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The quantum spin Hall effect has been predicted theoretically and observed experimentally in
InAs/GaSb quantum wells as a result of inverted band structures, for which electron bands in
InAs layers are below heavy hole bands in GaSb layers in energy. The hybridization between
electron bands and heavy hole bands leads to a hybridization gap away from k=0. A recent puzzling
observation in experiments is that when the system is tuned to more inverted regime by a gate voltage
(a larger inverted gap at k=0), the hybridization gap decreases. Motivated by this experiment, we
explore the dependence of hybridization gap as a function of external electric fields based on the
eight-band Kane model. We identify two regimes when varying electric fields: (1) both inverted
and hybridization gaps increase and (2) inverted gap increases while hybridization gap decreases.
Based on the effective model, we find that light-hole bands in GaSb layers play an important role
in determining hybridization gap. In addition, a large external electric field can induce a strong
Rashba splitting and also influence hybridization gap.

I. INTRODUCTION

Two dimensional quantum spin Hall (QSH)
insulator1–4 has an insulating band gap and con-
ducting helical edge channels at the boundary, which
consist of two counter-propagating one dimensional
edge modes with opposite spin. The helical edge modes
(HEMs) are protected by time reversal symmetry and
characterized by a Z2 topological invariant. The first
experiment evidence of the QSH effect was identified in
transport measurements of HgTe/CdTe quantum wells4,
for which a 2e2/h conductance was observed in a two-
terminal measurement when the Fermi energy is tuned
into the bulk energy gap. Recently, increasing interests
were attracted to another QSH insulator, the type II
InAs/GaSb quantum wells5–8, because a more robust
2e2/h conductance plateau, which surprisingly persists
up to 10T for an in-plane magnetic field8, was found
in this system. More recent experiments also revealed
strong interaction effect of HEMs (helical Luttinger
liquids)9, presumably due to the small Fermi velocity
in this system. In addition, a strong superconducting
proximity effect between InAs and superconductors10

provides an interesting platform for the study of topo-
logical superconductivity and Majorana zero modes in
this system.

Recent experiments11 by Du’s group on this system
have revealed a puzzling effect about the dependence of
band gap on external gate voltages. To illustrate this
puzzling effect, we first review electronic band structure
of InAs/GaSb quantum wells and then describe the puz-
zling experimental observations in the Sec.II.

The band diagram of AlSb/InAs/GaSb/AlSb QWs is
shown in Fig.1(a), in which the conduction band mini-
mum of InAs layer is 0.15 eV lower in energy than the
valence band maximum of GaSb layer, leading to an in-
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FIG. 1. Sketch figure of band structure for InAs/GaSb quan-
tum well. a) Without external electric field. b) With pos-
itive external electric potential U along z-direction. c) In-
verted band structure with hybridization gap (mini-gap) la-
belled with ∆; Eg = 2M is referred to the inversion gap at Γ
point.
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verted band structure. As a consequence, there is an
anti-crossing between the electron sub-band in the InAs
layers, denoted as |E0〉, and the heavy-hole sub-band in
the GaSb layers, denoted as |HH0〉, due to hybridiza-
tion between them. The anti-crossing energy dispersion
is shown in Fig.1(c), in which the band gap at Γ (k = 0)
is usually known as the inverted band gap, denoted as
Eg = 2M , while the small gap at a finite momentum k,
labeled by ∆, is known as hybridization gap or mini-gap.
The low energy physics for the |E0〉 and |HH0〉 sub-bands
can be captured by a simple four band model3, which is
the standard model to understand the QSH physics in
this system.
This article is organized as follows. In Sec.II, we will

first discuss the puzzling experimental observations of
band gap evolution in this system and analyze the failure
of simple 4-band BHZ model. Based on this analysis, we
introduce the 8-band Kane model to study this problem.
In Sec.III, we present our numerical results for the 8-band
Kane model, from which we obtain an interpretation of
the experimental observations. Furthermore, we map the
Kane model to the BHZ model to clarify the underlying
physics for the band gap evolution. Conclusion is drawn
in Sec.IV.

II. MODEL AND ANALYSIS

The recent transport measurement11 revealed the re-
lation between the inverted gap M and mini-gap ∆ by
independently controlling chemical potentials and asym-
metric potentials in an experimental setup with front and
back gate voltages, as shown in Fig.1(a). In their experi-
ment, they fix the back gate voltage and tune front gate
voltage continuously to reach a charge neutrality point
(CNP), which corresponds to the point with equal elec-
tron and hole density (n0 = p0) and can be dictated by
sign change of the Hall resistance. By fitting the Hall
resistance to a two-carrier model12, carrier densities and
mobilities for both electrons and holes can be extracted.
By tuning back gate voltage, it is shown that electron
density n0 at CNP can reduce from 9 × 1010 cm−2 to
5 × 1010 cm−2, implying that the inverted band gap Eg

is also reduced. Moreover, the measurement of longi-
tudinal conductance σxx in a double-gated Corbino de-
vice as a function of temperature reveals an excitation
gap for different carrier density n0 at CNP. The mini-
gap ∆ can be extracted by fitting the temperature de-
pendence of longitudinal resistance with the equation
σxx ≈ exp (−∆/2kBT ). Surprisingly, it is found that the
mini-gap ∆ increases from 0.5 meV to 3 meV (5K to 30K)
as n0 decreases from 9×1010 cm−2 to 5×1010 cm−2(this
is the dilute limit in experiment).
To get more insight of Du’s experiment, we first con-

sider the relation between electron density at CNP and
mini-gap ∆ in the four band model described in Ref.
[3] and [5]. The CNP is determined by the momentum

kc =
√

M/B of the anti-crossing point between |E0〉 and

|HH0〉, where M is inversion gap and B is the coefficient
before quadratic terms. The electron density at the CNP
is related to kc by n0 = k2

c/(2π) = M/(2πB), from which
one can see that n0 is directly proportional to inversion
gapM . On the other hand, the mini-gap ∆ is also related
to kc by ∆ = Akc = A

√

M/B. As a result, we expect
that the mini-gap should be proportional to

√
n0 in the

four band model, and this simple analysis is clearly in
contradiction to the experimental observation described
above. Thus, a study beyond the four band model is
required to understand this experimental observation.

In order to explore the dependence of the inversion gap
and the mini-gap on external electric fields, we perform a
numerical calculation of electronic band structures with
external electric fields. Our starting point is the eight-
band Kane Hamiltonian HK derived at Γ point in the
framework of k · p theory13, together with an external
electric field term. The full Hamiltonian is given by

Hfull = HK + Vext (1)

Vext =

[(

U

L

)

eV · Å−1

]

(z Å). (2)

The eight-band Kane Hamiltonian HK
14,15 is written in

the basis |λ〉(λ = 1, 2, · · · , 8), labelling 2 s-orbital bands
and 6 p-orbital bands, see Appendix.A. |λ = 1〉 and |2〉
are for two s-orbital bands |Γ6,±1/2〉, |3〉 and |6〉 are
for high hole bands |Γ8,±3/2〉; |4〉 and |5〉 are for light
hole bands |Γ8,±1/2〉; and |7〉 and |8〉 are for |Γ7,±1/2〉.
The structure parameters for InAs, GaSb and AlSb at
T = 0K are listed in Table.I of Appendix.A. In Eq.
(1), Vext denotes the external electric potential, U is the
potential drop and L = d1 + d2 + 2d3 is the total width
of the QWs, and d1, d2, d3 are the widths of GaSb, InAs
and AlSb layers, respectively, as shown in Fig.1. For the
quantum well problem, we need to solve the following
eigen-equation

Hfull(−i∂z, kx, ky)|fµ(z)〉 = Eµ|fµ(z)〉 (3)

with the envelope function vector expanded as

|fµ(z)〉 =
8

∑

λ=1

fµ
λ (z)|λ〉 (4)

under the basis |λ〉. The envelope function fµ
λ (z) can be

expanded with the plane waves as

fµ
λ (z) =

1√
L

∑

n

aµn,λe
iknz (5)

where kn = 2π
L
n, n = 0,±1,±2, · · · . After integrating

out the spatial coordinate z, we obtain a matrix form of
the eigen-equation, given by

∑

m

[Hfull(kz)]mn [~a
µ
n] = Eµ [~aµm] (6)
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where ~aµn is the 8-component vector in Eq.(5). We take
a cutoff for the total number of plane waves in the diag-
onalization (n ≤ Ncut). In practice, Ncut = 40 is enough
for the convergence of the low energy dispersion. The
electronic properties of such systems depend strongly on
the growth direction, and our calculation only focuses on
the [001] orientation in the following section.

III. NUMERICAL RESULTS

In this section, we will present our results for electronic
band structures, in particular the band gap dependence,
as a function of external electric fields by numerically
solving the Kane model. We will also compare our results
with the experiments and a good agreement is found.

A. Band structure and Wave function

Our main numerical results are summarized in Fig. 2.
In Fig. 2(a) and (b), we show two typical energy dis-
persions for the potentials U = 0 eV and U = 0.2 eV,
respectively. The system is in the inverted regime for
both potentials, where |E0〉 state is below |HH0〉 state
in energy. A mini-gap ∆ occurs around the momentum

k = 0.0125 Å
−1

for U = 0 eV and k = 0.02 Å
−1

for
U = 0.2 eV. All energy bands are spin split by Rashba
spin-orbit coupling, due to the lack of inversion symme-
try. With increasing the potential U (positive electric
field), one can see that the system is driven into more in-
verted regime with a larger inverted gap from 15 meV
to 30 meV. Rashba spin splitting is also significantly
enhanced for both conduction and valence bands. An-
other important feature is that with a large potential,
the |LH1〉 state also move closer to the band gap and
show a strong mixing with |E0〉 state. These features
can be understood from a simple physical picture shown
in Fig. 1(b). In a positive electric field, the energies in
both the heavy hole (|HH0〉) and light hole (|LH1〉) va-
lence bands in GaSb layer increases, while the energy in
the conduction band of InAs layer (|E0〉) decreases. As a
consequence, the inverted band gap Eg is increased, while
the light hole band is pushed toward the Fermi energy.

In Fig. 2(c), we plot the inverted band gap Eg and
mini-gap ∆ as functions of external potential U , which
behave very differently. Eg increases monotonically as
U increases, while ∆ has a maximum at U = 0 and de-
creases as |U | increases, for both positive and negative
U. The relationship between ∆ and Eg is summarized
in Fig.2(d), from which one can see that the mini-gap
∆ decreases from 3 meV to 0.5 meV while the inverted
gap Eg increases from 15meV to 30meV when the ex-
ternal electric potential U is tuned from 0eV to 0.3eV.
In Du’s experiment11, the excitation gap, which is mea-

sured from temperature dependence of longitudinal con-
ductance, also decreases from 3meV to 0.5meV when
electron density n0 at the CNP increases by around two

U = 0 U = 0.2 eV

FIG. 2. Calculational results from eight-band Kane model.
a) Dispersion without external electric field (U = 0). b) Dis-
persion when the external electric potential U = 0.2 eV. c)
Mini-gap ∆ and inversion band gap Eg as functions of elec-
tric potential U . d) The relationship between ∆ and Eg. In
the calculations, the widths of QWs are d1 = d2 = 10 nm
and d3 = 25 nm. All the other parameters can be found in
Appendix.A.

times. Since n0 = M/2πB is directly proportional to the
inverted gap Eg = 2M , we conclude that our calcula-
tions are consistent with experimental observations. We
may estimate n0 in our model, n0 = 2.15×1011 cm−2 for
electric potential U = 0 eV ; and n0 = 6.06 × 1011 cm−2

for U = 0.2 eV . This estimation for n0 differs from the
values in the experiment11 and this is because our quan-
tum well configuration is not exactly the same as that in
experiments. However, the qualitative change tendency
for n0 and ∆, Eg is consistent with experiments.

B. Mapping to BHZ model from Kane model

To provide more theoretical insight to the underly-
ing physics, we next study the four band model for
InAs/GaSb QWs. A key insight is that by tuning ex-
ternal electric fields, not only the inverted band gap M
is modified, but also other parameters, such as A and
ξe, be changed. Therefore, we adopt the perturbation
theory15 to derive all the parameters in the four-band
model from the eight-band Kane model16. We treat
Hfull(kz , kx = 0, ky = 0) including electric fields in Eq.(1)
as non-perturbation Hamiltonian and solve the eigen en-
ergies and eigen wave functions at Γ point. All the other
terms including non-zero kx, ky are regarded as the per-
turbation part of the Hamiltonian. Up to the first order
in the momentum k, we find that A and ξe near Γ point
can be given by
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A = − 1√
2
〈fE0+,1|P |fHH0+,3〉+

√
3~2

2m0

〈fE0+,4|{γ′
3, kz}+ [kz, κ]|fHH0+,3〉 (7)

ξe = −i
1√
6
[−〈fE0+,4|P |fE0−,2〉+ 〈fE0+,1|P |fE0−,5〉]− i

~
2

2m0

〈fE0+,4|[κ, kz]|fE0−,5〉. (8)

where κ, P and γ′
3 are material dependent parameters,

whose values are listed in Appendix I in the supple-
mentary materials. Note that γ′

3 is a re-normalized
parameter15. In the above equations, the eigen wave
function is expanded as |fα〉 =

∑

λ fα,λ(z)|λ〉 and
the inner product is defined as 〈fα,λ|V (z)|fα′,λ′〉 =
∫

dzf∗
α,λ(z)V (z)fα′,λ′(z) for any function V (z). From

Eq. (7) and (8), one can directly compute parameters
A and ξe as functions of the electric potential U . The
results are summarized in Fig. 3(a). The parameter A
decreases from 0.367 eV·Å to 0.034 eV·Å as U increases
from 0 eV to 0.2 eV, then saturates as U further in-
creases. On the other hand, ξe monotonically increases
and changes its sign from negative to positive at U ≈ 0.1
eV, which may be attributed to the opposite contribution
to the Rashba coupling under the positive electric poten-
tial U , as compared to the Rashba coupling from intrinsic
structure asymmetry of our quantum well structure. As
we shall analyse below, the decrease of the mini-gap ∆
as U changes from 0 eV to 0.2 eV is mainly due to the
rapid drop of A, and the decrease of ∆ as U increases
beyond 0.2 eV is due to the rapid increase of ξe.

U = 0 U = 0.2 eV

FIG. 3. a) Parameters A and ξe in BHZ model as functions
of external potential U , obtained by first order perturbation
theory from eight band Kane model. b) Relationship be-
tween mini-gap ∆ and inversion band gap Eg = 2M from
BHZ model with different Rashba term ξe. c) and d) show
the amplitude of wave functions for E0 state at Γ point at
U = 0 and U = 0.2 eV, respectively. Not shown are those
amplitudes with zero or tiny values for other components of
wave function. In the calculations, the widths of QWs are
d1 = d2 = 10 nm and d3 = 25 nm. All the other parameters
can be found in Appendix.A.

Our calculation results for positive U region may be
taken to qualitatively explain the experiment11. We
first consider the region 0 eV < U < 0.2 eV. Since
∆ = A

√

M/B, while M increases as U increases, A de-
creases more rapidly and plays an important role to lead
the reduction of ∆. More quantitatively, we find A(U =
0)/A(U = 0.2) ∼ 11 and M(U = 0)/M(U = 0.2) ∼ 0.6,
leading to a change of mini-gap ∆(U = 0)/∆(U = 0.2) ∼
8. This estimate explains why mini-gap ∆ decreases
even though the inversion gap Eg increases in the region
0 eV < U < 0.2 eV in Fig.2(c).
We next consider the region 0.2 eV < U < 0.3 eV, in

which the parameter A remains almost unchanged hence
does not play much role to the change of the minigap as
we can see from Fig. 3(c). On the other hand, the Rashba
term ξe becomes more important in this region. Due to
the intrinsic structure asymmetry of InAs/GaSb QWs,
there is a non-zero Rashba coupling at U = 0, which is
negative in the present convention. A positive electric
potential U gives rise to a Rashba coefficient of opposite
sign, so that the net Rashba coefficient ξe increases and
becomes positive at U > 0.1 eV. In Fig. 3(b), we plot ∆
vs Eg for three values of ξe. Clearly, ∆ also depends on
ξ0. Thus, we attribute the reduction of ∆ in the region
U > 0.2 eV to the increased value of ξe.
Let us return to the dependence of the parameter A on

the external electric potential U . This can be understood
from the composition of the eigen wave function |E0〉, as
shown in Fig. 3(c) and (d). As we can see from Fig.
1(b), the light hole sub-band |LH1〉 moves close to the
electron sub-band |E0〉 as U increases from zero. As a
consequence, there is a strong hybridization between the
components |Γ6,± 1

2
〉 and |Γ8,± 1

2
〉. In particular, we find

at U = 0.2 eV, the eigen state |E0,+〉 mainly consists of
the components |Γ8,

1
2
〉 (fE0+,4), in sharp contrast to the

case of U = 0, where |Γ6,
1
2
〉 (fE0+,1) is the dominant

component. From Eq. (7), both fE0,1 and fE0,4 terms
may contribute to the parameter A. However, numerical
calculations show that the contribution to A from the
term 〈fE+,1|P |fH+,3〉 is about ten times larger than that
from the term 〈fE+,4|{γ′

3, kz}+ [kz, κ]|fH+,3〉. Thus, the
rapid decrease of fE0,1 leads to the drop of the parameter
A as U increases from 0.
Now let us briefly consider the results in the region

−0.15 eV < U < 0 eV, as our theoretical prediction. In
this region, we attribute the decrease of mini-gap ∆ in
Fig.2(c) to the rapid drop of the inverted gap M . In this
region, it turns out that the changes of A and ξe are not
significant (A(U = −0.15)/A(U = 0) = 1.6 and ξe(U =
−0.15)/ξe(U = 0) = 1.4), while the inverted gap de-
creases greatly M(U = −0.15)/M(U = 0) = 0.04, lead-
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ing to a reduction of mini-gap ∆ (∆(U = −0.15)/∆(U =
0) = 0.32).

C. Effect of build-in electrical field

In this subsection, we further consider the mixing effect
of external electric fields in Eq.(1) and interface electric
fields, which is given by

Vint =

{
[(

U ′

2d4

)

eV · Å−1
]

(z Å) |z| ≤ d4

0 otherwise
(9)

where U ′ is the electric potential strength for interface,
and d4 is the effective regime of the interface electric
field, which is stem from the localized electron in the
InAs layer and the localized hole in GaSb layer at the
interface. The interface electric field is original from the
structure asymmetry of AlSb/InAs/GaSb/AlSb QWs in
Eq.(9). Besides, we assume that d4 < min{d1, d2}. In
practice, we chose d4 = (d1 + d2)/2. Also, the interface
electric field can be obtained through a self-consistent
Poisson-Schrodinger calculation[17–19]. Again, we do
not attempt to solve this self-consistent problem. In-
stead, we have phenomenologically assumed an effective
electric potential occurring at the interface between InAs
and GaSb.
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FIG. 4. Calculational results from eight-band Kane model
with both external and build-in electric field. a) Mini-gap ∆
and inversion band gap Eg as functions of external electric
potential U . b) The relationship between ∆ and Eg. In the
calculations, the widths of QWs are d1 = d2 = 10 nm, d3 = 25
nm; d4 = 10 nm and U ′ = 0.05 eV.

In the calculations, we fix the interface electric
field(internal) U ′ = 0.05 eV, and tune on the external
electric field which can be achieved by tuning front gate
and back gate. The relationship between mini-gap ∆ and
inversion band gap Eg is shown in Fig.4. Compare Fig.2
(without interface electric field) and Fig.4(with interface
electric field), we conclude that the physics analyzed in
Sec.III B is almost the same for both two cases, expect
that the “critical” external U is shifted to a negative
value from zero. Therefore, our conclusion in the previ-
ous section remains.

IV. CONCLUSIONS AND DISCUSSIONS

In summary, electric field dependence of the mini-gap
and inverted gap are carefully studied for InAs/GaSb
QWs based on the four band model and more sophis-
ticated Kane model. Our results show opposite behav-
iors of the mini-gap and the inverted gap in certain pa-
rameter region, which provides a possible explanation
of the puzzling observations in recent experiments of
this system11,20. We also notice recent debates about
the origin of the quantized conductance plateau and
the observation of edge transport in the trivial insulator
side21, as well as the identification of inverted or nor-
mal band gap20,22. In particular, the behaviors of mini-
gap ∆ under an in-plane magnetic field are still not well
understood11,20,22. We hope our calculations can shed
light on the underlying physics behind these controver-
sial experimental observations.
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Appendix A: Eight-band Kane model and Method

This QW system can be well described by the 8-band Kane model13 at Γ point in the framework of k · p theory,
and we choose the usual bulk basis14,15 as

|1〉 = |Γ6, 1/2〉 = |S〉| ↑〉
|2〉 = |Γ6,−1/2〉 = |S〉| ↓〉

|3〉 = |Γ8, 3/2〉 = 1√
2
|X + iY 〉| ↑〉

|4〉 = |Γ8, 1/2〉 = 1√
6
(−2|Z〉| ↑〉+ |X + iY 〉| ↓〉)

|5〉 = |Γ8,−1/2〉 = − 1√
6
(2|Z〉| ↓〉+ |X − iY 〉| ↑〉)

|6〉 = |Γ8,−3/2〉 = − 1√
2
|X − iY 〉| ↓〉

|7〉 = |Γ7, 1/2〉 = 1√
3
(|Z〉| ↑〉+ |X + iY 〉| ↓〉)

|8〉 = |Γ7,−1/2〉 = 1√
3
(−|Z〉| ↓〉+ |X − iY 〉| ↑〉) (A1)

where we use the standard notation with |Γ6,±1/2〉 representing an s-like conduction band, |Γ8,±1/2〉 a p-like light
hole band and |Γ8,±3/2〉 a p-like heavy hole band in zinc blende crystal structure[15]. The SO split-off bands
|Γ7,±1/2〉 are far away in energy from the other bands, which will still be considered and kept in the calculation
of electronic band structure; However, these two bands are not important at all and will be omitted to derive the
effective 4-band BHZ model. Now, we would introduce our starting points, i.e., the 8-band Kane Hamiltonian HK ,
which is described anywhere, such as in Ref.5,23,24.

In the above basis set |λ〉(λ = 1, 2, · · · , 8), the hamiltonian HK for two-dimensional system with [001] growth
direction takes the following form:

HK =







































T 0 − 1√
2
Pk+

√

2
3
Pkz

1√
6
Pk− 0 − 1√

3
Pkz − 1√

3
Pk−

0 T 0 − 1√
6
Pk+

√

2
3
Pkz

1√
2
Pk− − 1√

3
Pk+

1√
3
Pkz

− 1√
2
k−P 0 U + V −S̄− R 0 1√

2
S̄− −

√
2R

√

2
3
kzP − 1√

6
k−P −S̄†

− U − V C R
√
2V −

√

3
2
S̃−

1√
6
k+P

√

2
3
kzP R† C† U − V S̄†

+ −
√

3
2
S̃+ −

√
2V

0 1√
2
k+P 0 R† S̄+ U + V

√
2R† 1√

2
S̄+

− 1√
3
kzP − 1√

3
k−P

1√
2
S̄†
−

√
2V −

√

3
2
S̃†
+

√
2R U −∆ C

− 1√
3
k+P

1√
3
kzP −

√
2R† −

√

3
2
S̃†
− −

√
2V 1√

2
S̄†
+ C† U −∆







































(A2)
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where k2‖ = k2x + k2y, k± = kx ± iky, kz = −i∂/∂z, and the other elements are

T = Ec(z) +
~
2

2m0

[

(2F + 1)k2‖ + kz(2F + 1)kz

]

U = Ev(z)−
~
2

2m0

(

γ1k
2
‖ + kzγ1kz

)

V = − ~
2

2m0

(

γ2k
2
‖ − 2kzγ2kz

)

R = − ~
2

2m0

(√
3µk2+ −

√
3γ̄k2−

)

S̄± = − ~
2

2m0

√
3k± ({γ3, kz}+ [κ, kz ])

S̃± = − ~
2

2m0

√
3k±

(

{γ3, kz} −
1

3
[κ, kz ]

)

C =
~
2

m0

k−[κ, kz] (A3)

[A,B] = AB − BA is the usual commutator and {A,B} = AB + BA is the usual anticommutator for the operators
A and B; P is the Kane momentum matrix element, and will be signed with a numerical value; Ec(z) and Ev(z) are
the conduction and valence band edges, respectively; γ1, γ2, γ3, κ, and F represents the coupling to the remote bands,
and the µ and γ̄ are defined as µ = (γ3 − γ2)/2 and γ̄ = (γ3 + γ2)/2; ∆ is the spin-orbit splitting energy. The band
structure parameters for InAs, GaSb and AlSb separately at T = 0K are listed in Table I.

TABLE I. The band parameters for AlSb/InAs/GaSb/AlSb QWs in Kane model.

a(Å) Ec(eV ) Ev(eV ) ∆(eV · Å) P (eV · Å) γ1 γ2 γ3 κ
InAs 6.0583 -0.15 -0.56 0.38 9.19 1.62 -0.65 0.27 -0.005
GaSb 6.082 0.8128 0 0.752 9.23 2.61 -0.56 0.67 -0.23
AlSb 6.133 1.94 -0.38 0.75 8.43 1.46 -0.33 0.41 -0.23

Then, we would like to solve the 1D eigenvalues problem of Hamiltonian in Eq.(A4) along z direction, since both
kx and ky are good quantum number. Given (kx, ky), we only need to solve this equation (kz → −i∂z)

Hfull(kz)~f(z) = E ~f(z) (A4)

where ~f(z) is the z direction envelope function vector (f1(z), f2(z), · · · , f8(z))T .

Appendix B: Critical width for InAs/GaSb Quantum wells

In addition, the discussion in Sec.III B depends on the width of quantum well, but change a little. So we focus on
the critical quantum well thickness5 to find that the lowest subbands(InAs, denoted as |E0〉) is crossed with the lowest
subbands (GaSb, denoted as |HH0〉), see Fig.5(a)(b). Therefore, we will choose d1 = d2 = 100 Å and d3 = 250 Å
to numerical calculation in the main text, where we discuss the hybridized mini-gap ∆ as a function of the external
electric potential U .
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