger values of elastic dipole tensor components compared to kBT (see eqn. 15) for

all the temperatures between 300–923K. However, the contribution dgeom is greater than the

contribution dmb for the d44 component for B due to larger transition rate of o-o transition

in basal plane and for the d11 component for B and O at temperatures above crossover

(discussed in the later paragraph). Equation 15 is used to fit the elastodiffusion component

because of the larger contribution from dmb over dgeom and also due to the dominant transition

for each solute. The fitting parameter E in Table V corresponds to the migration barrier

of the dominant transition. These dominant transitions under strain is same as that in the

unstrained crystal, except for the basal components d11, d12 and d66 for C which are now

dominated by the h-dh transition. The remaining basal component d13 of C is governed by

o-c transition and the basal components (d12, d13 and d66) and d44 of B are governed by

o-o(b)transition. The non-basal components (d31 and d33) are governed by o-dh transition

for both B and C. The isotropic o-t transition is dominant for all the components for O,

and in N, both o-h and h-c transitions, which have similar migration barriers, contribute to

elastodiffusion components.

Figure 5 shows that five of the elastodiffusion components for oxygen change sign (fewer

for B, and N) due to the small energy separation from the ground state and the metastable

states, while for B, C, and N the energy separation is significant. The change in sign from

positive (filled symbol) to negative (unfilled symbol) is observed as dips in the logarithm

of the magnitude of d and the associated crossover temperature is listed in parenthesis

in Table V for these components. The sign inversion of these components is due to the

competing mechanism dominating over different temperature which we observe as different

slopes on opposite side of crossover. The sign inversion of d12, d13, d31, and d33 for O is due to

the large variation in thermally averaged elastic dipole tensor of sites, which occurs because

of the low energy separation of 0.21 eV between o and t sites. The difference between the

transition state dipole and the thermally averaged dipole contributes to the elastodiffusion

component sign changes with temperature as the o and t sites have different elastic dipoles.

However, for d11 for B and O, the sign inversion is due to the competition between the

negative contribution of dmb and positive contribution of dgeom, where the former dominates

below the crossover temperature (due to smaller value of kBT compare to dipole tensor, c.f.

Eqn. 15) and the latter dominates above the crossover temperature. For the component d11

of N, sign inversion is due to the o-c transition dominating above the crossover temperature
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d11 d12 d13 d31 d33
positive

negative

FIG. 5. (color online) Components of the elastodiffusion tensor d that change sign as a function of

temperature, for B, N, and O. The magnitudes of each component are shown with filled symbols

for positive values and unfilled for negative values. For a component, changes of sign is observed

as a dip in the curve and the crossover temperatures is listed in Table V. The sign inversion

of these components is caused by two competing mechanisms, which dominate at either low or

high temperatures. Five components of the elastodiffusion tensor for O change sign, and each

component has a different crossover temperature.

while the o-h transition dominates below the crossover. The sign inversion behavior of

different components suggest that the diffusivity under strain will have contrasting features

around a specific temperature which we observe for the activation volume of diffusion and

for the effect of thermal expansion on diffusion.

Activation volume of diffusion

The elastodiffusion tensor together with the elastic compliance tensor computes the ac-

tivation volume of diffusion. The activation volume of diffusion Vij describes the pressure p

dependence of diffusivity as

Dij(p) = Dij(0) · exp(−pVij
kBT

), (16)
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FIG. 6. (color online) Activation volume for basal diffusion Vb and c-axis diffusion Vc, relative to

the Mg atomic volume Ω = 22.84 Å3 per atom as a function of temperature for B, C, N and O. For

both basal and c-axis diffusion, the activation volume of O is isotropic and negative below 740K

while it remains positive for B, C and N. The activation volume for all the solutes increases with

increasing temperatures, in part, as the elastic constants soften as temperature increases29. This

increase is ∼14% for basal activation volume and ∼15% for c-axis activation volume for all the

solutes at 923K.

where Dij(0) is the diffusivity tensor components at zero pressure. The activation volume

is calculated using

Vij = −(Dij(0))−1kBT
∂Dij

∂p

∣∣∣∣
p=0

= (Dij(0))−1kBT
∑
kl

dijkkSkkll

(17)

where d is the elastodiffusivity tensor and S is the elastic compliance tensor. In the case of

interstitial diffusion, the activation volume is equal to the migration volume of a jump: the

volume change between the transition state and initial state28.

Figure 6 shows that the activation volume for O diffusion is isotropic and negative below

740K, which leads to an increase in basal and c-axis diffusivities under hydrostatic pressure.

The activation volumes for B, C and N diffusion remain positive throughout the tempera-

ture range, with N having the largest activation volume. For O diffusion below 740K, the

dominating t-o transition has negative migration volume, while the dominating transitions

for the diffusion of other solutes have positive migration volumes. Negative activation vol-
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ume has also been observed experimentally for C diffusing in hcp-Co30 and in α-Fe31, and

their magnitudes are comparable to the activation volume computed for O diffusion in Mg.

Due to the temperature-induced softening of the elastic constants29, the activation volume

of basal and c-axis diffusion increases by ∼14% and ∼15% from 300K to 923K for all four

solutes.
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FIG. 7. (color online) Change in basal and c-axis diffusivity due to thermal strain, relative to the

strain free diffusivity for B, C, N and O. The thermal strain is nearly isotropic and linear over the

entire temperature range, to a maximum value of 2% at the melting temperature of 923K. The

effect of thermal expansion is largest for N, for which the diffusivity doubles approaching melting,

and smallest for O. Below 740K, O diffusivity decreases relative to its strain free diffusivity—due

to the negative activation volume—unlike the other three solutes.

Thermal expansion effect on diffusion

Figure 7 shows that thermal expansion increases the diffusivity of B, C and N, but

decreases the diffusivity of O up to 740K. The fit of experimental thermal expansion data

to temperature32 is used to estimate thermal strain. Thermal expansion is nearly isotropic

in the temperature range 300K to 923K, reaching a maximum value of 2%. For B, C and N,

both basal and c-axis diffusivities increase upon thermal expansion, with N experiencing the

largest effect of more than 100% increase in diffusivity at T > 816K. Under thermal strain,

O diffusion remains isotropic due to the dominating t-o transitions which contribute equally
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to diffusion in the basal plane and along the c-axis. Above 740K the O diffusivity is greater

compared to its strain free diffusivity as expected due to thermal expansion. However, below

740K the O diffusivity is lower compared to its strain free diffusivity. This non-montonic

behavior of O diffusivity with thermal expansion is due to the sign inversion of five of the

elastodiffusion tensor components.

VI. CONCLUSION

We determine the stable interstitial sites, migration barriers, diffusivities, and elasto-

diffusion tensors for B, C, N and O in Mg. We find a new stable distorted hexahedral site

that B and C can occupy in Mg. Analytical expressions for interstitial diffusion in bulk

hcp crystals are derived for the networks of interstitial sites. Diffusion of O is isotropic due

to dominating isotropic t-o transitions while B and C have faster basal diffusion compared

to c-axis diffusion and N have slower basal diffusion compared to c-axis diffusion. This

shows that diffusion depends on the diffusion network formed by sites and their energetics,

which varies from solute to solute. The elastodiffusion tensor captures the effect of strain

on diffusivity by summing the contributions from changes in jump vectors and changes in

migration barriers. For B, C, N and O in Mg, the contribution to elastodiffusion compo-

nents due to changes in migration barriers dominates over the contribution from changes

in jump vectors with a few exceptions. There are a few elastodiffusion components which

change sign at crossover temperature due to competing mechanisms. In the case of O, five

of the elastodiffusion components change sign, which leads to negative activation volume

below 740K and decreased diffusivity upon thermal expansion. This behavior of O as an

interstitial defect is counterintuitive because interstitial diffusivity is expected to decrease

under compression as transition states are usually “smaller.” We see that N in its ground

state (octahedral) contracts the crystal upon relaxation while it has the positive activation

volume; O in its ground state (tetrahedral) expands the crystal on relaxation while hav-

ing a negative activation volume. This shows that elastic dipole tensor of transition states

plays a vital role along with the energetics of sites. Our study of interstitial solute diffusion

under strain can be extended for other crystal structures and interstitial defects. Finally,

understanding interstitial solute kinetics under strain can be helpful in studying the solute

diffusivity in the heterogeneous strain fields due to dislocations or other defects.
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