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It is critical to capture the effect due to strain and material interface for device level transistor
modeling. We introduced a transferable sp3d5s* tight binding model with nearest neighbor interac-
tions for arbitrarily strained group IV and III-V materials. The tight binding model is parameterized
with respect to Hybrid functional(HSEQ06) calculations for varieties of strained systems. The tight
binding calculations of ultra small superlattices formed by group IV and group III-V materials
show good agreement with the corresponding HSE06 calculations. The application of tight binding
model to superlattices demonstrates that transferable tight binding model with nearest neighbor
interactions can be obtained for group IV and III-V materials.

PACS numbers:

I. INTRODUCTION

Modern field effect transistors have reached critical de-
vice dimensions in sub-10 nanometer. To surpass the
coming limits of downscaling of field effect transistor,
innovative devices such as tunneling field-effect transis-
tors(TFET)'® and superlattice field-effect transistors®®
are actively investigated. Those devices rely strongly on
the usage of hetero-structures and strain techniques. To
have reliable prediction of the performance in those de-
vices, it is critical to have a atomistic model that is able to
model strained ultra-small heterostructures accurately.

Ab-initio methods offer atomistic representations with
subatomic resolution for a variety of materials and het-
erostructures. However, accurate ab-initio methods, such
as Hybrid functionals®?, GW®? and BSE'® approxi-
mations are in general computationally too expensive
to be applied to systems with a size of realistic de-
vice. Furthermore, those methods assume equilibrium
and cannot truly model out-of-equilibrium device condi-
tions where e.g. a large voltage might have been applied
to drive carriers. For these reasons, more efficient semi-
empirical approaches, such as the k-p!!'™13, the empirical
pseudopotential’* and the empirical tight-binding(ETB)
methods!'®16:25 are actively developed.

Among these empirical approaches, ETB method has
established itself as the standard state-of-the-art basis for
realistic device simulations'”. ETB has been successfully
applied to electronic structures of millions of atoms'®
as well as on non-equilibrium transport problems that
even involve inelastic scattering'®. For strained systems,
modified ETB models take into account the altered en-
vironment in terms of both bond angle and length. In
the simplest tight binding strain model, generalized Har-
rison’s law!'%2%21 is usually adopted to describe bond-
length dependence of the nearest-neighbor coupling pa-
rameters. Changes of bond angles in interatomic interac-

tions are automatically incorporated through the Slater-
Koster formulas??. This simplest tight binding strain
model can reproduce some hydrostatic and uniaxial de-
formation potentials'®, while much higher accuracy can
be achieved by introducing the strain-dependent onsite
parameters. Boykin et al.!® introduced nearest neigh-
bor position dependent diagonal orbital energies to the
sp3d5s* tight binding model to reproduce correct defor-
mations under [001] strains. Off-diagonal onsite correc-
tions are suggested by Niquet et al.?? and Boykin et al.?*
to model the strain behavior of indirect conduction val-
leys of materials with diamond structures under [110]
strains.

Those existing ETB strain models are fitted to pure
strained bulk material instead of more complicated
nanostructures. However, the transferability of those
ETB models and parameters is questionable when ap-
plied to heterostructures. First of all, traditional ETB
parameters depend on material types, while material
type around interfaces can not be clearly defined. Fig.1
shows three possible definitions of materials near a
GaAs/AlAs interface. Interface As atoms are interpreted
as atoms in either (a) As of AlAs or (b) As of GaAs.
Another usual assumption, shown by definition (c),is to
take the interface As atoms to have an average of the
onsite potentials. All those definitions are customarily
used but with no hard data to justify. Secondly, it was
shown that ETB parameters obtained by direct fitting
possibly lead to unphysical results in nano-structures like
ultra-thin bodies?®2¢. To improve the transferability of
ETB parameters, ab-initio mapping methods are devel-
oped in ref 25. This method is an ab-initio wave functions
based tight binding parameterization algorithm. With
this method, it is shown that ETB models are transfer-
able to Si and GaAs ultra thin bodies.

In this paper, a new ETB model for strained materials
considering only nearest neighbor interactions is intro-
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FIG. 1: Different definitions of materials at GaAs/AlAs in-
terfaces. Regions of AlAs and GaAs materials are separated
by the dashed line. In all presented definitions, the left parts
are AlAs and the right parts are GaAs. In definition (a), the
interface As atoms are defined as atoms in AlAs; in definition
(b), the interface As atoms are defined as atoms in GaAs. In
the case (c), the interface As atoms are defined as As atoms
in an averaged material of AlAs and GaAs.

duced for strained group IV and III-V semiconductors.
This strain model takes account of arbitrary strain ef-
fects to band structure. Transferable ETB parameters
for strained III-Vs and group IV materials are obtained
by ab-initio mapping algorithm from Hybrid functional
calculations. The ETB model shows good transferability
when applied to strained superlattices.

This paper is organized as follows. In section II, the
ETB model for strained materials is described. Sec-
tion III shows the validation of the ETB model for
strained systems and superlattices. Subsection III B de-
scribes the details of getting ETB parameters; ETB pa-

rameters for strained group IV and III-V materials are
listed in this section. Subsection III C compares the tight
binding and hybrid functional results for unstrained and
strained materials. Subsection IIID presents the appli-
cation of ETB model in strained superlattices, the tight
binding results for superlattices are compared with hy-
brid functional calculations. Finally, the ETB model of
strained materials and corresponding results are summa-
rized in Section IV.

II. MODEL

The ETB model of strained materials in this work is
based on the multipole expansion®” of the local poten-
tial near each atom. This ETB model has environment
dependency, and it does not rely on the selection of co-
ordinates. It can be applied to arbitrarily strained and
rotated systems. In this work, the tight binding model is
applied to group IV and ITI-V semiconductors which have
diamond or zincblende structures. However, the applica-
tion of this model is in principle not limited to group IV
and III-V semiconductors. For materials considered in
this work, the interaction range considered in the tight
binding model is limited to the first nearest neighbors.
In the following sections, letters in bold such as r and d
are used for three dimensional vectors; correspondingly, r
and d are used to denote the lengths of r and d. €2 stands
for polar angle and 6 and azimuth angle ¢ of a three di-
mensional vector. «, § and -y correspond to tuples of
angular and magnetic quantum numbers lymq,lamy and
I3mg of ETB orbitals respectively. Dirac notation is used
for ETB basis functions, e.g. |¢,,) stands for a orbital
of atom 1.

A. Multipole expansion of atomic potentials

The local potential near atom i is approximated by a
summation of the potential of atom 7 and potential of its
nearest neighbors(NNs) j

Ui (r) = Us (Ir]) +

Z U - |)7 (1)

j€ NNs

where the relative position between atoms 4 and j is d;;.
The potential at r contributed by atom at d;; is approx-
imated by generalized spherical potential. This general-
ized spherical potential U;(|r — d;;|) centered at d;; has
multipole expansion given by

ZU(Z T dl] Z }/lm

m=—I

nm(Qd )

(2)
where €2, and {1q,, stands for angles 6 and ¢ of vectors
r and d;;. The U®(r,d;;) is the radial part of multi-
pole potential with angular momentum [. By substitut-
ing U; (Jr — d;;]) in eq (1) by equation (2), the total po-
tential near atom 4 given by equation (1) can be written

\r— zJ|



Atom Si Ge Al Ga In P As Sb
FE 1.1727 | -0.1105 | 2.5246 | 1.4880 | 1.6787 | -2.3788 | -3.5206 | -2.3695
E, 10.1115 | 9.8495 | 8.8642 | 8.6528 | 8.9987 | 7.6742 | 7.6037 | 6.8994
FEg+ 12.4094 | 12.9983 | 12.701 | 12.7318 | 12.7742 | 12.5016 | 12.5733 | 12.6421
Ey 13.8987 | 13.3211 | 13.540 | 13.5576 | 13.5664 | 13.0781 | 13.1056 | 13.1316

A 0.0215 | 0.1234 | 0.0015 | 0.0243 | 0.1301 | 0.0252 | 0.1293 | 0.2871

TABLE I: Atom type dependent onsite and spin orbit coupling parameters for group IV and ITI-V elements. All parameters in
this table have the unit of eV.

bond Si-Si Ge-Ge | Ge-Si Al-P Al-As | Al-Sb Ga-P | Ga-As | Ga-Sb In-P In-As In-Sb
Is..a 3.1457 | 2.4312 | 2.8305 | 3.4070 | 3.3106 | 3.9775 | 2.5762 | 2.4389 | 2.6906 | 3.7423 | 3.5655 | 4.1432
Ip..a 2.5307 | 2.0823 | 2.3208 | 2.8113 | 2.7621 | 3.5125 | 2.3797 | 2.3491 | 2.7446 | 2.9385 | 2.9008 | 3.7455
Isx a 6.7086 | 6.3232 | 6.5890 | 5.8451 | 5.8293 | 6.1929 | 5.6393 | 5.6115 | 5.5030 | 5.7125 | 5.9270 | 6.1345
lg,.a 3.5979 | 3.4105 | 3.6100 | 3.1639 | 3.0491 | 3.4694 | 2.8883 | 2.8751 | 3.0666 | 3.4549 | 3.4482 | 4.0470
Acq 0.0 0.0 0.0 0.0023 0.0 0.0019 | 0.0142 | 0.0097 | 0.0003 | 0.0191 | 0.0147 | 0.0017
Ase,a 1.3389 | 1.4676 | 1.4230 | 1.3373 | 1.4021 | 1.4438 | 1.4641 | 1.4410 | 1.5640 | 1.3365 | 1.3568 | 1.3823
Ape,a 1.4197 | 1.5634 | 1.5026 | 1.2648 | 1.3069 | 1.3917 | 1.1584 | 1.2383 | 1.5635 | 1.2082 | 1.2211 | 1.4496
Asza | 09522 | 1.0074 | 0.9195 | 0.9476 | 0.9414 | 0.8225 | 0.9348 | 0.9153 | 1.0551 | 0.9125 | 0.8811 | 0.8716
Ade,a 1.1200 | 1.1411 | 1.2181 | 1.1719 | 1.1437 | 1.3307 | 1.1312 | 1.2365 | 1.4301 | 1.2202 | 1.2880 | 1.3863
Is, e - - 2.6494 | 2.1735 | 2.2018 | 3.1709 | 1.7691 | 1.8772 | 2.5078 | 2.2406 | 2.2916 | 3.3104
Ip, e - - 2.2079 | 1.8851 | 1.8730 | 2.9550 | 1.5278 | 1.5867 | 2.2820 | 2.0409 | 2.1313 | 3.1702
Isx ¢ - - 6.8296 | 5.6415 | 5.7855 | 6.5076 | 5.5291 | 5.5735 | 5.7372 | 5.5215 | 5.7498 | 6.2579
da,c - - 3.2390 | 3.2039 | 3.0758 | 3.6241 | 2.9033 | 2.8658 | 2.8997 | 3.4065 | 3.3732 | 3.8005
Age - - 0.0 0.0003 | 0.0017 | 0.0045 | 0.0015 | 0.0053 | 0.0085 | 0.0008 | 0.0023 | 0.0038
Asa e - - 1.4527 | 1.5196 | 1.4805 | 1.5553 | 1.5613 | 1.5505 | 1.6001 | 1.4194 | 1.3955 | 1.6355
Apa,c - - 1.5253 | 1.4219 | 1.4592 | 1.4960 | 1.6773 | 1.6838 | 1.6629 | 1.6325 | 1.6602 | 1.6168
8% ¢ - - 0.6896 | 1.0031 | 1.0470 | 1.0632 | 0.9848 | 1.0037 | 0.8877 | 0.9084 | 0.9131 | 0.9284
Adg,c - - 1.0880 | 1.0961 | 1.2393 | 1.4126 | 1.1407 | 1.0993 | 1.3835 | 1.2028 | 1.2172 | 1.3715
Oqc -2.1211 | -1.5926 | -1.5267 | -2.0783 | -1.9981 | -2.7374 | -1.6875 | -1.6467 | -1.9763 | -2.2511 | -2.2073 | -2.9363
Aac 1.3004 | 1.5457 | 1.4566 | 1.1878 | 1.2167 | 1.2930 | 1.2657 | 1.2697 | 1.2931 | 1.2338 | 1.2546 | 1.2860
0d;;(A) | -0.0118 | -0.0043 | -0.08 | 0.0537 | 0.0217 |-0.0081 | 0.0043 | -0.0098 | -0.0019 | 0.0182 | 0.0096 | 0.0176

TABLE II: Environment dependent onsites parameters for group IV and III-V materials. In Si and Ge, both ’a’ and ’c’ denote
the same atom. For Si-Ge bond, a correspond to Si and ¢ correspond to Ge. The parameters I’s and O’s are in the unit of eV.
parameters \’s are in the unit of A~'. The nonzero dd;; is introduced to match ETB results with experimental targets under

room temperature.

as a summation of multipole potentials

Ult(r) = > U (), (3)
l

where the multipole potentials U ;l)(r)’s are given by

U (r) = U; (Ie]) + 32, U (r, diy)
U0 @) = 3,0 Vi () (3, U1 0. i) Yim (24, ) (4)

The Ui(l)’s are summations of multipoles over nearest
neighbors. The strain induced multipole potentials up
to quadrupole (with [ = 2) are considered in this work.
The UZ-(O) describes the crystal potential under hydro-
static strain. Ui(o) depends only bond lengths. For
unstrained or hydrostatically strained zincblende and
diamond structures, both dipole potential Ui(l)(r) and

quadrupole potential Ui(z)(r) are zero due to the crys-
tal symmetry of zincblende and diamond structures. For

strained systems with traceless diagonal strain compo-
nent like €,,, Ui(Q) (r) is induced due to angle change;
while for strained systems with off-diagonal strain com-
ponent like €4, both Ui(l)(r) and Ui@)(r) are induced.

B. Strain dependent tight binding Hamiltonian

The strain dependent ETB Hamiltonian is constructed
according to the multipole expansion of U/°’. Similar to
the multipole expansion of the total potential given by
eq (3), the strain dependent ETB Hamiltonian is written
as

H=H9+HY 4+ H®, (5)

where the H®) depends on multipole potential U®)(r).

Matrix element H,, g, is thus written as Hg, g,
(0) 1 2
Homﬁj T Haz‘,ﬁj + Hai»ﬂj'

C. Onsite elements

The Ui(o) has contribution from atom ¢ and its neighbors.

Similar to Ui(o)7 the diagonal onsite energies H&?)al also



bond Si-Si | Ge-Ge | Si-Ge Al-P Ga-P | In-P | Al-As | Ga-As | In-As | Al-Sb | Ga-Sb | In-Sb
Csope,a | 1.2234 1 1.1939 | 1.2030 | 1.5306 | 1.2321 | 1.5843 | 1.9559 | 1.2601 | 1.1396 | 1.5751 | 1.9561 | 1.0291
Chpode,a | 34303 | 3.3684 | 3.3930 | 3.5101 | 3.3655 | 3.2494 | 3.6671 | 3.4064 | 3.3227 | 3.5628 | 3.8564 | 3.3380
Cdede,a | 9-9099 | 9.8628 | 9.8856 | 8.4800 | 8.9391 | 8.2225 | 6.9304 | 9.2562 | 9.1776 | 8.4919 | 6.9425 | 8.7305
Csapase 1.2030 | 1.2755 | 1.2266 | 1.0321 | 1.4219 | 1.2327 | 1.1388 | 1.2914 | 1.9606 | 1.1456
Cpada,c 3.3930 | 3.7066 | 3.3529 | 3.8671 | 3.8677 | 3.5647 | 3.3128 | 3.5603 | 3.8573 | 3.3593
Caydg,ec 9.8856 | 10.1674 | 9.1512 | 8.8370 | 9.0338 | 9.9997 | 9.7860 | 8.5971 | 6.7043 | 8.6512

TABLE III: Off-diagonal onsite parameters due to dipole and quadrupole potentials. In Si and Ge, both ’a’ and ’c
same atom, parameters Cq,g,,c are left empty due to relation Cq,g,,c = Ca.8.,a

correspond to Ge. All parameters are in the unit of eV.

has contribution F,, from atom ¢ and contributions from
its neighbors. The contribution of neighbors to diagonal
onsites energies is separated to orbital dependent part
I,, ;(d;j) and orbital independent part O; ;(d;;). The
0)

onsite elements due to Ui( is given by
H((X(Z?az = Eo, + Z aini( Z 0;,i(di;), (6)
JENNSs JENNSs
with
Logj(dij) = Lo, e e (Grtodi=do) (7)
0;,j(d;j) = Oi7je*>\ij(dz‘.j+5dij*do) (8)

Here the dj is the reference bond length. In this work,
the bond length of unstrained GaAs is chosen as dy =
2.447951. The parameter dd;; is introduced to modulate
discrepancy between ab-initio results and experimental
results. Non-zero dd;;’s are introduced to match the ETB
results in this work with experimental data under room
temperature; while with zero dd;;, ETB results match
the zero temperature ab-initio results. The term E,,
depends on orbital and atom type instead of material
type. The summation over I, ;(d;;) and O; ;(d;;) are the
environment dependent part of diagonal onsite energies
Hé?)al O; ;(d;j) is used to modulate the band offset
and it satisfies O; ;(d;;) = O,;(d;;). Similar expression is
also applied to spin-orbit coupling terms AFOC = A; +
ZjeNNS A; j. In this work, only spin-orbit interaction of
p orbitals is considered, and the bond length dependency
of A; ; is neglected.

Due to dipole and quadrupole potentials, non-zero off-
diagonal onsite elements appear. Off-diagonal onsite el-
ements due to multipole potentials are given by

Vo, (0)[UD (1) [, (1),

Since the U (r) given by eq (4) is non-spherical, to es-
timate these terms, following relation is used

Ya(QY5(Q) =D G2 ,Y,(Q), (10)

an‘ﬂq‘, = < {>1. (9)

where the g; 3 is the Gaunt coefficient?® defined by

aﬁ_/Y YB

Y (Q)d0 (11)

’ denote the
. For Si-Ge bond, ’a’ correspond to Si and ’c’

with d§2 = sin 8dfd¢.

With eq (4), off-diagonal onsite elements of atom 4 can
be written as a summation of terms depending on atom
1 and its neighbors j

Eo.p, = ZMaﬂ ’Lj C(l ( zg)a (12)

where the C’((Xli)ﬂi ; is the integral of radial parts of |¢q,),

U and |¢g,), given by

Ra, (n)|UY (r, dij) | Rs, (r) (13)

The M, is given by

@) _
Cociﬁi,j - <

MO (@ Zga Vi (Qa,), ) =1Lm! (14)

The explicit form of M 7( i&)’s due to multipole poten-
tials are given by appendix A.

The strained onsite model by equation (12) is essen-
tially equivalent to the Slater Koster relations which was
also used by Niquet et al?® and Boykin et al?*. Onsite
energies in Niquet’s work depend on strains components
linearly; while Boykin’s onsite model uses Harrison’s law.
Differently from those previous works, the diagonal on-
site energies in this work follow an exponential depen-
dency of bond lengths, and the off-diagonal onsite ener-
gies depend on symmetry breaking strains linearly which
are described by equation (12). It should be noted that,
for unstrained zincblende and diamond structures, the
U®D = 0 for I = 1,2 due to crystal symmetry. Con-
sequently, the strain induced off-diagonal onsites E,, g,
are all zero. The onsite energies in our model depend on
the atom type and neighbor type instead of the material
type. The atom type and bond type can be clearly de-
fined, while the material type can not, as demonstrated
by Fig.1. Thus the tight binding model in this work does
not have ambiguity at the material interfaces

Since this work limits orbitals « and 8 to s,p,d and
s*, the dipole potentials lead to non-zero off-diagonal on-
site among s-p, and p-d orbitals. While the quadrupole
potential lead to non-zero off-diagonal onsite among p-p,
and d-d orbitals. Therefore, there is no confusion to use

Ca,8,,; instead of C’( . Since the strain considered in
this work has amphtudes up to 4%, it turns out the bond



length dependency of C,,3, ; can be neglected. Fitting
parameters for onsite elements introduced in this work
include E,,, I, j, Aa;,; and Cy,, ;. For atoms in alloys
or material interfaces, where an atom might has different
type of neighbors, an averaged Cl,g, ; over neighbors j
is used.

D. Interatomic couplings

Interatomic couplings Héfj),@j due to U© which couple
orbital « of atom i and orbital 8 of atom j follows the
Slater Koster formulas??2?. Bond length dependent two
center integrals in this work are approximated by expo-
nential law

Vaiﬁj\ml(dij) =

The d0d;; is the parameter introduced in order to match
the ETB band structure with experimental results.

The interatomic coupling due to multipole potential
U® are written as

VY, = e UO@)+UD (e —dyj)|s(r—dyy)). (16)

Va_ﬂ‘mle—naiﬁj|m|(du+6d¢j—do). (15)
iPj

By substituting U(®) with equation (4), this integral can
be written as

v, = 5 ML @RV, () + ()
S Qs (A )M ()

where the k denotes the nearest neighbors of atom ¢ and

the k' denotes the nearest neighbors of atom j. The
Q) (dix) and Q)

(djk’) are given by

QY (i) = (WU (rdi)ls(x —dig))  (18)
QL) (dine) = (Wa®UY (I = digl, djue) [y (x = diy)

The |1, (r)) has the same radial part as |1/)a( )) , al-
(dig) and Q) 2 (djir)

are three center integrals 1nvolv1ng orbitals of atom 1,j
and potential U®) from atom k or k. However, since
the quadrupole potential U are centered either at

atom 4 or j, the Q,(yli)ﬁj( d;r) and Q(l) ( d;r’) has the

though v and « are different. Q(

expression of two center integrals debcrlblng by Slater
Koster formulas. To simplify the formula, we approxi-
mate the effect of U®)(r, d;;,)’s by using averaged poten-
tial over k and k' to remove the dependency of atom k
and k/, 0(l)(’l") = ﬁzk U(l)(T’, dzk) y U(l)(|r — d”‘) =

"11 S UO(Jr — dyj,djrr). Similar to the onsite ener-
O]

gies, the strain induced terms V, ~ B

~are all zero for un-
strained bulk zincblende and diamond materials.

For dipole potentials, the complete explicit expression
of equation (17) is lengthy. In this work, we find it is suf-
ficient to approximated equation (17) with Slater Koster
formula for dipole potentials. The U introduces strain

correction oV

o ,6 iml to interatomic interaction parame-

The 5V

i Bj|m|

ters Vi, ,1m|(di;) given by equation (15).
has the expression

(1) - 47

47
wsfylm| = 3 Pauspy ml (Pij + i)+

3

(19)
where the p;; and ¢;; estimate the dipole potential along
bond d;j. Pa, g, jm| and Sa, g;,1m| are fitting parameters.

p;j and g;; are given as

p’LJ = ZYI,TH (Qd,’k) Yl,m (lej) (20)
k,m

od;
QGij = Zyl,m (Qa,,.) Yi,m (Qa,,) Jk~ (21)
k.m

Pji = Z Yl,m (de,k) Yl,m (de,i) (22)
od g
qj; = Z Yl,m (de,k’> Yl,m (del) ék .
k' \m

The d is the average bond length. More discussion of
his approximation is given in appendix B. p;; and g;;
estimate the impact of dipole moment to neighbors. The
non-zero p;; correspond to non-zero off-diagonal strain
components, while the nonzero term ¢;; corresponds to
bond length changes which break crystal symmetry.

For quadrupole potentials, we find it is sufficient to
drop the bond length dependency of U (r) and U® (|r—
d;;|) from equation (18) since we consider strain up to
4% in this work. Thus Q, g, (dir) and Qq, 4/ (d;) can
be simplified by '

Q"/i’ﬁj = <
Qaz‘,’Y} = <

Uy (0)|[TP (1) s (r — dij)) (23)
Ya(@)[UP (Jr — i) lihy (r — diz)) (24)

Here the fitting parameters in Slater Koster form
Qa,,p;,/m| are introduced.

IIT. RESULTS

In this work, ab-initio level calculations of group IV
and III-V systems are performed with VASP32. The
screened hybrid functional of Heyd, Scuseria, and Ernz-
erhof (HSE06)% is used to produce the bulk and the
superlattices band structures with band gaps compara-
ble with experiments3?. In the HSE06 hybrid functional
method scheme, the total exchange energy incorporates
25% short-range Hartree-Fock (HF) exchange and 75%
Perdew-Burke-Ernzerhof(PBE) exchange®*. The screen-
ing parameter p which defines the range separation is
empirically set to 0.2 A for both the HF and PBE parts.
The correlation energy is described by the PBE func-
tional. In all presented HSE06 calculations, a cutoff en-
ergy of 350eV is used. I'-point centered Monkhorst Pack

Sei 8 ml (€5 + ¢5i) 5



bond Si-Si | Ge-Ge | Ge-Si Al-P Al-As | Al-Sb | Ga-P | Ga-As | Ga-Sb In-P In-As | In-Sb
Visesao | -1.7377 | -1.7530 | -1.7411 | -1.7682 | -1.8219 | -2.1063 | -1.7010 | -1.7842 | -2.0232 | -1.9110 | -1.9667 | -2.2797
VSiSi‘,G -4.2881 | -4.4947 | -4.6183 | -4.0139 | -4.3097 | -4.2962 | -4.1464 | -4.3164 | -4.2066 | -3.7944 | -4.2049 | -4.1696
Vscszg -1.7587 | -1.4865 | -1.6734 | -2.0131 | -2.0242 | -1.8153 | -1.8778 | -1.8820 | -1.7410 | -2.2047 | -2.1482 | -1.8748
Visepao | 2.9260 | 2.9146 | 2.8349 | 2.9402 | 3.1045 | 3.3534 | 2.8997 | 2.9935 | 3.2439 | 3.0736 | 3.2715 | 3.5395
‘/S(’fpao' 2.5379 | 2.3919 | 2.5087 | 2.1206 | 2.1783 | 2.2283 | 2.0854 | 2.1256 | 2.4986 | 2.2361 | 2.2493 | 2.2701
Vs(;dao' -2.0901 | -1.9432 | -2.2045 | -2.2681 | -2.2634 | -2.4048 | -2.2303 | -2.1456 | -2.2758 | -2.2543 | -2.2986 | -2.4392
ngdag -0.1627 | -0.1556 | -0.2007 | -0.3042 | -0.3051 | -0.3387 | -0.2808 | -0.2812 | -0.1848 | -0.3446 | -0.2867 | -0.1813
Voepao | 3.7002 | 3.8013 | 3.6856 | 3.5838 | 3.7366 | 4.1011 | 3.5451 | 3.7312 | 4.1685 | 3.6073 | 3.9261 | 4.2661
Vpepar | -1.2896 | -1.3517 | -1.2686 | -1.2121 | -1.3318 | -1.6433 | -1.1631 | -1.2992 | -1.5846 | -1.2755 | -1.4074 | -1.7708
Vpedao | -0.9729 | -0.7001 | -1.0464 | -0.7139 | -0.6818 | -0.9318 | -0.8561 | -0.7416 | -1.1356 | -0.5488 | -0.6025 | -0.9446
Vpedar | 2.1919 | 2.1684 | 1.9985 | 2.2351 | 2.2795 | 2.4007 | 2.1997 | 2.2874 | 2.3716 | 2.2517 | 2.2879 | 2.4045
Viedao | -0.9507 | -0.4385 | -0.3279 | -0.9666 | -0.7343 | -0.7374 | -0.4721 | -0.4906 | -0.5153 | -0.4615 | -0.4708 | -0.6675
Vaod,= | 1.8412 | 1.5738 | 1.6931 | 1.9252 | 1.8295 | 1.7864 | 1.5643 | 1.4887 | 1.6402 | 1.6186 | 1.6103 | 1.7524
Viedas | -1.3776 | -1.6745 | -1.6394 | -1.5266 | -1.6782 | -1.8053 | -1.4702 | -1.6107 | -1.8241 | -1.6310 | -1.8837 | -2.0733
VSQSZU -1.5824 | -1.2241 | -1.2520 | -1.56371 | -1.1986 | -1.1588 | -1.6281 | -1.1401 | -1.1581 | -1.3964
Vsapeo 2.8553 | 2.5861 | 2.5919 | 2.9884 | 2.6045 | 2.7008 | 3.0092 | 2.5465 | 2.6184 | 3.0903
Vs,*,,pccr 2.0593 | 2.6252 | 2.6105 | 2.5435 | 2.6205 | 2.5674 | 2.2691 | 2.6249 | 2.6070 | 2.3266
Vsodeo -2.2859 | -2.1557 | -2.1862 | -2.0941 | -1.7346 | -1.9422 | -2.1687 | -1.6800 | -1.7252 | -2.0149
ngdca -0.3354 | -0.5445 | -0.4197 | -0.2418 | -0.4906 | -0.3828 | -0.3829 | -0.7584 | -0.4789 | -0.3659
Vpadeo -0.9837 | -1.2443 | -1.1628 | -0.9421 | -0.7510 | -0.6656 | -0.3859 | -0.5816 | -0.5791 | -0.3351
Vowder 2.0199 | 1.8639 | 1.9673 | 2.0986 | 1.8737 | 2.0486 | 2.1917 | 1.8626 | 1.9421 | 2.0716
Nsesqo | 1.5188 | 1.5938 | 1.5187 | 1.5395 | 1.5402 | 1.5484 | 1.5399 | 1.5565 | 1.5076 | 1.5274 | 1.5436 | 1.5461
Nexszo | 0.7884 | 0.7628 | 0.5629 | 0.7239 | 0.7385 | 0.6720 | 0.7270 | 0.7447 | 0.6439 | 0.7325 | 0.7794 | 0.6794
Nsesto | 0.9121 | 0.9936 1.1773 | 0.9612 | 0.9635 | 1.0249 | 0.9639 | 0.9515 | 1.0117 | 0.9559 | 0.9384 | 0.9793
Nsepao | 1.0267 | 1.1150 | 1.0444 | 1.1504 | 1.1291 | 0.9883 | 1.0862 | 1.1004 | 1.0413 | 1.0960 | 1.0707 | 1.0835
Nszpao | 0.6723 | 0.6652 | 0.7828 | 0.8908 | 0.9000 | 0.9711 | 0.8632 | 0.7836 | 0.9136 | 0.8578 | 0.8618 | 0.9525
Nsedao | 1.2901 | 1.2611 | 1.2553 | 1.0099 | 0.9765 | 0.8921 | 1.1882 | 1.1300 | 1.1453 | 1.1067 | 1.0693 | 0.9973
Nsxdeo | 0.7353 | 0.7792 | 0.7795 | 0.6760 | 0.6901 | 0.6394 | 0.6625 | 0.6818 | 0.6042 | 0.6949 | 0.6932 | 0.7439
Npepac | 0.9903 | 1.0020 | 0.9412 | 0.9720 | 0.9481 | 0.9539 | 0.9887 | 0.9646 | 1.0211 | 1.0454 | 1.0434 | 0.9518
Npepar | 1.3057 | 1.3256 | 1.2571 | 1.4131 | 1.4223 | 1.3508 | 1.4554 | 1.3846 | 1.4392 | 1.4932 | 1.4411 | 1.4457
Npedao | 0.7324 | 0.4988 | 0.7486 | 0.7045 | 0.6716 | 0.5149 | 0.6995 | 0.6976 | 0.5096 | 0.7044 | 0.6964 | 0.5439
Npedar | 0.8449 | 0.7391 | 0.8194 | 0.9310 | 0.9336 | 0.9104 | 0.9056 | 0.8730 | 0.9348 | 0.8241 | 0.7977 | 0.8398
Ndedao | 0.8837 | 0.6221 | 0.6172 | 0.7986 | 0.8016 | 0.8906 | 0.7629 | 0.6990 | 0.6763 | 0.8025 | 0.8020 | 0.7115
Ndpdg~ | 1.4832 | 1.4947 | 1.4207 | 1.3402 | 1.2909 | 1.2642 | 1.4121 | 1.2959 | 1.4977 | 1.3955 | 1.4221 | 1.3794
Ndedes | 1.4183 | 1.5345 | 1.5080 | 1.3826 | 1.4205 | 1.5074 | 1.4383 | 1.4491 | 1.4208 | 1.3471 | 1.3581 | 1.2748
Nsqsto 0.8371 | 1.0682 | 1.0682 | 1.0043 | 0.9752 | 0.9898 | 0.9824 | 0.9630 | 0.9941 | 0.9732
Nsapeo 1.1317 | 1.0207 | 1.0266 | 1.0507 | 1.0821 | 1.1126 | 1.0806 | 1.0298 | 1.0809 | 1.1634
Nskpeo 0.9643 | 0.9204 | 0.9233 | 0.8024 | 0.9074 | 0.8269 | 0.8240 | 0.8790 | 0.8193 | 0.7068
Nsqdeo 0.9601 | 1.1400 | 1.1880 | 1.2410 | 1.1570 | 1.0945 | 0.9333 | 1.0923 | 1.1253 | 0.9660
Nstdeo 0.7171 | 0.6734 | 0.6640 | 0.6954 | 0.6609 | 0.6838 | 0.7762 | 0.6906 | 0.6837 | 0.7474
Npadeo 0.7872 | 0.7138 | 0.7090 | 0.7175 | 0.7059 | 0.6976 | 0.7726 | 0.7041 | 0.6993 | 0.7927
Npaden 0.8921 | 0.9125 | 0.8956 | 0.7612 | 0.9149 | 0.8941 | 0.8046 | 0.9100 | 0.9198 | 0.8251

TABLE IV: Bond length dependent interactomic coupling parameters for group IV and III-V materials. In Si and Ge, both ’a’
and ¢’ denote the same atom. For Si-Ge bond, 'a’ correspond to Si and ’c’ correspond to Ge. The parameters V’s are in the

unit of eV. parameters 7’s are in the unit of A~

kspace grids are used for both bulk and superlattice sys-
tems. The size of the kspace grid for strained bulk cal-
culations is 6 X 6 x 6, while one for 001 superlattices is
6 x 6 x 3. k-points with integration weights equal to zero
are added to the original uniform grids in order to gener-
ate energy bands with higher k-space resolution. PAW?3?
pseudopotentials are used in all HSE06 calculations. The
pseudopotentials for all atoms include the outermost oc-
cupied s and p atomic states as valence states. Ab-initio
band structures of strained and unstrained bulk materials
are aligned based on model solid theory3®37. With the
model solid theory, relative band offsets are determined
by using different superlattices.

A. Room temperature targets

Ab-initio calculations usually assume zero temperature,
while ETB models matching room temperature experi-
ments are required for realistic device modeling. In this
work, in order to get ab-initio band structures matching
experiments under room temperature, artificial hydro-
static strain is applied to individual material to mimic
the effect of room temperature and to compensate the
error of ab-initio calculations. With hydrostatic strain,
lattice constants change from ag to ag+da. This artificial
lattice constant change can be used to adjust the ab-initio
band gap of semiconductors to match finite temperature
experimental band gap. Table XI shows the required da



bond Si-Si | Ge-Ge | Si-Ge Al-P Ga-P In-P Al-As | Ga-As | In-As | Al-Sb | Ga-Sb | In-Sb
P, p.o | -1.5396 | -1.5663 | -1.5006 | -1.6592 | -1.5167 | -1.3417 | -0.9448 | -1.3555 | -1.5821 | -1.1122 | -1.2324 | -1.0398
Ps,d.0 | 0.7752 | 0.7925 | 0.8145 | 0.3091 | 0.7372 | 1.1406 | 1.0546 | 0.5127 | 1.0312 | 0.8430 | 0.6116 | 1.0719
Pyopeo | -0.9283 | -0.6865 | -0.7794 | -1.0469 | -0.3635 | -0.2978 | -1.5842 | -0.4684 | -0.4048 | -1.1008 | -0.9431 | -0.6557
Ppoper | 1.6156 | 1.2451 | 1.5188 | 1.8003 | 1.6262 | 1.0269 | 1.3440 | 1.0823 | 0.7503 | 0.4365 | 0.4087 | 0.5719
Pspoo -1.5006 | -2.3325 | -1.5468 | -2.7879 | -2.6736 | -2.2816 | -1.7354 | -2.4051 | -2.6815 | -1.8459
Ps a0 0.8145 | 0.3045 | 0.6986 | 0.4468 | 0.3458 | 0.5314 | 0.7030 | 0.4151 | 0.4081 | 0.8668
Ssapeo | 0.7491 | 0.8861 | 0.8200 | 1.9743 | 0.7668 | 1.7468 | 1.8554 | 1.4927 | 1.2099 | 1.5753 | 1.1479 | 1.9147
Sspdeo | 1.4609 | 1.5098 | 1.4848 | 1.5210 | 1.4103 | 1.3737 | 1.8819 | 1.8221 | 1.5578 | 1.4029 | 1.8530 | 0.7074
Spapeo | 1.6103 | 1.6759 | 1.4812 | 3.1829 | 2.0255 | 2.6098 | 2.8324 | 1.8866 | 2.4993 | 2.7592 | 2.2525 | 2.7781
Spaper | -3.8712 | -2.6283 | -3.4877 | -4.5544 | -4.4913 | -4.4096 | -4.3925 | -4.2555 | -4.2825 | -3.6569 | -3.4164 | -2.8257
Sdndeo | 0.7450 | 0.6304 | 0.7508 | 0.9623 | 0.7014 | 0.2811 | 0.7210 | 0.7340 | 0.6007 | 0.4945 | 0.1092 | 0.3453
Sdad.r | 4.0875 | 3.2465 | 3.8909 | 3.6546 | 3.7256 | 3.7468 | 4.2782 | 3.1996 | 3.4492 | 2.9925 | 4.0625 | 3.3261
Sdades | 3.9344 | 3.2883 | 3.7768 | 3.7809 | 4.0881 | 3.5400 | 3.7232 | 3.6569 | 3.9674 | 2.8669 | 2.6015 | 3.6276
Ssepac 0.8200 | 1.1003 | 0.7325 | 0.8607 | 0.4794 | 0.5577 | 0.7424 | 0.7568 | 0.1379 | -0.1957

sedgo 1.4848 | 2.3270 | 1.4101 | 2.0861 | 2.3560 | 2.2435 | 1.4634 | 2.2419 | 2.3834 | 2.0629
Qsepeo | 65771 | 5.1614 | 6.2119 | 6.5773 | 5.6126 | 4.3389 | 4.6049 | 5.2229 | 4.7711 | 4.7149 | 3.6729 | 3.5491
Qsndeo | -1.3985 | -1.4161 | -1.3773 | -2.2243 | -1.0040 | -2.1996 | -2.0707 | -1.5659 | -1.4199 | -1.5381 | -2.0985 | -1.4815
Qpapeo | -2.5641 | -1.9725 | -2.2944 | -2.6508 | -2.3040 | -2.3389 | -2.6020 | -1.2315 | -1.1147 | -2.4559 | -1.3465 | -1.8447
Qpaper | -0.9290 | -0.7786 | -0.9155 | -0.4430 | -0.5811 | -0.0174 | -0.0880 | -1.1158 | -0.7130 | 0.1086 | -0.6194 | -0.0713
Qdyd.o | 1.9700 | 2.0320 | 2.0051 | 2.0628 | 2.0977 | 2.3898 | 2.4063 | 2.4369 | 1.7380 | 1.9471 | 2.3476 | 2.2434
Qd,d.x | 6.9775 | 6.8269 | 6.9180 | 6.3774 | 6.1846 | 7.1001 | 5.9092 | 7.0035 | 6.9446 | 6.3621 | 5.9208 | 6.6177
Qdyd.s | -0.4367 | -0.4345 | -0.2475 | -0.8822 | -0.2823 | -0.7120 | -1.3089 | -0.7043 | -0.4713 | -1.2464 | -1.1962 | -0.6252
Qsepac 6.2119 | 7.3014 | 6.3718 | 6.0554 | 7.0724 | 6.1072 | 5.4079 | 5.3544 | 6.9797 | 5.2978
Qsedyo -1.3773 | -1.6439 | -1.3167 | -1.3153 | -0.8685 | -1.0584 | -1.1532 | -0.7379 | -0.7086 | -1.1249

TABLE V: Interatomic coupling due to dipole and quadrupole potentials. In Si and Ge, both ’a’ and ’c¢’ denote the same atom.
For Si-Ge bond, a correspond to Si and ¢ correspond to Ge. All parameters are in the unit of eV.
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FIG. 2: Strained systems considered in this work. (a) hydro-
static strain, (b) with two bond length changes, (c) diagonal
strain with e, = €4y = —0.5¢.,, (d) off-diagonal strain with

Eay #0

in order to match HSE06 band gaps with room temper-
ature experimental data. It can be seen that the most
of the required da are in general less than 1% hydro-
static strain. The AIP requires da up to 2%ag. By this
adjustment, band gaps of most of the presented semicon-
ductors reach less than 0.05eV mismatch compared with
experimental results. The largest mismatch appears in
AlAs which has the mismatch of about 0.1eV. Since the
parameterization algorithm used in this work relies on
the ab-initio wave functions, the concern of this artificial
adjustment is that whether it will change ab-initio wave
functions significantly. Fig. 6 shows the contribution of
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FIG. 3: Band structure of III-Vs materials with ETB and
HSEOQ06 calculations. Presented band structures of IV mate-
rials include Si (a) and Ge (b). ETB band structures are in
good agreement with HSEO6 results. The HSE06 bands are
adjusted to match experimental results under room tempera-
ture.

different orbitals in ab-initio wave functions as a function
of lattice constant. Here the ab-initio wave functions of
InX with different lattice constants are represented by
the same basis functions. It can be seen that the ev-
ery percent of hydrostatic strain introduced changes the
contribution of orbitals up to 0.02. Thus the artificial ad-
justment introduces negligible changes to wave functions.
Similar trend can be observed in other group III-V and
IV materials. In this work, the ETB parameters are all
fitted with respect to ab-initio results that are adjusted
with respect to room temperature experiments.
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FIG. 4: Band structure of III-Vs materials with ETB and HSEQ06 calculation. Presented band structures of ITI-V materials
include (a) AIP , (b) GaP , (c) InP ,(d) AlAs , (e) GaAs,(f) InAs ,(g) AlSb ,(h) GaSb ,(i) InSb. ETB band structures are in
good agreement with HSE06 results.

(a) Lattice constant = 5.4 Angstrom (b) Lattice constant = 5.8 Angstrom (c) gaps vs lattice constant
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FIG. 5: Band structure of Si with different lattice constants. (a) Si with a lattice constant of 5.4 A, (b)Si with a lattice constant
of 5.8 A, (c) direct and indirect band gaps of Si with different lattice constants. The lowest conduction band at I' point transit
from p-bands to s-bands at about 5.8 A. When lattice constant is 5.4 A, Si is a indirect gap semiconductor, the X conduction
valley is the lowest conduction valley. As lattice constant increases, the band gap at of X valley (Eg(X)) increases slightly,
while the bandgap of L valleys (Eg(L)) and direct band gap (Ecs(G) — E,) decrease significantly.



Si Ge
targets | HSE06 ETB error Ref | HSE06 ETB error Ref
E4(T") | 3.301 3.332 0.9% 3.34| 0.755 0.744 1.4% 0.81
E (X)| 1.141 1.155 1.2% 1.12| 0.974 0.945 3.0% 0.90
Ey4(L) | 2.246 2.245 0.1% 2.04| 0.709 0.678 4.4% 0.66
Aso | 0.051 0.051 0.0% 0.04| 0.313 0.311 0.4% 0.30
mpni00| 0.260 0.266 2.5% 0.29| 0.203 0.197 2.7% 0.21
mnpni10| 0.522 0.535 2.4% 0.54| 0.378 0.381 0.6% 0.37
mpri11| 0.649 0.672 3.5% 0.75| 0.506 0.523 3.2% 0.51
mip100 | 0.190 0.179 5.9% 0.20| 0.040 0.040 1.0% 0.05
mypi1o | 0.139 0.134 3.7% 0.15| 0.037 0.037 0.3% 0.04
myp111 | 0.132 0.127 3.6% 0.14| 0.035 0.035 0.2% 0.04
Mso 0.225 0.218 2.8% 0.23| 0.093 0.091 2.2% 0.10
Mer - - — | 0.032 0.033 3.7% —
mex; | 0.856 0.75411.9% 0.91| 0.840 0.768 8.5% 0.90
mexe | 0.191 0.194 1.2% 0.19] 0.189 0.203 7.5% 0.20
mert | 1.641 1.774 8.1% 3.43| 1.577 1.73810.2% 1.59
mert | 0.130 0.14713.2% 0.17| 0.081 0.10123.8% 0.08

TABLE VI: Targets comparison of bulk XP. Critical band
edges and effective masses at I', X and L from ETB and
HSEO06 calculations are compared. The E,; and Ago are in
the unit of eV; effective masses are scaled by free electron mass
mo. The error column summarizes the relative discrepancies
between HSE06 and ETB results. The Reference bandedge
and effective masses are from Ref 30.

Contribution of s orbitals to
lowest conduction band of InX
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top valence bands of InX
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FIG. 6: Contribution of p orbitals to the top valence bands(a)
and contribution of s orbitals to the lowest conduction bands
of InX (X=P,As,Sb). The p orbitals of In and cation atoms
contribute to the top valence bands. When lattice constant
change one percent, p orbitals contribution are changed by
less than 0.0002. The s orbitals of In and anion atoms con-
tribute to the lowest conduction bands. When lattice constant
change one percent, s orbitals contribution are changed by less
than 0.02.

B. ETB parameters for strained materials

The ETB model in this work makes use of sp3d5s*
basis functions. The sp3d5s* empirical ETB model
with nearest neighbor interactions has been proved to
be a sufficient model for bulk zincblende and diamond
structures'6:25:38  To parameterize the ETB model from
ab-initio results, both ab-initio band structure and wave
functions are considered as fitting targets. The process
of parameterization from ab-initio results was described

by Ref. 25. This method is applicable to any model that
is able to deliver explicit wave functions, and is not re-
stricted to the HSE06 calculations. E.g. empirical pseu-
dopotential calculations or more expensive but accurate
GW calculations can be used.

To obtain ETB parameters for strained materials, the
process of parameterization from ab-initio results by Ref.
25 is applied to multiple strained systems. To consider
multiple systems in the fitting process, a total fitness to
be minimized is defined as a summation of fitness of all
systems considered (labeled by index s) Fyoiar = >, F.
The fitness F is defined to capture important targets
of each stained system considered in the fitting process.
The strained systems considered in this work are shown
by Fig. 2, including zincblende or diamond structures
with a) hydro static strain, b) pure bond length changes,
¢) diagonal strains and d) off-diagonal strain. For Hydro-
static strain cases, materials with different lattice con-
stant ranging from 5.2 to 6.6 A are considered. While for
other kind of strains, strains with amplitudes from —4%
to 4% are considered.

For hydrostatically strained materials, fitting targets
includes band structures, important band edges, effec-
tive masses and wave functions at high symmetry points.
Those targets were considered in previous work (ref.25)
in order to get ETB parameters for unstrained bulk mate-
rials. To extract ETB parameters for arbitrarily strained
materials, wave functions and energies at high symmetry
points are also considered as fitting targets. For strained
systems, it is sufficient to use the strain induced band
edge splitting at high symmetry points as targets. Effec-
tive masses at those points are not considered as fitting
targets. Effective masses in strained materials are re-
lated to the splitting of band edges and effective masses
of unstrained systems. For example, the effective masses
of valence bands in a strained group III-V or IV mate-
rial can be well described by a Luttinger model*!. The
well known conduction band effective mass change under
shear strain( with strain component eg, ) can also de-
scribed by camel back model'?. Those models include
the strain effect as k-independent perturbation terms.
The strain induced terms correspond to the band edge
splitting at high symmetry points.

It should be noted that the usage of wave function
data eliminates the arbitrariness of parameters among
materials. It can be seen from tables IV, IIIV that
the parameters of different materials have small relative
variations. Many of the tight binding parameters show
a clear monotonic dependence of the principle quantum
number of atoms. For instance, the V), p, o ’s have a trend
WVorrol <|Vpepaso| < |Vpepsso| as it is shown in table IV.
This trend of parameters is related to the wave functions
of top valence bands at I' point. Similar to the trend of
Vp.pao, the contribution of p orbitals of cations w,,_ also
shows a monotonic trend of w,, (InP) < w,, (Inds) <
wp, (InSb), while the p orbitals of anions w,, show an
opposite trend wy,, (InP) > wp, (InAs) > w,, (InSh) as
it is shown in Fig. 6 (a). Furthermore, the Fig. 6 also
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AlP

GaP InP

targets| HSE06 ETB error Ref

HSE06 ETB error

Ref | HSEO6 ETB error Ref

E4(T) | 4.305 4.3030.0% 3.55
Ey(X)| 2.391 2.3272.0% 2.49
Ey(L) | 3.751 3.7151.0% 3.54
Aso | 0.064 0.0640.0% 0.07

2.256
2.504
0.098

0.508 0.5050.7% 0.52
0.998 0.9811.7% 0.87
1.273 1.2700.2% 1.12
0.250 0.2375.0% 0.21
0.201 0.1933.9% 0.18
0.193 0.1854.0% 0.17
0.343 0.328 4.3% 0.30

Mhh100 0.355
Mhh110
Mhhi11
mMir100
Mir110
mini11
mSO

0.843
0.160
0.132
0.127
0.229

0.189 0.185 2.4% 0.22
0.781 0.789 1.0% 2.68
0.242 0.2314.8% 0.16
1.610 1.6743.9% —
0.177 0.1928.6% —

0.131
1.532
0.224

Mer
mexi
Mext
MerLl

MecrLt

2.797 2.793 0.1%
2.250 0.3%
2.492 0.5%
0.098 0.0%

0.351 1.4%
0.667 0.655 1.9%
0.836 0.9%
0.153 4.0%
0.127 3.4%
0.122 3.5%
0.222 3.3%

0.132 0.5%
1.305 14.8% 2.00
0.231 3.0% 0.25
1.581 1.722 8.9%
0.138 0.16318.2% 0.15

1.397 1.391 0.4%
2.283 2.272 0.4%
2.162 2.143 0.9%
0.124 0.124 0.0%

3.00
2.38
1.94
0.11

2.89
2.28
2.64
0.08

0.405 0.403 0.4%
0.726 0.728 0.2%
0.918 0.942 2.6%
0.114 0.110 3.2%
0.102 0.098 3.1%
0.099 0.095 3.1%
0.190 0.186 1.8%

0.53
0.88
1.14
0.12
0.11
0.11
0.21

0.33
0.52
0.65
0.20
0.16
0.15
0.25

0.087 0.084 3.4% 0.08
1.476 1.348 8.6% —
0.244 0.251 2.6% —
1.984 1.941 2.2% —
0.144 0.166 15.5% —

0.13

1.20

TABLE VII: Targets comparison of bulk XP. Critical band edges and effective masses at I', X and L from TB and HSE06
calculations are compared. The E, and Aso are in the unit of eV; effective masses are scaled by free electron mass mg. The
error column summarizes the relative discrepancies between HSE06 and ETB results. The Reference bandedge and effective

masses are from Ref 31.

AlAs

GaAs InAs

targets| HSE06 ETB error Ref

HSEO06 ETB error Ref

HSEO06 ETB error Ref

Ey(T)

Eqy(X)

Eq(L)
Aso

3.00
2.16
2.35
0.34

1.418
1.919
1.701
0.367

2.891 2.887 0.2%
2.050 2.054 0.2%
2.880 2.872 0.3%
0.317 0.317 0.0%

0.47
0.82
1.09
0.19
0.16
0.15
0.28

0.308
0.569
0.744
0.081
0.073
0.070
0.162

0.437 0.441 1.0%
0.838 0.841 0.4%
1.082 1.104 2.0%
0.166 0.161 2.9%
0.141 0.137 2.3%
0.135 0.132 2.4%
0.272 0.257 5.6%

Mhh100
Mhh110
Mhhi11
Min100
mMin110
Mmini11
mSO

0.126 0.123 2.2%
0.850 0.864 1.6%
0.231 0.223 3.5% 0.22
1.557 1.627 4.5% 1.32
0.144 0.160 10.6% 0.15

0.15
0.97

0.065
1.564
0.213
1.613
0.110

mer
mexi
Mext
MeLl
McLt

1.416 0.2%
1.912 0.4%
1.692 0.6%
0.367 0.0%

0.317 3.0%
0.581 2.2%
0.762 2.4%
0.081 0.8%
0.072 0.3%
0.070 0.2%
0.156 3.8%

0.066 1.3%
1.33114.9% 1.30
0.216 1.4%
1.669 3.5%
0.12917.9% 0.08

0.350 0.348 0.7%
2.052 2.021 1.5%
1.514 1.502 0.8%
0.391 0.391 0.0%

1.42
1.90
1.70
0.28

0.35
1.37
1.07
0.39

0.344 0.352 2.2%
0.625 0.639 2.3%
0.835 0.865 3.6%
0.026 0.026 1.0%
0.026 0.026 1.0%
0.025 0.025 0.9%
0.102 0.095 6.7%

0.33
0.51
0.62
0.03
0.03
0.03
0.14

0.35
0.64
0.89
0.09
0.08
0.08
0.17

0.022 0.021 1.6% 0.03
1.458 1.27512.5% 1.13
0.232 0.238 2.4% 0.16
1.904 1.820 4.4% 0.64
0.114 0.13115.0% 0.05

0.07

0.23
1.90

TABLE VIII: Targets comparison of bulk XAs. Critical band edges and effective masses at I';, X and L from TB and HSE06
calculations are compared. The Ey and Aso are in the unit of eV; effective masses are scaled by free electron mass mg. The
error column summarizes the relative discrepancies between HSE06 and ETB results. The Reference bandedge and effective

masses are from Ref 31.

shows that the InX orbitals have a similar rate of vari-
ation under hydrostatic strain; consequently, the scaling
factor nppe’s for all materials has the value from 0.94 to
1.05.

The atom type dependent onsite parameters are listed
on table I. Table IT and IV summarizes the bond length
dependent onsite and interatomic coupling parameters
respectively. From table IV, it can be seen that inter-
atomic parameters for different ITI-V materials have sim-

ilar values. Multipole dependent onsite parameters and
interatomic coupling parameters are listed in table III
and V respectively. The relative band offsets are incor-
porated in the ETB parameters. The top valence bands
obtained by the ETB model corresponding to the value
from HSEOQO6 calculations instead of zero. However we
shifted top valence bands to zero in presented figures
when showing band structures in order to improve the
readability. The parameters P’s (0’s and S’s in principle
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AlSb

GaSb InSb

targets| HSE06 ETB error Ref

HSE06 ETB error Ref | HSE06 ETB error Ref

E,(T) | 2.223 2.225 0.1% 2.30
Ey(X)| 1.597 1.601 0.2% 1.62
E,(L) | 1.831 1.835 0.2% 2.21
Aso | 0.655 0.642 1.9% 0.68

1.205
0.865
0.714

0.707 0.703 0.5% 0.73
1.202 0.2% 1.03
0.870 0.6% 0.75
0.714 0.0% 0.76

0.172 0.170 1.6% 0.17
1.566 1.549 1.1% —
0.891 0.867 2.8% 0.93
0.754 0.770 0.7% 0.81

0.315 0.322
0.593 0.615
0.761 0.805

TMhhr100
Mhh110
Mhphi11

2.4% 0.36
3.6% 0.61
5.8% 0.81

0.232 0.251
0.426 0.456
0.566 0.606

8.3% 0.25
7.0% 0.49
7.0% 0.71

0.245 0.27712.9% 0.26
0.452 0.507 12.2% 0.43
0.609 0.694 13.9% 0.56

0.125 0.121 3.4% 0.13
myp110 | 0.106 0.103 2.8% 0.11
Min111 0.102 0.099 2.8% 0.11
mso | 0.238 0.220 7.7% 0.22

0.041
0.038
0.037
0.137

Mih100

mer | 0.108 0.109 1.0% 0.14| 0.037
mexy | 1.458 1.216 16.6% 1.36 | 2.362
mext | 0.219 0.209 4.7% 0.12| 0.194
mer; | 1.520 1.543 1.5% 1.64

mer: | 0.121 0.132 8.9% 0.23| 0.090

0.041 0.8% 0.04
0.038 0.1% 0.04
0.037 0.1% 0.04
0.124 9.5% 0.12

0.037 0.3% 0.04
1.826 22.7% 1.51
0.21912.5% 0.22
1.587 1.568 1.2% 1.30
0.108 19.2% 0.10

0.012 0.013 6.1% 0.02
0.013 0.014 4.7% 0.01
0.012 0.012 6.6% 0.01
0.117 0.108 7.5% 0.11

0.011 0.012 8.7% 0.01
0.877 0.79010.0% —
0.219 0.230 5.0% —
1.685 1.575 6.5% —
0.096 0.11115.7% —

TABLE IX: Targets comparison of bulk XSb. Critical band edges and effective masses at I', X and L from TB and HSE06
calculations are compared. The E, and Aso are in the unit of eV; effective masses are scaled by free electron mass mg. The
error column summarizes the relative discrepancies between HSE06 and ETB results. The Reference bandedge and effective

masses are from Ref 31.

Si

Ge

targets| HSE06 ETB error Ref

by 2.58 2.60 0.8% 2.10| 2.81
5.78 3.8% 4.85
8.31 8.23 1.0% 8.60
— 17.21 17.100.6% —

dy 6.01
Zoo1
Z110

15.59 15.222.4%

HSE06 ETB error Ref
2.80 0.1% 2.86
5.88 5.89 0.0% 5.28
8.35 8.35 0.0% —

TABLE X: Targets comparison of deformation potentials of group IV materials. Reference experimental values are from Ref.

37.
material | ao (4) | gap (eV) | da (A) |da/ao(%) |gap (eV)
exp,300K | exp,300K | HSE06 | HSE06 | HSE06
Si 5.43 1.12 -0.0273 0.5 1.141
Ge 5.658 0.66 -0.010 -0.2 0.755
AlP 5.4672 2.488 0.124 2.3 2.391
GaP 5.4505 2.273 0.01 0.2 2.256
InP 5.8697 1.353 0.042 0.7 1.397
AlAs 5.6611 2.164 0.05 0.9 2.05
GaAs 5.6533 1.422 |-0.0226 -0.4 1.418
InAs 6.0583 0.354 0.0221 0.4 0.350
AlISb 6.1355 1.616 |-0.0186 0.3 1.597
GaSb 6.0959 0.727 |-0.0045 -0.1 0.707
InSb 6.4794 0.174 0.0406 0.6 0.172

TABLE XI: Experimental lattice constants and band gaps
of group IV and III-V materials under room temperature;
required changes of lattice constants da in order to match
HSEO06 band gap with experiments.

contain the same number of parameters as interatomic
interaction parameter V. However, it turns out that it is
sufficient to consider only s —p, s —d, p—p and d — d in-
teractions for parameters P’s, Q’s and S’s. Others such
as s* —p, s* —d and p — d interactions are constrained
to zero.

C. Unstrained and strained materials

Fig. 3 and 4 show band structures of unstrained bulk
band structure for group IV and III-V materials. The
presented materials include Si, Ga, XP, XAs and XSb
with X = AlLGa,In. It can be seen that the ETB results of
unstrained bulk group IV and III-V materials match cor-
responding HSEQ06 results well. Tables VI,VII,VIII and
IX compare the effective masses and critical band edges
between ETB and HSEO06 calculations. Most of the effec-
tive masses of important valence and conduction valleys
are within 10% error. Effective masses of higher conduc-
tion valleys like m; or L valleys tend to have larger error.
Discrepancies of critical band edges at high symmetric
points between ETB and HSE06 are within 10meV.

Fig.5 shows Si band structures under hydrostatic
strain. The hydrostatic strain does not change crystal
symmetry, thus the degeneracy at high symmetry points
conserve under hydro static strain. However, it can be
observed by comparing Fig.5 (a) and (b) that the hydro-
static strains change the band edges significantly. With a
lattice constant of 5.4A4, the lowest conduction bands of
Si are X valleys, the L and s-type I valley (Ecs(G)) are
of more than 1eV above the X valleys. However, with a
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AlP GaP InP
targets| HSE06 ETB error Ref | HSE06 ETB error Ref| HSE06 ETB error Ref
by 1.75 1.68 3.5% 1.5 | 2.06 202 1.7% 20| 1.72 1.63 51% 1.5
dy 537 557 3.7% 4.6 | 525 543 3.6% 50| 4.43 4.81 8.6% 4.6
=001 545 5.13 6.0% — 714 712 04% — | 564 555 1.5% —
Zi10 | 15.44 16.79 8.8% — | 17.66 17.90 1.4% — | 17.34 18.33 5.7"% —
AlAs GaAs InAs
targets| HSE06 ETB error Ref | HSE06 ETB error Ref| HSE06 ETB error Ref
by 1.79 1.79 0.2% 2.3 | 2.11 2.00 55% 2.0| 175 170 2.7% 1.8
dy 547 581 6.3% 3.4 | 541 5.19 4.1% 4.8| 4.44 4.57 29% 3.6
Zo01 510 4.89 4.1% - 6.55 6.62 1.1% — | 493 492 0.1% -
Zi10 | 15.57 15.21 2.3% — | 17.52 17.31 1.2% — | 16.63 15.95 4.1% —
AlSb GaSb InSb
targets| HSE06 ETB error Ref | HSE06 ETB error Ref| HSE06 ETB error Ref
by 1.82 1.95 6.8% 1.35| 2.14 2.27 6.0% 2.0| 1.80 1.89 52% 2.0
dy 544 520 4.3% 4.3 | 5.32 5.38 1.1% 4.7| 4.60 4.67 1.5% 4.7
Zoo1 530 5.21 1.8% -— 814 7.85 3.6% — | 760 7.48 1.5% —
Zi10 | 1396 1342 3.8% — | 15.32 14.29 6.7% — | 14.57 14.11 3.2% —

TABLE XII: Targets comparison of deformation potentials of III-V materials. The Reference bandedge and effective masses

are from Ref 31.
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FIG. 7: Strain induced band edge splitting of selected conduc-
tion bands and valence bands at I';, X and L points of InAs.
At I" point, 6 top most valence bands and 2 lowest conduction
bands are shown. 4 lowest conduction bands at X points are
shown. The lowest conduction band at L points are included
in the figures. The valence bands at X and L points are
not shown as those points are of low energy. The ETB band
edge splitting are in good agreement with the corresponding
HSEO06 results.

larger lattice constant of 5.84, the L and T' gap descend
dramatically , while the X gap even increase slightly.
The change of band gaps are shown clearly by Fig.5 (c),
it can be seen that at around 5.84, the L and s-type I'
valley become lower than the X valleys. As the lattice
constant increase more, Si becomes a direct gap material
(lowest conduction band is I" valley). In fact, if the lattice
constant is sufficiently large, Si becomes a metal as the
s-type I valley conduction band become even lower than
the valence bands. The trend shown by Fig.5 is valid for
other group IV and III-V materials which have diamond
or zincblende structures.

Fig. 7 shows the band edge splitting at I'; X and L
points of InAs under different strains (strain produced
by uniaxial stress along [123] direction and biaxial strain
along [111]). The strain presented were not considered
in the fitting process and produces complicated bandedge
splitting especially for X and L valleys. It can be seen
that the ETB band edge splittings are in good agree-
ment with the corresponding HSE06 results. To quan-
titatively estimate the discrepancies between ETB and
HSEOQ6 calculations for strained materials, the deforma-
tion potentials are extracted from both ETB and HSE0G
results. The deformation potentials of group IV and III-
V materials are compared in tables X and XII. It can be
seen that the important deformation potentials by ETB
agree well with the HSE06 results. The discrepancies
are within 2%. The deformation potentials b, and d,
describe the band edge splitting of valence bands under
diagonal and off-diagonal strain components respectively.
Zoo1 and =179 describe the conduction band edge split-
ting at X points due to diagonal and off-diagonal strain
components respectively. The definition of those defor-
mation potentials are specified in Appendix C.
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FIG. 8: Atom structure of Si/Ge and XAs/YAs type superlat-
tices. (a) Si/Ge superlattice with 4 layers in the unit cell; (b)
Si/Ge superlattice with 8 layers in the unit cell. (c) XAs/YAs
superlattice with 4 layers in the unit cell; (d) XAs/YAs super-
lattice with 8 layers in the unit cell. (¢) AX/BY superlattice
with 4 atoms in the unit cell; (f) AX/BY superlattice with 8
layers in the unit cell. The primitive unit cells are marked by
dashed lines.

D. Tight binding analysis of superlattices

To investigate the transferability of our ETB parame-
ters,band structures of group IV and group III-V super-
lattices are calculated by both ETB and HSE06 models.
The atom structures of the superlattices considered in
this work are shown in Fig.8. The superlattices consid-
ered in this work grow along 001 direction. Those super-
lattices contain only a few layers of atoms (with thickness
from about 0.5 nm to 1.5 nm). To model those superlat-
tices by ETB method, in principle, self-consistent ETB
calculations with Possion equation should be applied if
there is charge redistribution in the hetero-structures.
However the presented superlattices turn out to be ei-
ther type I or type II heterojunctions as the ab-initio
band structures shows band gap of at least 0.5eV for all
the presented superlattices. The charge redistribution in
type I or II heterostructures under zero temperature is
negligible because the valence bands of both materials
are perfectly occupied. The negligible build-in field can
also be realized by looking at the envelope of ab-initio lo-
cal potentials®®37. Thus, the presented ETB calculations
for superlattices all assumes zero build-in potentials. The
parameter dd;; are all set to zero in order to compare with
ab-initio results.
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Fig. 9 and Fig. 10 show the comparison of band struc-
tures of Si/Ge and Arsenides superlattices by ETB and
Hybrid functional calculations respectively. In these fig-
ures, band structures of Si/Ge, GaAs/AlAs, GaAs/InAs
and InAs/AlAs superlattices are presented. In both ETB
and hybrid functional calculations, zero temperature is
assumed. For each type of superlattices, band structure
of two different unit cells are shown. It can be seen that
the ETB band structures are in good agreement for en-
ergy from -2eV to leV above lowest conduction bands.
ETB band structures are obtained with the parameters
given by previous sections without introducing extra fit-
ting parameters. From Fig. 9 and Fig. 10, it can be seen
that ETB calculations without solving Poisson equation
(zero build-in potential is added ) match the HSE06 re-
sults well. More complicated cases include InAs/GaSh
superlattices which contain no common cations or anions
at material interface. The InAs/GaSb superlattices with
4 atomic layers can also be interpreted as InSb/GaAs su-
perlattice. From Fig. 12 (a) and (b), it can be seen that
ETB calculations match the HSEO6 results well even for
interfaces with no common cations or anions.

In 001 superlattices, the primitive unit cells are de-
fined by vectors u; = [0.5,0.5,0]a,us = [—0.5,0.5,0]a
and uz = [0,0, Nl]a, where N can be any integer number.
According to the theory of Brillouin zone folding3® 42, the
X points along [001] direction in a fec Brillouin zone is
folded to the k = [0, 0, 0] point in the Brillouin zone of su-
perlattices. As a result, the lowest few conduction states
at k = [0,0,0] of 001 superlattices can have the feature
of I' and X conduction valleys in pure materials. The
I and X conduction valleys can be easily distinguished
by the corresponding ETB wave functions. Considering
the valleys in a fcc Brillouin zone, the lowest conduction
states at I" point are dominated by s and s* orbitals;
while the conduction states at X points have significant
contribution from both s and p orbitals. This can also be
realized by the effective masses of the valleys. The folded
X conduction valleys have anisotropic effective masses as
it is shown in Fig.10 (a) and (d); while the I' valley have
isotropic effective masses as in Fig.10 (b) and (e). It can
be seen from Fig.10 that the lowest conduction state in
AlAs/GaAs superlattices have the feature of X conduc-
tion valley; while in InAs/GaAs and InAs/AlAs super-
lattices, the lowest conduction state has the feature of '
valley.

Fig. 9 (c¢), Fig.11 and Fig.12 (c¢) compare the ETB
band gap of for different superlattices with corresponding
HSEO06 results. Fig. 9 (c) shows the band gaps in Si/Ge
superlattices. The compared superlattices in Fig.11
include superlattices with common anions (XP/YP,
XAs/YAs and XSb/YSb) and superlattices with common
cations (AIX/AlY, GaX/GaY and InX/InY). Fig.12 (c)
shows the band gaps of selected AX/BY type superlat-
tices, including InAs/GaSb, InAs/AlSb, InP/GaAs and
InP/AlAs. For the superlattices shown in the figure,
averaged lattice constant is used to create the unit cell
of the superlattices since lattice mismatch always exists
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FIG. 9: Band structures of Si/Ge superlattices by ETB and HSE(6 calculations. Figures correspond to supercells which contain
4 atoms (a) and 8 atoms (b) and band gaps of Si/Ge superlattices verse number of atoms in the supercell (c).
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FIG. 10: Band structures of Arsenides superlattices by ETB and HSEO06 calculations. Presented band structures include band
structures of superlattices of 001 AlAs/GaAs((a),(d)), InAs/GaAs((b),(e)) and InAs/AlAs((c),(f)). Upper figures correspond
to supercells which contain 4 atoms(Fig 8 (a)), while lower figures corresponds to supercells with 8 atoms (Fig 8 (b)).

in superlattices. It can be seen that ETB methods in
this work delivered accurate band gaps for ultra small
superlattices. For ultra small superlattices, the band
gaps are not always monotonic functions of thickness.
This non-monotonic dependency of band gaps can be
seen in many of the presented superlattices which have
common cations (Fig.11 (d), (e) and (f)). The ETB
band gap of superlattices agree well with corresponding
HSE06. For superlattices which contain common cations
or anions (shown in Fig.11), the largest discrepancy of
about 0.03eV appears in GaP/GaSb superlattices. While
the discrepancy of superlattices which contain no com-
mon cation or anions, the largest discrepancy reaches a
slightly higher of about 0.05eV. These comparisons sug-
gest that the ETB model and parameters by this work
has good transferability.

IV. CONCLUSION

Environment dependent ETB model with nearest neigh-
bor interactions is developed. ETB parameters for group
IV and III-V semiconductors are parameterized with
respect to HSEQ6 calculations. Good agreements are
achieve for unstrained and arbitrarily strained materials.
The ETB parameters show good transferability when ap-
plied to ultra-small superlattices. The ETB band struc-
tures of superlattices match the corresponding HSE06
result well. Tight binding band gaps of varieties of su-
perlattices show less than 0.1 eV discrepancies compared
with HSEO6 calculations. This work demonstrated that
an ETB model with good transferability can be achieved
with nearest neighbor interactions for group IV and I1I-V
materials.
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FIG. 11: Band gaps of III-V superlattices by ETB and HSEO06 calculations. The presented band gaps include superlattices of
(a) XP/YP , (b) XAs/YAs and (c) XSb/YSb with ( X and Y stand for different cations, X,Y = Al, Ga or In) and (e) AIX/AlY
, (f) GaX/GaY and (g) InX/InY with ( X and Y stand for different anions, X,Y = P, As or Sb). The ETB band gaps of
different superlattices show good agreement with HSEO6 results, demonstrating the ETB parameters have good transferability.
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FIG. 12: Band structures InAs/GaSb superlattices by ETB and HSE06 calculations. Present figures include band structures
of 4 layer (a) and 8 layer (b) InAs/GaSb superlattices. Band gaps of AX/BY type superlattices are shown in (c¢); InAs/GaSb,
InAs/AlSb, InP/GaAs and InP/AlAs superlattices are considered.
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Appendix A: Expression of ./\/l(al)»y (a)

For a unit vector d

[,y, 2], the explicit form
of M&l)ﬁy (a) are given as follows. For p and d

orbitals, the order of orbitals are arranged accord-
ing to quantum number m, with {p,,p.,p.} and

{da;y,dyz,dngz‘,,la 2 dajz,dlfz,?ﬂ}. Here the M(oi)fy (a)

—y2,
are written as matrices with a and ~ as row and column
indices respectively.

The matrix [M&{lm, (&)] is given by

V3
ym [y z x] . (A1)
The matrix [Mﬁi,zm’ (&)] is given by
V3 V3r V32 -y 0 *\/gy
N 0 V3y 22 V3x 0 (A2)
WOT | By 0 —a VB2 VB
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The matrix [Mg}hlm/ (&)] is given by The matrix [MZm o (&)] is given by
2 2 2
3 2y g - 2 yz? 2 ym
4— Yz 2oy 7? —Y xrz . (A3)
T ya o 22%—y® 2%
3 J
[ 2z27‘§ = Tz —%xy Yz 0 ]
A 2x27y27z2 1
5 Tz 2 %gjz ) Ty —2yz ]
@ (3 2 2 1 222 —a?—y 1 _a—y
M () = 287 vaty va? ’ CIoa V3 (A4)
Yz Ty \/i%xi b= xz2
_ 222 _p2_
i 0 —yz —‘”\By Tz 5
[
Appendix B: Dipole potentials The Q( )’s are two center integrals given by equation

(18). Usmg the explicit expression of M and Slater

The interatomic coupling due to multipole Was glven by 1
Koster formula of Q(Y), the terms in equation (B1) are

equation (17). For dipole moment, the term MY 7( ) are

given by equations (A1) and (A2) The explicit form of written as
Va(lﬁ) are given in this appendix. For example,the p, —p,
. a .. .
couplings V,, is given by
! ZM(” Odin) = S 2 Qi (dir) (B2)

Vi) = szé (Ai) Q) (di) (B1)
+3 <d]k/>M£2<
+> g M (m a(d :
+ Y0 Qi) M) (d i),

1
ZQ;@ ()M @A) = S wiuin Qo (djn),
k/

S MO@0QU i) = Fgmisyismiin (3Q00 (dik) — 2V3QU1 (dn) ) + vy (— QU (din) + 3v3QL, () ) (B3)

d,k’

> QU )M (@) = s wigpiapiia (3QMa, (din) = 2V3QU (dir) ) = wrwiy (~ Qb (dine) + 3V3QUE (dinr))

d.k

(

The pijr = 20 Yim(Qg,)Y1,m(Qg, ) and pjip = The VY can be approximated by
Zm Ylvm(QdAji)Ylvm(QdAjk/ ), Satisfying Zk Pij.k = Dij and
Yk Pjikr = pji with p;; and pj; given by equations Vx(ly) :xijyij(évp(gg 5Vm}7)r) (B6)

(20) and (22). It can be seen that the terms with p;;

or pj; has resemblance with Slater Koster formula of ) 1)

Vay = @Y (Vopo — Vppr). To make the expression sim- here the 6Vpps and 6Vppr are defined by
pler, in this work, only the terms with p;; . and pj; i+ are

preserved. Let 6Vp(1}(2' = %r(pij + pji) Popo + ?ﬂ(qw + ji) Sppo (BT)
SViay = % (pij + pji) Popr + (i + 45i) Sppr (B8)

3Q") i Sdi
\/% (dir) = 3 (Pppff + do Sppv) (B4)  The Dijs Pjis ¢ij and gj; are given by equations (20) and

X (22). Similar process can be applied to other V! 5's. The
2v/3Q")) id, lized
AV Olpan T ik generalized approximation was summarized by equation

/15 (dix) = 3 <Ppp7r+d05pp7r> (B5) (19)

S



Appendix C: deformation potential

e deformation potentials of top valence bands is de-
fined by a 4 band Luttinger k.p Hamiltonian at I"
point.

Pe + QE _Sa Rs O

B -5t P.—Q. 0 R.
He==1"pi o p-q s | ©V

0 R! St P +Q-.
with
P. = —ay(epy +Eyy +€22) (C2)
by

Q. = -5 (Eza + Eyy — 2€22) (C3)
R. = \/ibv (Eza — Eyy) — idyEay (C4)
Se = —dy(ez: — €y2) (Ch)

-

10

11

12

13

14

15

This 4 band Hamiltonian describe the strain behav-
ior top valence bands of zincblende and diamond
structures. b, describe the the Hole splitting un-

17

der 001 strains( €;4 = €yy = —0.5e;,0r). d, de-
scribes the Hole splitting under shear components

(Exys Eyzs E22)-

e the deformation potential of CB(X valleys)*3,
(C6)

where ¢ is the strain tensor, k is a unit vector along
the direction of one of the conduction band minima.

and the deformation potential of conduction X val-
leys due to €4, is described by 2 band Hamiltonian
Eu E'll()gzy

511()Ea:y

o (1)

This Hamiltonian describes the upper and lower con-
duction bands at X point of zincblende and diamond
structures. The energy difference AE between the up-
per and lower conduction bands has the relation AE =

2, =
\/(Eu — E)° + 45342,
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