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ABSTRACT 

A fluctuational electrodynamics-based formalism for calculating near-field radiative heat transfer 

between objects of arbitrary size and shape and an infinite surface is presented. The surface 

interactions are treated analytically via Sommerfeld’s theory of electric dipole radiation above an 

infinite plane. The volume integral equation for the electric field is discretized using the thermal 

discrete dipole approximation (T-DDA). The framework is verified against exact results in the 

sphere-surface configuration, and is applied to analyze near-field radiative heat transfer between 

a complex-shaped probe and an infinite plane both made of silica. It is found that when the probe 

tip size is approximately equal to or smaller than the gap d separating the probe and the surface, 

coupled localized surface phonon (LSPh)-surface phonon-polariton (SPhP) mediated heat 

transfer occurs. In this regime, the net spectral heat rate exhibits four resonant modes due to 

LSPhs along the minor axis of the probe while the net total heat rate in the near field follows a d -

0.3 power law. Conversely, when the probe tip size is much larger than the separation gap d, heat 

transfer is mediated by SPhPs resulting in two resonant modes in the net spectral heat rate 

corresponding to those of a single emitting silica surface while the net total heat rate approaches 

a d -2 power law. It is also demonstrated that a complex-shaped probe can be approximated by a 
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prolate spheroidal electric dipole when the thermal wavelength is larger than the major axis of 

the spheroidal dipole and when the separation gap d is much larger than the radius of curvature 

of the dipole tip facing the surface.  

I. INTRODUCTION 

Near-field radiative heat transfer between arbitrarily-shaped objects and a surface is of 

importance in many engineering applications such as near-field thermal spectroscopy and 

imaging [1-4], tip-based nanomanufacturing [5-7] and localized radiative cooling [8]. An 

analytical solution for this type of problem is only available for the case of a single sphere above 

an infinite plane [9,10]. An expression for the radiative heat flux between two arbitrarily-shaped 

objects, including surfaces, written in terms of reflection and transmission matrices has been 

derived using a scattering-matrix approach [11,12]. However, an explicit closed-form solution 

for the radiative heat flux has been provided only for the case of two slabs [12]. Simplified 

formulations, namely the proximity and electric dipole approximations, have been used to model 

experiments involving a micro/nanosized object and a large surface exchanging thermal radiation 

[1,3,4,13-16]. The proximity approximation is valid when the object size is much larger than its 

distance relative to the surface and when the object is optically thick [17,18]. When these 

conditions are satisfied, the heat rate between the object and the surface can be modeled as a 

summation of local heat rates between two parallel planes [15]. The electric dipole 

approximation is valid when the size of the object is much smaller than the thermal wavelength 

and its distance relative to the surface. Various electric dipole formulations have been proposed 

for modeling near-field thermal interactions between a small object and a surface. These 

formulations include a spherical dipole above a flat [19] and a structured [20] surface, a spherical 

dipole with dressed polarizability above a flat surface [16], and a spheroidal dipole above a flat 
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surface [21]. An upper limit for the near-field radiative heat transfer between a dipole and a 

surface has been derived in Ref. [22]. These simplified models are however valid under limiting 

conditions that are often not satisfied in actual experiments. Accurate modeling of near-field 

radiative heat transfer between arbitrarily-shaped objects and a surface that does not rely on 

simplified formulations and fitting parameters can be done via numerical methods. So far, the 

finite-difference frequency-domain (FDFD) method [23], the finite-difference time-domain 

(FDTD) method [24,25], the boundary element method (BEM) [26], the thermal discrete dipole 

approximation (T-DDA) [18,27] and a fluctuating volume-current method [28] have been 

applied to numerical simulation of near-field thermal radiation problems. The FDFD and FDTD 

are based on discretizing the differential form of Maxwell’s equations. These methods are 

typically computationally expensive as they require discretization of the free space in addition to 

the objects. In the BEM, the surface integral form of Maxwell’s equations is discretized such that 

this approach is difficult to apply to inhomogeneous media. The T-DDA and the fluctuating 

volume-current method are based on discretizing the volume integral form of Maxwell’s 

equations and can thus handle easily inhomogeneous media. Yet, these numerical approaches are 

difficult to apply to multi-scale problems involving a surface and micro/nanosized objects due to 

the prohibitive calculation time associated with discretizing a surface that is many orders of 

magnitude larger than the objects. The only numerical formulation capable of handling nontrivial 

geometries and an infinite surface is a combination of a scattering-based approach and the BEM 

[29].  

In this paper, a framework for modeling near-field radiative heat transfer between objects and an 

infinite surface is provided. The formalism, based on fluctuational electrodynamics [30], is 

independent of the size, shape and number of objects. The volume integral equation for the 
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electric field derived from fluctuational electrodynamics is discretized using the thermal discrete 

dipole approximation (T-DDA) [18,27,31]. The interactions between the objects and the surface 

are treated analytically using Sommerfeld’s theory of electric dipole radiation above an infinite 

plane [32]. This approach, also used in the discrete dipole approximation literature for predicting 

light scattering by particles on or near a surface [33-40], does not necessitate discretization of the 

surface. The T-DDA with surface interaction is afterwards applied to study near-field radiative 

heat transfer between a probe and a surface. Understanding the thermal interactions in the probe-

surface configuration is of interest in near-field thermal spectroscopy where two independent 

experimental studies reported resonance redshift of the scattered thermal near field [3,4]. 

McCauley et al. [29] analyzed the total heat rate between a conically-shaped probe and an 

infinite surface as well as the spatial distribution of power absorbed within the surface. The total 

heat rate between a cone and a disk was also modeled by Rodriguez et al. [41]. Kim et al. [42] 

investigated the validity of fluctuational electrodynamics in the extreme near field by measuring 

the heat rate between a dull probe and a surface. The probing tip was modeled as a hemisphere 

for which the heat rate could also be obtained via the proximity approximation. Kloppstech et al. 

[43] modeled the total heat rate between a conically-shaped probe with a hemispherical tip and a 

finite-sized surface for comparison against near-field scanning thermal microscope 

measurements. In this work, the spectral and total heat rate between a probe with a tip size 

smaller than, approximately equal to, and larger than the separation gap is studied for the first 

time. The validity of the spheroidal electric dipole approximation for predicting near-field 

radiative heat transfer between a probe and a surface is also discussed.  

The paper is organized as follows. The framework for calculating near-field radiative heat 

transfer between arbitrarily-shaped objects and a surface is presented in Section II. In Section III, 
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the T-DDA with surface interaction is verified against the exact solution of heat rate between a 

sphere and a surface. Near-field radiative heat transfer between a probe and a surface is analyzed 

in Section IV. Concluding remarks are then provided.  

II. DESCRIPTION OF THE FRAMEWORK 

A. Volume integral equation for the electric field 

The formalism described hereafter is based on fluctuational electrodynamics, and is thus valid 

for heat sources in local thermodynamic equilibrium. The problem under consideration is shown 

in Fig. 1, where radiative heat transfer between objects submerged in vacuum and an infinite 

surface is to be calculated. The vacuum, the surface and the objects are referred to as medium 0, 

1 and 2, respectively. It is assumed that the objects of arbitrary number, shape and size occupy a 

total volume V2 and are isotropic, linear and nonmagnetic. Individual objects may have different, 

inhomogeneous temperatures T2 and frequency-dependent dielectric functions ε2 local in space. 

The surface, of volume V1 and uniform temperature T1, is assumed to be isotropic, linear, 

nonmagnetic and is characterized by a homogeneous dielectric function ε1 local in space. 

Illumination by external sources such as laser irradiation or thermal emission by the 

surroundings (i.e., the thermal bath) is modeled via an incident electric field Einc. The incident 

electric field can originate from above or below the surface. The electric field thermally emitted 

by the surface into the vacuum of volume V0 is denoted by Esur.  

The net radiative heat rate between the objects and the surface is derived from the stochastic 

Maxwell equations, where a fluctuating current Jfl representing thermal emission is added to 

Ampère’s law [30]. The ensemble average of the fluctuating current is zero, while the ensemble 
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average of the spatial correlation function of the fluctuating current is related to the local 

temperature of a heat source via the fluctuation-dissipation theorem [30]:  

J fl ′r ,ω( ) ⊗ J fl ′′r , ′ω( ) =
4ωε0 ′′ε

π
Θ ω ,T( )δ ′r − ′′r( )δ ω − ′ω( )I   (1) 

where ⊗  denotes the outer product, I  is the unit dyadic, ε0 is the electric permittivity of 

vacuum, ′′ε  is the imaginary part of the dielectric function of the heat source and Θ(ω,T) is the 

mean energy of an electromagnetic state given by .  

The electric field everywhere above the surface satisfies the following vector wave equation 

derived from the stochastic Maxwell equations [18,31]:  

200
2
0 ),      ,(),(),( VVik ∪∈=−×∇×∇ rrJrErE ωωμωω  (2) 

where k0 and μ0 are the magnitude of the wavevector and the magnetic permeability of vacuum, 

respectively, i is the complex constant and r is the position vector where the fields are observed in 

V0 ∪ V2. The current J in Eq. (2) is an equivalent source function generating fluctuating and 

scattered electric fields: 

( ) 2202 ),      ,(1)(),(),( Vifl ∈−−= rrErrJrJ ωεωεωω   (3) 

where the subscript 2 in  specifies that the fluctuating current is in V2. Note that the current J 

vanishes in V0.  

J2
fl
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The solution of the inhomogeneous linear differential equation (2) is the sum of the solution of 

the homogeneous equation and a particular solution of the inhomogeneous equation. The 

homogeneous vector wave equation is given by:  

( ) ( ) 20
2
0 ,      ),(),(),(),( VVk surincsurinc ∪∈=+−+×∇×∇ r0rErErErE ωωωω   (4) 

The solution of Eq. (4) provides the electric field that would exist above the surface in the 

absence of objects. This electric field is comprised of two components, namely the incident field 

Einc and the surface field Esur. The surface field is generated by fluctuating currents in V1, J1
fl , 

and its expression is given by: 

Esur (r,ω ) = iωμ0 G
T

(r, ′r ,ω ) ⋅ J1
fl ( ′r ,ω )d 3 ′r

V1

∫ ,      r ∈V0 ∪V2   (5) 

where G
T

 is the transmission dyadic Green’s function (DGF) relating the field observed at r  in 

V0 ∪ V2 to a source point ′r  located in V1 [44,45]. The expression for the incident field must 

satisfy Eq. (4) and depends on the external radiation source.    

The particular solution of Eq. (2) is the sum of the fluctuating and scattered electric fields 

generated by the current J. The fluctuating and scattered fields are obtained using DGFs relating 

the electric field observed at r to a source located at r ′ , as shown in Fig. 2, when both r and r ′  

are located above the surface in V0 ∪ V2:  

Esca (r,ω ) + E fl (r,ω ) = iωμ0 G(r, ′r ,ω ) ⋅ J( ′r ,ω )d 3 ′r
V2

∫ ,      r ∈V0 ∪V2   (6) 



8 
 

The DGF G  is comprised of two components. The first component is the free space DGF, G
0

, 

that accounts for the electric field generated at r due to direct radiation by the source J located at 

r ′  in the absence of the surface. The second component is the reflection DGF, G
R

, representing 

the electric field generated at r due to radiation by the source J located at r ′  after reflection by 

the surface.  

The volume integral equation for the total electric field in V0 ∪ V2 is obtained by adding the 

incident and surface fields to Eq. (6): 

E(r,ω ) = iωμ0 G
0

(r, ′r ,ω ) + G
R

(r, ′r ,ω )⎛
⎝⎜

⎞
⎠⎟

⋅ J( ′r ,ω )
V2

∫ d 3 ′r

                                                            + Einc (r,ω ) + Esur (r,ω ),      r ∈V0 ∪V2

 (7) 

The magnetic field in V0 ∪ V2 can be obtained from Eq. (7) using Faraday’s law.   

The solution of Eq. (7) provides the electric field in V2 from which heat transfer is calculated. An 

analytical solution of Eq. (7) only exists for a single sphere above an infinite surface [9,10]. For 

arbitrarily-shaped objects, numerical approaches should be considered. Here, the T-DDA 

[18,27,31] is used for solving Eq. (7) and thus for computing radiation heat transfer.  

B. Radiative heat transfer calculations with the thermal discrete dipole approximation (T-

DDA) 

The T-DDA formulation is initiated by discretizing V2 into N cubical subvolumes. The size of the 

subvolumes must be smaller than all characteristic lengths of the problem, namely the wavelength 

in V2 and vacuum as well as the object-object and object-surface separation distances. In addition, 

the subvolume size must be small enough to represent accurately the object shape via a cubical 
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lattice. When these conditions are fulfilled, the electric field, the DGFs and the electromagnetic 

properties can be assumed uniform inside a given subvolume. Under the approximation of uniform 

electric field, it is possible to conceptualize the subvolumes as electric point dipoles. The total 

dipole moment associated with a subvolume i of volume ΔVi is related to the equivalent current via 

pi = (i / ω ) J( ′r ,ω )d 3 ′r
ΔVi
∫ . The discretized volume integral equation for the electric field (7) can 

thus written in terms of dipole moments as follows:  

1
α i

pi −
k0

2

ε0

Gij

0

⋅p j
j≠i
∑ −

k0
2

ε0

Gij

R

⋅p j
j
∑ = 3

(ε2,i + 2)
1

α i
CM pi

fl + Ei
inc + Ei

sur  (8) 

where the DGFs Gij

0
 and Gij

R
 are evaluated between the center points of subvolumes i and j. The 

total dipole moment pi is the sum of two contributions, namely an induced dipole moment 

pi
ind = ΔViε0 (ε2,i −1)Ei  and a thermally fluctuating dipole moment fl

ip  = (i / ω ) J2
fl ( ′r ,ω )d 3 ′r

ΔVi
∫ . 

Using this last expression in combination with the fluctuation-dissipation theorem (1), the 

ensemble average of the spatial correlation function of fluctuating dipole moments can be 

expressed in terms of the local temperature of the medium [18]. The terms α i
CM  and α i  are the 

Clausius-Mossotti and radiative polarizabilities given by:  

α i
CM = 3ε0ΔVi

ε2,i −1
ε2,i + 2

  (9) 

α i =
α i

CM

1− (α i
CM / 2πε0ai

3)[eik0ai (1− ik0ai ) −1]
  (10) 
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where ai is the radius of a sphere of volume ΔVi. The application of Eq. (8) to all N subvolumes in 

V2 results in a system of equations that can be written in a matrix form:  

A + R( ) ⋅P = E
fdt

+ E
inc

+ E
sur

 (11) 

where 
fdt

E  and 
sur

E  are 3N stochastic column vectors containing the first term on the right-hand 

side of Eq. (8) and the surface field, respectively, while 
inc

E  is the 3N deterministic column vector 

containing the incident field. The term P  is the 3N stochastic column vector containing the 

unknown total dipole moments of the subvolumes. The matrix A  is the 3N by 3N deterministic 

interaction matrix which is composed of submatrices ijA  representing the direct interaction 

between subvolumes i and j in the absence of the surface. A submatrix Aij , obtained from the free 

space DGF, is calculated using the following expressions when i ≠ j :  

Aij = Cij

βij + γ ij r̂ij ,x
2 γ ij r̂ij ,xr̂ij ,y γ ij r̂ij ,xr̂ij ,z

γ ij r̂ij ,y r̂ij ,x βij + γ ij r̂ij ,y
2 γ ij r̂ij ,y r̂ij ,z

γ ij r̂ij ,z r̂ij ,x γ ij r̂ij ,z r̂ij ,y βij +γ ij r̂ij ,z
2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (12) 

where r̂ij ,α =
rij ,α

rij

 (α = x, y, z)  (13) 

Cij = −
k0

2

4πε0

eik0rij

rij

  (14) 

βij = 1− 1
(k0rij )

2 + i
k0rij

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
  (15) 
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γ ij = − 1− 3
(k0rij )

2 + 3i
k0rij

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
  (16) 

In Eqs. (13) to (16), rij is the magnitude of the distance vector between subvolumes i and j. When i 

= j, the submatrix Aii  represents the self-interaction of subvolume i in the absence of surface and 

its expression is given by    (1/ α i )I .  

The term R  in Eq. (11) is the 3N by 3N deterministic reflection-interaction matrix that contains 

submatrices ijR  representing the interaction between subvolumes i and j due to reflection by the 

surface. A submatrix ijR  is obtained from the reflection DGF [35,46]: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−+

+−
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−−
+−−

−+−

+
−=

V
z

V
yij

V
xij

V
yij

H
xij

H
yij

HH
yijxij

V
xij

HH
yijxij

H
yij

H
xij

zijIijIijIzijIyijIijIzijIxijIijI

zijIyijIijIyijIijIijIyijIxijIijI

zijIxijIijIyijIxijIijIxijIijIijI

ijIij

III
IIIII
IIIII

rrrrr
rrrrr
rrrrr

C

ρρ

ρϕρϕρ

ρϕρϕρ

ρρ
ρρρρρ
ρρρρρ

πε

γβγγ
γγβγ
γγγβ

ε
ε
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,
2
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2
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2
,

2
,

0

2
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2

,,,,,,,,,

,,,,,,,,,,
2
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ˆ)(ˆˆˆˆ

4
1

)ˆ(ˆˆˆˆ
ˆˆ)ˆ(ˆˆ
ˆˆˆˆ)ˆ(

1
1R

 (17) 

where the subscripts x, y, and z indicate vector components in Cartesian coordinates, while the 

subscripts  ρ, φ, and z refer to vector components in cylindrical coordinates. The parameters α,,ˆ ijIr , 

CI,ij, βI,ij, and γI,ij are defined in the same manner as in Eqs. (13) to (16), except that rij is replaced 

by rI,ij, which corresponds to the distance between subvolume i and the image of subvolume j 

within the surface. In Eq. (17), αρ ,ˆ ij
ij

ij

ρ
αρ ,=  (α = x, y), where ρij is the distance vector between 
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subvolumes i and j along the surface ( =ijρ x̂)( ji xx − ŷ)( ji yy −+ ). The terms VIρ , V
zI , HI ρ , and 

HIϕ  are defined as: 

00
2

1

2

Vk
z

I V ′
∂∂

∂=
ρρ   (18) 

00
2

1
2
02

2

Vkk
z

I V
z ′⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂=  (19) 

00
2
000

2
02

2

UkVkI H ′+′
∂
∂=
ρρ  (20) 

00
2
000

2
0

1 UkVkI
ij

H ′−′
∂
∂−=
ρρϕ  (21) 

where k1 is the magnitude of the wavevector in V1, while 00V ′  and 00U ′  are the Sommerfeld 

integrals given by: 

′V00 = 2i 1
k1

2kz0 + k0
2kz1

− 1
kz0(k1

2 + k0
2 )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥0

∞

∫ eikz 0 zi +z j( )J0 (kρρij )kρdkρ  (22) 

′U00 = 2i 1
kz0 + kz1

−
k0

2

kz0(k1
2 + k0

2 )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥0

∞

∫ eikz 0 zi +z j( )J0 (kρρij )kρdkρ  (23) 

In Eqs. (22) and (23), J0 is the zeroth-order Bessel function of the first kind, while kρ and kzj are the 

wavevector components parallel and perpendicular to the surface, respectively. Note that the 

parallel component of the wavevector is a complex number, such that the Sommerfeld integrals are 

evaluated in the complex plane [46]. The z-components of the position vectors (i.e., zi and zj) are 

calculated relative to the surface. Evaluation of the Sommerfeld integrals involves complex 
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integration of multivalued functions kzj (= ( k j
2 − kρ

2 )1/2). Multivalued functions are represented in 

the complex plane via Riemann surfaces [47]. In order to perform the integration of a multivalued 

function, it is necessary to perform branch cuts such that the problem reduces to the integration of 

a single valued function on a single branch of the Riemann surface. Once branch cuts are 

performed, it is necessary to define the path of the integration. The integration path should avoid 

the poles of the function to be integrated and should not cross branch cuts in order to stay on a 

single branch of the Riemann surface. The integration path is not unique and is selected to ensure a 

fast convergence of the function to be integrated. In this work, the techniques and FORTRAN 

subroutines developed by Lager and Lytle [48,49] are used for calculating the Sommerfeld 

integrals.  

The submatrix ijR  given by Eq. (17) represents the electric field intercepted by subvolume i due to 

emission by subvolume j after reflection at the surface. Mathematically, spherical waves emitted 

by subvolume j are expressed using Eqs. (22) and (23) as the product of cylindrical waves 

propagating parallel to the surface (Bessel function) and plane waves propagating along the z-

direction (exponential term). Only the plane wave component interacts with the surface. In the 

static limit or when the surface is a perfect electric conductor, ijR  can be obtained from the image 

theory using the direct interaction between subvolume i and the image of subvolume j, with dipole 

moment ( )zyx ˆˆˆ
1
1

1

1
jzjyjx ppp +−−

+
−

ε
ε , within the surface [50]. The image contribution corresponds 

to the first term on the right-hand side of Eq. (17). In this paper, the general case where ijR  is 

calculated from Eq. (17) is considered.  
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The net spectral heat rate between the surface and the objects is defined as Qnet ,ω  = 

Qabs,ω ,1i −
i
∑ Qabs,ω ,i1

i
∑ , where   

Qabs,ω ,1i  is the spectral power absorbed by subvolume i due to 

thermal emission by the surface and vice-versa for Qabs,ω ,i1 , while  denotes a time average. 

Using reciprocity, the net spectral heat rate can be expressed solely in terms of   
Qabs,ω ,1i : 

Qnet ,ω = Qabs,ω ,1i

Θ ω ,T2i( )
Θ ω ,T1( ) −1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i

∑  (24) 

where T2i is the temperature of subvolume i. The power absorbed Qabs,ω ,1i  is calculated from the 

induced dipole moments as follows: 

ind
i

ind
iiiabs kQ pp ⊗⎟

⎠
⎞

⎜
⎝
⎛ −= − tr

3
2])Im[(

2
3
0

*1
1,, αω

ω  (25) 

where ergodicity is assumed [51]. Note that when calculating the power absorbed, it is assumed 

that the objects described by V2 are non-emitting and purely absorbing (T2i = 0 K). Yet, thermal 

emission by V2 is accounted for by capitalizing on reciprocity, as shown by Eq. (24). Therefore, 

fl
ip = 0 and pi = ind

ip  for all subvolumes contained in V2. The trace of the autocorrelation function 

of the induced dipole moments in Eq. (25) is obtained directly from the system of equations (11): 

 ( )†RAEEEERAPP 11 )()()()( −− +⋅⊗+⊗⋅+=⊗
sursurincinc

 (26) 

where the superscript † indicates the Hermitian operator defined as the conjugate transpose. The 

ensemble average of the spatial correlation function of the surface fields in subvolumes i and j is 

calculated as [52]: 
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( )

ρ

π
ρ ϕ

ω
π

εωμε

ρ dkdttee
kk

k

T

**psizkzki

zz

sur
j

sur
i

ijjziz∫ ∫
∞

⋅−

⎥⎦
⎤

⎢⎣
⎡ ⊗⋅+⊗⋅

′′
×

Θ
′′

=⊗

0

2

0
0011

2

10

2

10
)(

1
2

1

13
1

32
00

)ˆˆ)(ˆˆ(ˆˆ(ˆˆ(

,
8

*
00 pppp)ss)ss

EE

ρk
 (27) 

where ′′kz1  is the imaginary part of kz1, st10  and pt10  are the Fresnel transmission coefficients for 

transverse electric (TE) and transverse magnetic (TM) polarizations, and the azimuthal angle φ is 

measured between the parallel component of the wavevector and the x-axis. The terms ŝ  and p̂  are 

unit vectors oriented along the TE and TM polarizations, respectively [44]. In Eq. (27), the parallel 

component of the wavevector kρ is a real number since the electric field does not vary along the x- 

and y-directions for an emitting infinite surface.  

Once the dipole moment correlation matrix is computed with Eq. (26), the power absorbed in 

subvolume i ,   
Qabs,ω ,1i , and the net heat rate between the objects and the surface,   

Qnet ,ω , are 

respectively calculated with Eqs. (25) and (24).  

As described in this section, the T-DDA formalism only involves numerical approximations. 

Therefore, the T-DDA can be considered as numerically exact since the results obtained from this 

method converge to the exact solution in the limit that N → ∞. In the next section, the framework 

is verified against the exact solution of the heat rate between a sphere and a surface. 

III. VERIFICATION OF THE T-DDA WITH SURFACE INTERACTION 

The T-DDA is verified by comparison against the exact solution of the heat rate between a 1.6-

μm-diameter sphere and a surface [10]. The surface and the sphere are both made of silica and 

are maintained at temperatures T1 = 300 K and T2 = 400 K, respectively. The dielectric function 

of silica has been taken from Ref. [53] and is shown in Fig. 3. It is assumed that there is no 
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incident electric field. Figure 4 shows the net spectral heat rate obtained from the exact solution 

and the T-DDA for separation gaps d of 100 nm and 100 μm.  

The convergence of the T-DDA depends strongly on the dielectric function of the discretized 

object [18]. As the dielectric function increases, the wavelength and the decay length of the electric 

field (skin depth) inside the object shrinks. As such, the subvolume size resulting in a converged 

solution decreases as the dielectric function increases. Additionally, a large dielectric function 

negatively affects the T-DDA convergence by amplifying the shape error [18]. Since the dielectric 

function of silica varies significantly with the frequency in the infrared band (see Fig. 3), a 

frequency-dependent nonuniform discretization was used for calculating the net spectral heat rate. 

The number of subvolumes employed for discretizing the sphere varied between 11536 and 33552 

depending on the frequency. The computational time required for performing the simulations 

depends on the number of subvolumes, the separation gap and the discretization scheme (uniform 

or nonuniform discretization). For the case shown in Fig. 4, the computational time varied between 

10 and 250 service units (core-hours) per frequency using Intel Xeon E5-2670 processors with a 

processing speed of 2.60 GHz.  

It can be seen in Fig. 4 that the T-DDA and exact results are in excellent agreement. The locations 

of the resonances and their magnitudes are predicted accurately via the T-DDA. The small 

discrepancy observed for frequencies ranging from 0.1300 eV to 0.1375 eV is due to the fact that 

the dielectric function of silica is large within that spectral band. A better accuracy could be 

obtained by employing a larger number of subvolumes, since the accuracy of the T-DDA increases 

as the subvolume size decreases [18]. Yet, increasing the number of subvolumes within the 

0.1300-0.1375 eV spectral band is not necessary as its contribution to the net total heat rate is 

negligible. The satisfactory results obtained for the case of a sphere, which is one of the most 
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difficult shapes to model with a cubical lattice, demonstrates that the T-DDA can accurately be 

used for modeling arbitrarily-shaped objects. The T-DDA with surface interaction is applied next 

to near-field radiative heat transfer between a complex-shaped probe and a surface.  

IV. NEAR-FIELD RADIATIVE HEAT TRANSFER BETWEEN A PROBE AND A 

SURFACE 

The framework described in Section II is used hereafter to analyze radiative heat transfer between 

a probe and a surface. The probe geometry consists of an assembly of a rectangular cuboid, a 

conical frustum and a cylinder (see Fig. 5). The base and the height of the cuboid have dimensions 

of 57.8 nm and 288.9 nm, respectively. The conical frustum has a height of 3.872 μm, and the 

diameters of its lower and upper bases are 115.6 nm and 1.16 μm, respectively. The cylinder has a 

height of 809.0 nm and a diameter of 1.16 μm. The probe and the surface are both made of silica. 

In all cases, the surface is at a temperature T1 = 300 K while the probe is at T2 = 400 K. For 

simplicity, it is assumed that there is no incident electric field. For far-field simulations (d = 100 

μm), 11113 uniform subvolumes were used to discretize the probe while 13111 nonuniform 

subvolumes were employed for near-field simulations (d = 10 nm). Increasing the number of 

subvolumes beyond these values did not affect the results. The computational time for the probe-

surface configuration varied between 10 and 70 service units per frequency.  

A. Spectral distribution of heat rate and near-field regimes 

Figure 6(a) shows the net spectral heat rate for separation gaps d between the probe and the surface 

of 10 nm, 100 nm and 100 μm. For purpose of comparison, the net spectral heat rate for a sphere 

of same material, volume (diameter of 1.6 μm) and temperature as the probe is reported in Fig. 

6(b). The heat rate profiles exhibit low-frequency (~ 0.06 eV) and high-frequency (~ 0.14 eV) 
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resonances due to surface phonon-polaritons (SPhPs) and localized surface phonons (LSPhs). At 

separation gaps of 100 nm and 100 μm, both the low- and high-frequency resonances of the probe-

surface heat rate are split into two modes, while this splitting is not observed for a 10-nm-thick gap 

as well as in the sphere-surface configuration. The origin of these resonances can be explained by 

first considering the near-field thermal spectrum of the surface in the absence of object, 

characterized by the energy density, as shown in Fig. 7 for distances of 10 nm, 100 nm and 100 

μm. In the near field (10 nm and 100 nm), low- and high-frequency resonances are observed at 

0.0613 eV and 0.1435 eV due to thermal excitation of SPhPs. When losses are small ( ′′ε1 → 0), 

SPhPs are resonantly excited at a flat material-vacuum interface when the real part of the dielectric 

function ′ε1  equals -1 [45]. Here, the high-frequency resonance occurs when ′ε1  = -1, while the 

low-frequency SPhP mode arises when ′ε1  is equal to -0.83 due to non-negligible losses. In the far 

field (100 μm), SPhPs lead to low thermal emission resulting in local minima in the energy density 

profile. Yet, when an object is located at a distance of 100 μm above the surface, low- and high-

frequency resonances arise due to LSPhs supported by the sphere and the probe. The electric 

dipole approximation can be used for estimating these LSPh modes. The power absorbed by an 

electric dipole is proportional to Im(αj), where αj (j = x, y, z) is the dipole polarizability tensor 

given by [54,55]:  
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where ax, ay and az are the dimensions of the dipole along the x-, y- and z-directions. The 

geometrical factors Lj, determined solely from the dipole geometry, satisfy Lj
j=x ,y ,z
∑ = 1 and Lj ≥ 0. 
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For a spherical dipole, Lx = Ly = Lz = 1/3 such that Eq. (28) reduces to the Clausius-Mossotti 

polarizability with resonant enhancement when |ε2 + 2| is minimum. In this limit, LSPh resonances 

are predicted at frequencies of 0.0605 eV and 0.1410 eV, which is in good agreement with the 

resonances of the heat rate for the case of a sphere located 100 μm above the surface (0.0605 eV 

and 0.1400 eV). For the probe, LSPh resonances can be estimated by considering a prolate 

spheroidal dipole having a major axis az equal to the probe length of 4.97 μm. The minor axes ax 

and ay are the same and are equal to 321 nm such that the spheroid and the probe have the same 

volume. For these dimensions, the geometrical factors needed to calculate the polarizability tensor 

are Lx = Ly = 0.495 and Lz = 0.010. Thus, resonant enhancement due to LSPhs for the case of a 

prolate spheroidal electric dipole occurs along the major axis and minor axes when |ε2 + 99| and |ε2 

+ 1.02| are minimum, respectively. In this limit, four resonant modes along the minor axes are 

predicted at frequencies of 0.0575 eV, 0.0615 eV, 0.1325 eV and 0.1450 eV. These predictions are 

in good agreement with the resonant modes of the heat rate profile for a probe located 100 μm 

above the surface.  

As the gap decreases to 100 nm and 10 nm, the heat rate for both the probe and sphere cases 

increases due to the additional contribution of evanescent modes, and particularly due to SPhPs 

supported by the surface. In the near field, the sphere is optically thick and its diameter is much 

larger than the gap distance, such that heat transfer can be approximated as a summation of local 

heat rates between two parallel surfaces with varying gap thicknesses (proximity approximation) 

[15,17]. Consequently, the resonant frequencies of the near-field heat rate profiles are essentially 

the same as the SPhP resonant frequencies of the surface. In the proximity approximation limit, the 

total near-field conductance, which is proportional to the net total heat rate, is calculated as:  
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 (29) 

where  is the local distance between two parallel surfaces and h is the heat transfer coefficient in 

the two-surface configuration that follows a  power law [45] . For a sphere and a surface, Eq. 

(29) results in a d -1 power law for small gaps up to approximately 100 nm [15]. This is shown in 

Fig. 8, where the sphere-surface total heat rate is plotted as a function of the separation gap (10 nm 

to 100 nm).  

The probe-surface spectral heat rate for a 100-nm-thick gap is similar to the far-field profile, where 

both low- and high-frequency resonance splitting mediated by LSPhs along the minor axis of the 

probe is observed. However, when the gap reduces to 10 nm, which is smaller than the probe tip 

size of 57.8 nm, resonance splitting does not occur. Instead, the resonances are aligned with those 

of the sphere-surface configuration in the near field, and thus essentially correspond to SPhP 

modes of the surface. Here, heat transfer is dominated by SPhPs with penetration depth 

approximately equal to the gap size and thus smaller than the probe tip size [56,57]. Consequently, 

the heat rate between the probe and the surface can also be estimated using the proximity 

approximation. For a probe with a flat tip, the total heat rate is expected to follow a d -2 power law 

in the limit that d → 0 since  in Eq. (29) is independent of the surface area A. Near a 10-nm-

thick gap, Fig. 8 shows that the heat rate varies as d -1.5 while a d -0.3 power law is observed around 

a gap size of 100 nm. It can be seen in the inset of Fig. 8 that the heat rate decays as d -1.77 near a 

gap size of 6 nm, such that the d -2 regime is expected to arise at an extremely small gap where the 

validity of fluctuational electrodynamics is questionable. From these results, it is concluded that 

the d -2 regime is reached when the probe tip size is larger than the gap by more than one order of 

magnitude. Note that for a spheroid and a cone above a surface, the integration of Eq. (29) leads to 
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d -1 and log(d -1) power laws, such that these geometries do not represent well the heat rate between 

the probe and the surface in the framework of the proximity approximation.  

To summarize, the decay rate of the probe-surface near-field heat transfer decreases as the gap 

thickness increases. When the gap size is much smaller than the probe tip size, SPhP mediated heat 

transfer between the probe and the surface occurs such that the heat rate follows a power law 

approaching d -2. For gap sizes of the same order of magnitude as or larger than the probe tip size, 

the near-field heat rate is mediated by coupled SPhP and LSPh (along the minor axis of the probe) 

modes, resulting in a decay rate of d -0.3. In the far field, heat transfer between the probe and the 

surface is dominated by LSPhs. The spatial distribution of volumetric heat rate, normalized by its 

maximum value, at the low-frequency resonance is plotted for SPhP (10 nm), coupled SPhP-LSPh 

(100 nm) and LSPh (100 μm) mediated heat transfer in Fig. 9. For 100 nm and 100 μm gaps, the 

first mode of the low-frequency resonance is considered. Note that the spatial distribution of 

volumetric heat rate is shown for a cross-section parallel to the y-z plane passing through the 

central axis of the probe. It is clear from Fig. 9 that as the contribution of SPhPs increases, the heat 

absorbed by the probe is essentially concentrated at its tip. As a final remark, note that the peak 

observed at 0.10 eV in Fig. 6 is due to a local maximum in the imaginary part of the dielectric 

function of silica leading to increased radiation absorption by the object and enhanced contribution 

of frustrated modes in the near field. As the distance between the object and the surface decreases, 

the contribution from this peak decreases and becomes essentially negligible at a gap distance of 

10 nm where the heat rate is dominated by SPhPs.  

B. Validity of the spheroidal electric dipole approximation for modeling near-field radiative 

heat transfer between a probe and a surface 
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The validity of the spheroidal electric dipole model for approximating near-field radiative heat 

transfer between a probe and a surface is analyzed. Note that the spherical electric dipole 

approximation is not considered, as it cannot predicts the splitting of the low- and high-frequency 

resonances of the spectral heat rate profile (see Fig. 6(a)). The net spectral heat rate between an 

electric dipole and a surface is calculated as [19,21]:  
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where αj is the polarizability tensor given by Eq. (28) and r2 is the distance between the centroid of 

the dipole and the surface. Figure 10 shows the net spectral heat rate for the prolate spheroidal 

dipole and probe discussed in Section IV.A at separation gaps d of 10 nm and 100 nm, while the 

net total heat rate is provided in Fig. 11 for gaps ranging from 10 nm to 500 nm. The spheroidal 

electric dipole model predicts low- and high-frequency resonance splitting regardless of the gap 

size. As discussed previously, these four resonances are due to LSPhs associated with the minor 

axes of the prolate spheroidal dipole and are thus independent of the gap size. It can be seen in Fig. 

11 that the total near-field heat rate in the spheroidal dipole approximation is a weak function of 

the gap size. This is due to the fact that the dipole centroid is located at a distance d + az/2 (az = 

4.97 μm) above the surface, such that variations of d by a few tens to a few hundreds of 

nanometers do not significantly affect heat transfer.  

According to Ref. [21], the spheroidal dipole model is expected to provide reliable results when 

the wavelength λ and the gap d is larger than amax = max{ax,ay,az}. Figure 11 however suggests 

that starting at a gap size of approximately 70 nm, where the probe tip size is smaller than the gap 

size, the spheroidal dipole model approximates reasonably well the heat rate between a probe and a 
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surface. In addition, as discussed in Section IV.A, the resonant modes of the probe-surface heat 

rate are well predicted by the spheroidal dipole approximation when heat transfer is mediated by 

coupled SPhPs-LSPhs. For a spheroidal dipole, a more appropriate criterion should require that the 

gap thickness d be much larger than the radius of curvature R of the spheroidal dipole tip facing 

the surface (R = 10.4 nm). When d >> R, multiple reflections between the probe and the surface 

can be ignored. This new criterion assessing the applicability of the spheroidal dipole 

approximation to model the heat rate between a probe and a surface is in line with the results 

observed in Figs. 10 and 11. Yet, the total heat rates obtained for the probe and the spheroidal 

dipole are not in perfect agreement, and some discrepancies can be observed between gaps of 100 

nm and 500 nm. As seen in Fig. 10 at a gap size of 100 nm, the spheroidal dipole model 

overestimates the heat rate associated with the first mode of the high-frequency resonance (0.1325 

eV). This can be explained by the fact that the material wavelength corresponding to that 

frequency is 3.93 μm, which is of the same order of magnitude as the major axis of the spheroid. In 

the SPhP regime, where the probe tip size is larger than the gap size, the spheroidal dipole model 

cannot be used for approximating heat transfer between a probe and a surface, both in terms of 

resonance and total heat rate predictions, since the criterion d >> R is not respected. For this case, 

the proximity approximation can be employed to estimate the heat rate and resonant modes in the 

probe-surface configuration.   

V. CONCLUSIONS 

A general formalism for modeling near-field radiative heat transfer between arbitrarily-shaped 

objects and an infinite surface was proposed. The thermal discrete dipole approximation (T-DDA) 

was used to discretize the volume integral equation for the electric field derived from fluctuational 

electrodynamics, while the surface interactions were treated analytically using Sommerfeld’s 
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theory of electric dipole radiation above an infinite plane. The framework was verified against the 

exact solution of heat rate between a sphere and a surface, and was then applied to near-field 

radiative heat transfer between a complex-shaped probe and a surface both made of silica. The 

study revealed that when the probe tip size is much larger than the separation gap d, surface 

phonon-polariton (SPhP) mediated heat transfer occurs such that the resonances of the heat rate 

correspond essentially to those of a single surface while the total heat rate approaches a d -2 power 

law as d →  0. It was also found that coupled localized surface phonon (LSPh)-SPhP mediated heat 

transfer arises when the probe tip size is approximately equal to or smaller than the separation gap. 

In that case, the spectral heat rate exhibits four resonant modes due to LSPhs along the minor axis 

of the probe while the total heat rate in the near field convergences to a d -0.3 regime. Finally, it was 

demonstrated that a prolate spheroidal electric dipole can approximate reasonably well near-field 

radiative heat transfer between a probe and a surface when the thermal wavelength is larger than 

the major axis of the spheroidal dipole and when the separation gap is much larger than the radius 

of curvature of the dipole tip facing the surface. The framework presented in this paper is not 

restricted to the probe-surface configuration, and can be applied to cases involving an arbitrary 

number of objects with various sizes and shapes above an infinite plane.  
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FIG. 1. (Color online) Schematic representation of the problem under consideration. Objects 

(medium 2) are submerged in vacuum (medium 0) above an infinite surface (medium 1). The 

incident electric field Einc accounts for illumination by external sources, while the surface field 

Esur is the electric field due to thermal emission by the surface. 
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FIG. 2. (Color online) Dyadic Green’s function (DGF) relating the electric field at point r to a 

source located at point r′  in the presence of a surface.  
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FIG. 3. (Color online) Dielectric function of silica obtained from Ref. [53]. 
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FIG. 4. (Color online) Net spectral heat rate between a sphere and a surface for separation gaps d 

of 100 nm and 100 μm obtained with the T-DDA and the exact solution [10]. The sphere is at a 

temperature T2 = 400 K, while the surface is at T1 = 300 K. The sphere and the surface are made 

of silica, and the sphere diameter is 1.6 μm. 
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FIG. 5. (Color online) Radiative heat transfer between a probe and a surface separated by a gap 

of thickness d. The probe is modeled as an assembly of a rectangular cuboid, a conical frustum 

and a cylinder.  
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FIG. 6. (Color online) Net spectral heat rate between (a) a probe and a surface, and (b) a sphere 

and a surface for separation gaps d of 10 nm, 100 nm and 100 μm. The sphere and the probe are 

at temperature T2 = 400 K, while the surface is at temperature T1 = 300 K. The sphere diameter is 

1.6 μm, and the probe dimensions are shown in Fig. 5. The sphere, the probe and the surface are 

made of silica.  
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FIG. 7. (Color online) Spectral distribution of energy density at distances d of 10 nm, 100 nm 

and 100 μm above a silica surface at a temperature T1 = 300 K.  
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FIG. 8. (Color online) Net total heat rate in the near field as a function of the separation gap d for 

the probe-surface and sphere-surface configurations. The sphere and the probe are at T2 = 400 K, 

while the surface is at T1 = 300 K. The sphere diameter is 1.6 μm, and the probe dimensions are 

shown in Fig. 5. The sphere, the probe and the surface are made of silica.  
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FIG. 9. (Color online) Spatial distribution of normalized volumetric heat rate within the probe at 

the low-frequency resonance for gap sizes d of 10 nm, 100 nm and 100 μm. The probe and the 

surface are made of silica. 
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FIG. 10. (Color online) Net spectral heat rate between a probe and a surface for gap sizes d of 10 

nm and 100 nm. Results are compared against the spheroidal electric dipole model. The probe is 

at T2 = 400 K, while the surface is at T1 = 300 K. The probe and the surface are made of silica. 
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FIG. 11. (Color online) Net total heat rate between a probe and a surface as a function of the 

separation gap d. Results are compared against the spheroidal electric dipole model. The probe is 

at T2 = 400 K, while the surface is at T1 = 300 K. The probe and the surface are made of silica. 

 

 


