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It is critical to capture the effect due to strain and material interface for device level transistor
modeling. We introduced a transferable sp3d5s* tight binding model with nearest neighbor interac-
tions for arbitrarily strained group IV and III-V materials. The tight binding model is parameterized
with respect to Hybrid functional(HSE06) calculations for varieties of strained systems. The tight
binding calculations of ultra small superlattices formed by group IV and group III-V materials
show good agreement with the corresponding HSE06 calculations. The application of tight binding
model to superlattices demonstrates that transferable tight binding model with nearest neighbor
interactions can be obtained for group IV and III-V materials.

PACS numbers:

I. INTRODUCTION

Modern field effect transistors have reached critical de-
vice dimensions in sub-10 nanometer. To surpass the
coming limits of downscaling of field effect transistor,
innovative devices such as tunneling field-effect transis-
tors(TFET)1–3 and superlattice field-effect transistors4,5

are actively investigated. Those devices rely strongly on
the usage of hetero-structures and strain techniques. To
have reliable prediction of the performance in those de-
vices, it is critical to have a atomistic model that is able to
model strained ultra-small heterostructures accurately.

Ab-initio methods offer atomistic representations with
subatomic resolution for a variety of materials and het-
erostructures. However, accurate ab-initio methods, such
as Hybrid functionals6,7, GW8,9 and BSE10 approxi-
mations are in general computationally too expensive
to be applied to systems with a size of realistic de-
vice. Furthermore, those methods assume equilibrium
and cannot truly model out-of-equilibrium device condi-
tions where e.g. a large voltage might have been applied
to drive carriers. For these reasons, more efficient semi-
empirical approaches, such as the k ·p11–13, the empirical
pseudopotential14 and the empirical tight-binding(ETB)
methods15,16,25 are actively developed.

Among these empirical approaches, ETB method has
established itself as the standard state-of-the-art basis for
realistic device simulations17. ETB has been successfully
applied to electronic structures of millions of atoms18

as well as on non-equilibrium transport problems that
even involve inelastic scattering19. For strained systems,
modified ETB models take into account the altered en-
vironment in terms of both bond angle and length. In
the simplest tight binding strain model, generalized Har-
rison’s law15,20,21 is usually adopted to describe bond-
length dependence of the nearest-neighbor coupling pa-
rameters. Changes of bond angles in interatomic interac-

tions are automatically incorporated through the Slater-
Koster formulas22. This simplest tight binding strain
model can reproduce some hydrostatic and uniaxial de-
formation potentials15, while much higher accuracy can
be achieved by introducing the strain-dependent onsite
parameters. Boykin et al.16 introduced nearest neigh-
bor position dependent diagonal orbital energies to the
sp3d5s* tight binding model to reproduce correct defor-
mations under [001] strains. Off-diagonal onsite correc-
tions are suggested by Niquet et al.23 and Boykin et al.24

to model the strain behavior of indirect conduction val-
leys of materials with diamond structures under [110]
strains.

Those existing ETB strain models are fitted to pure
strained bulk material instead of more complicated
nanostructures. However, the transferability of those
ETB models and parameters is questionable when ap-
plied to heterostructures. First of all, traditional ETB
parameters depend on material types, while material
type around interfaces can not be clearly defined. Fig.1
shows three possible definitions of materials near a
GaAs/AlAs interface. Interface As atoms are interpreted
as atoms in either (a) As of AlAs or (b) As of GaAs.
Another usual assumption, shown by definition (c),is to
take the interface As atoms to have an average of the
onsite potentials. All those definitions are customarily
used but with no hard data to justify. Secondly, it was
shown that ETB parameters obtained by direct fitting
possibly lead to unphysical results in nano-structures like
ultra-thin bodies25,26. To improve the transferability of
ETB parameters, ab-initio mapping methods are devel-
oped in ref 25. This method is an ab-initio wave functions
based tight binding parameterization algorithm. With
this method, it is shown that ETB models are transfer-
able to Si and GaAs ultra thin bodies.

In this paper, a new ETB model for strained materials
considering only nearest neighbor interactions is intro-
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FIG. 1: Different definitions of materials at GaAs/AlAs in-
terfaces. Regions of AlAs and GaAs materials are separated
by the dashed line. In all presented definitions, the left parts
are AlAs and the right parts are GaAs. In definition (a), the
interface As atoms are defined as atoms in AlAs; in definition
(b), the interface As atoms are defined as atoms in GaAs. In
the case (c), the interface As atoms are defined as As atoms
in an averaged material of AlAs and GaAs.

duced for strained group IV and III-V semiconductors.
This strain model takes account of arbitrary strain ef-
fects to band structure. Transferable ETB parameters
for strained III-Vs and group IV materials are obtained
by ab-initio mapping algorithm from Hybrid functional
calculations. The ETB model shows good transferability
when applied to strained superlattices.

This paper is organized as follows. In section II, the
ETB model for strained materials is described. Sec-
tion III shows the validation of the ETB model for
strained systems and superlattices. Subsection III B de-
scribes the details of getting ETB parameters; ETB pa-

rameters for strained group IV and III-V materials are
listed in this section. Subsection III C compares the tight
binding and hybrid functional results for unstrained and
strained materials. Subsection III D presents the appli-
cation of ETB model in strained superlattices, the tight
binding results for superlattices are compared with hy-
brid functional calculations. Finally, the ETB model of
strained materials and corresponding results are summa-
rized in Section IV.

II. MODEL

The ETB model of strained materials in this work is
based on the multipole expansion27 of the local poten-
tial near each atom. This ETB model has environment
dependency, and it does not rely on the selection of co-
ordinates. It can be applied to arbitrarily strained and
rotated systems. In this work, the tight binding model is
applied to group IV and III-V semiconductors which have
diamond or zincblende structures. However, the applica-
tion of this model is in principle not limited to group IV
and III-V semiconductors. For materials considered in
this work, the interaction range considered in the tight
binding model is limited to the first nearest neighbors.
In the following sections, letters in bold such as r and d
are used for three dimensional vectors; correspondingly, r
and d are used to denote the lengths of r and d. Ω stands
for polar angle and θ and azimuth angle φ of a three di-
mensional vector. α, β and γ correspond to tuples of
angular and magnetic quantum numbers l1m1,l2m2 and
l3m3 of ETB orbitals respectively. Dirac notation is used
for ETB basis functions, e.g. |ψαi〉 stands for α orbital
of atom i.

A. Multipole expansion of atomic potentials

The local potential near atom i is approximated by a
summation of the potential of atom i and potential of its
nearest neighbors(NNs) j

U toti (r) = Ui (|r|) +
∑

j∈ NNs

Uj (|r− dij |) , (1)

where the relative position between atoms i and j is dij .
The potential at r contributed by atom at dij is approx-
imated by generalized spherical potential. This general-
ized spherical potential Uj(|r− dij |) centered at dij has
multipole expansion given by

Uj(|r− dij |) =
∑
l

U
(l)
j (r, dij)

l∑
m=−l

Y ∗lm(Ωr)Ylm(Ωdij ),

(2)
where Ωr and Ωdij stands for angles θ and φ of vectors

r and dij . The U (l)(r, dij) is the radial part of multi-
pole potential with angular momentum l. By substitut-
ing Uj (|r− dij |) in eq (1) by equation (2), the total po-
tential near atom i given by equation (1) can be written
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Atom
Es
Ep
Es∗
Ed
∆

Si
1.1727
10.1115
12.4094
13.8987
0.0215

Ge
-0.1105
9.8495
12.9983
13.3211
0.1234

Al
2.5246
8.8642
12.701
13.540
0.0015

Ga
1.4880
8.6528
12.7318
13.5576
0.0243

In
1.6787
8.9987
12.7742
13.5664
0.1301

P
-2.3788
7.6742
12.5016
13.0781
0.0252

As
-3.5206
7.6037
12.5733
13.1056
0.1293

Sb
-2.3695
6.8994
12.6421
13.1316
0.2871

TABLE I: Atom type dependent onsite and spin orbit coupling parameters for group IV and III-V elements. All parameters in
this table have the unit of eV.

bond
Isc,a
Ipc,a
Is∗c ,a
Idc,a
∆ca

λsc,a
λpc,a
λs∗c ,a
λdc,a
Isa,c
Ipa,c
Is∗a,c
Ida,c
∆ac

λsa,c
λpa,c
λs∗a,c
λda,c
Oac
λac

δdij(Å)

Si-Si
3.1457
2.5307
6.7086
3.5979

0.0
1.3389
1.4197
0.9522
1.1200

-
-
-
-
-
-
-
-
-

-2.1211
1.3004
-0.0118

Ge-Ge
2.4312
2.0823
6.3232
3.4105

0.0
1.4676
1.5634
1.0074
1.1411

-
-
-
-
-
-
-
-
-

-1.5926
1.5457
-0.0043

Ge-Si
2.8305
2.3208
6.5890
3.6100

0.0
1.4230
1.5026
0.9195
1.2181
2.6494
2.2079
6.8296
3.2390

0.0
1.4527
1.5253
0.6896
1.0880
-1.5267
1.4566
-0.08

Al-P
3.4070
2.8113
5.8451
3.1639
0.0023
1.3373
1.2648
0.9476
1.1719
2.1735
1.8851
5.6415
3.2039
0.0003
1.5196
1.4219
1.0031
1.0961
-2.0783
1.1878
0.0537

Al-As
3.3106
2.7621
5.8293
3.0491

0.0
1.4021
1.3069
0.9414
1.1437
2.2018
1.8730
5.7855
3.0758
0.0017
1.4805
1.4592
1.0470
1.2393
-1.9981
1.2167
0.0217

Al-Sb
3.9775
3.5125
6.1929
3.4694
0.0019
1.4438
1.3917
0.8225
1.3307
3.1709
2.9550
6.5076
3.6241
0.0045
1.5553
1.4960
1.0632
1.4126
-2.7374
1.2930
-0.0081

Ga-P
2.5762
2.3797
5.6393
2.8883
0.0142
1.4641
1.1584
0.9348
1.1312
1.7691
1.5278
5.5291
2.9033
0.0015
1.5613
1.6773
0.9848
1.1407
-1.6875
1.2657
0.0043

Ga-As
2.4389
2.3491
5.6115
2.8751
0.0097
1.4410
1.2383
0.9153
1.2365
1.8772
1.5867
5.5735
2.8658
0.0053
1.5505
1.6838
1.0037
1.0993
-1.6467
1.2697
-0.0098

Ga-Sb
2.6906
2.7446
5.5030
3.0666
0.0003
1.5640
1.5635
1.0551
1.4301
2.5078
2.2820
5.7372
2.8997
0.0085
1.6001
1.6629
0.8877
1.3835
-1.9763
1.2931
-0.0019

In-P
3.7423
2.9385
5.7125
3.4549
0.0191
1.3365
1.2082
0.9125
1.2202
2.2406
2.0409
5.5215
3.4065
0.0008
1.4194
1.6325
0.9084
1.2028
-2.2511
1.2338
0.0182

In-As
3.5655
2.9008
5.9270
3.4482
0.0147
1.3568
1.2211
0.8811
1.2880
2.2916
2.1313
5.7498
3.3732
0.0023
1.3955
1.6602
0.9131
1.2172
-2.2073
1.2546
0.0096

In-Sb
4.1432
3.7455
6.1345
4.0470
0.0017
1.3823
1.4496
0.8716
1.3863
3.3104
3.1702
6.2579
3.8005
0.0038
1.6355
1.6168
0.9284
1.3715
-2.9363
1.2860
0.0176

TABLE II: Environment dependent onsites parameters for group IV and III-V materials. In Si and Ge, both ’a’ and ’c’ denote
the same atom. For Si-Ge bond, a correspond to Si and c correspond to Ge. The parameters I’s and O’s are in the unit of eV.
parameters λ’s are in the unit of Å−1. The nonzero δdij is introduced to match ETB results with experimental targets under
room temperature.

as a summation of multipole potentials

U toti (r) =
∑
l

U
(l)
i (r), (3)

where the multipole potentials U
(l)
j (r)’s are given by

U
(0)
i (r) = Ui (|r|) +

∑
j U

(0)
j (r, dij)

U
(l)
i (r) =

∑
m Y

∗
lm(Ωr)

(∑
j U

(l)
j (r, dij)Ylm(Ωdij )

)
(4)

The U
(l)
i ’s are summations of multipoles over nearest

neighbors. The strain induced multipole potentials up
to quadrupole (with l = 2) are considered in this work.

The U
(0)
i describes the crystal potential under hydro-

static strain. U
(0)
i depends only bond lengths. For

unstrained or hydrostatically strained zincblende and

diamond structures, both dipole potential U
(1)
i (r) and

quadrupole potential U
(2)
i (r) are zero due to the crys-

tal symmetry of zincblende and diamond structures. For

strained systems with traceless diagonal strain compo-

nent like εxx, U
(2)
i (r) is induced due to angle change;

while for strained systems with off-diagonal strain com-

ponent like εxy, both U
(1)
i (r) and U

(2)
i (r) are induced.

B. Strain dependent tight binding Hamiltonian

The strain dependent ETB Hamiltonian is constructed
according to the multipole expansion of U toti . Similar to
the multipole expansion of the total potential given by
eq (3), the strain dependent ETB Hamiltonian is written
as

H = H(0) +H(1) +H(2), (5)

where the H(l) depends on multipole potential U (l)(r).
Matrix element Hαi,βj is thus written as Hαi,βj =

H
(0)
αi,βj

+H
(1)
αi,βj

+H
(2)
αi,βj

.

C. Onsite elements

The U
(0)
i has contribution from atom i and its neighbors.

Similar to U
(0)
i , the diagonal onsite energies H

(0)
αi,αi also



4

bond
Cscpc,a
Cpcdc,a
Cdcdc,a
Csapa,c
Cpada,c
Cdada,c

Si-Si
1.2234
3.4303
9.9099

Ge-Ge
1.1939
3.3684
9.8628

Si-Ge
1.2030
3.3930
9.8856
1.2030
3.3930
9.8856

Al-P
1.5306
3.5101
8.4800
1.2755
3.7066
10.1674

Ga-P
1.2321
3.3655
8.9391
1.2266
3.3529
9.1512

In-P
1.5843
3.2494
8.2225
1.0321
3.8671
8.8370

Al-As
1.9559
3.6671
6.9304
1.4219
3.8677
9.0338

Ga-As
1.2601
3.4064
9.2562
1.2327
3.5647
9.9997

In-As
1.1396
3.3227
9.1776
1.1388
3.3128
9.7860

Al-Sb
1.5751
3.5628
8.4919
1.2914
3.5603
8.5971

Ga-Sb
1.9561
3.8564
6.9425
1.9606
3.8573
6.7043

In-Sb
1.0291
3.3380
8.7305
1.1456
3.3593
8.6512

TABLE III: Off-diagonal onsite parameters due to dipole and quadrupole potentials. In Si and Ge, both ’a’ and ’c’ denote the
same atom, parameters Cαaβa,c are left empty due to relation Cαaβa,c = Cαcβc,a. For Si-Ge bond, ’a’ correspond to Si and ’c’
correspond to Ge. All parameters are in the unit of eV.

has contribution Eαi from atom i and contributions from
its neighbors. The contribution of neighbors to diagonal
onsites energies is separated to orbital dependent part
Iαi,j(dij) and orbital independent part Oi,j(dij). The

onsite elements due to U
(0)
i is given by

H(0)
αi,αi = Eαi +

∑
j∈NNs

Iαi,j(dij) +
∑
j∈NNs

Oi,j(dij), (6)

with

Iαi,j(dij) = Iαi,je
−λαi,j(dij+δdij−d0) (7)

Oi,j(dij) = Oi,je
−λij(dij+δdij−d0) (8)

Here the d0 is the reference bond length. In this work,
the bond length of unstrained GaAs is chosen as d0 =
2.447951. The parameter δdij is introduced to modulate
discrepancy between ab-initio results and experimental
results. Non-zero δdij ’s are introduced to match the ETB
results in this work with experimental data under room
temperature; while with zero δdij , ETB results match
the zero temperature ab-initio results. The term Eαi
depends on orbital and atom type instead of material
type. The summation over Iαi,j(dij) and Oi,j(dij) are the
environment dependent part of diagonal onsite energies

H
(0)
αi,αi . Oi,j(dij) is used to modulate the band offset

and it satisfies Oi,j(dij) = Oji(dji). Similar expression is
also applied to spin-orbit coupling terms ∆SOC

i = ∆i +∑
j∈NNs ∆i,j . In this work, only spin-orbit interaction of

p orbitals is considered, and the bond length dependency
of ∆i,j is neglected.

Due to dipole and quadrupole potentials, non-zero off-
diagonal onsite elements appear. Off-diagonal onsite el-
ements due to multipole potentials are given by

Eαiβi = 〈ψαi(r)|U (l)(r)|ψβi(r)〉, l > 1. (9)

Since the U (l)(r) given by eq (4) is non-spherical, to es-
timate these terms, following relation is used

Yα(Ω)Yβ(Ω) =
∑
γ

Gγα,βYγ(Ω), (10)

where the Gγα,β is the Gaunt coefficient28 defined by

Gγα,β =

∫
Yα(Ω)Yβ(Ω)Y ∗γ (Ω)dΩ (11)

with dΩ = sin θdθdφ.
With eq (4), off-diagonal onsite elements of atom i can

be written as a summation of terms depending on atom
i and its neighbors j

Eαiβi =
∑
j

Mα,β(d̂ij)C
(l)
αiβi,j

(dij), (12)

where the C
(l)
αiβi,j

is the integral of radial parts of |ψαi〉,
U (l) and |ψβi〉, given by

C
(l)
αiβi,j

= 〈Rαi(r)|U (l)(r, dij)|Rβi(r)〉 (13)

The Mα,γ is given by

M(l)
α,γ(d̂ik) =

∑
m′

Gγα,α′Ylm′(Ωdik), α′ = l,m′ (14)

The explicit form ofM(l)
α,γ(d̂ik)’s due to multipole poten-

tials are given by appendix A.
The strained onsite model by equation (12) is essen-

tially equivalent to the Slater Koster relations which was
also used by Niquet et al23 and Boykin et al24. Onsite
energies in Niquet’s work depend on strains components
linearly; while Boykin’s onsite model uses Harrison’s law.
Differently from those previous works, the diagonal on-
site energies in this work follow an exponential depen-
dency of bond lengths, and the off-diagonal onsite ener-
gies depend on symmetry breaking strains linearly which
are described by equation (12). It should be noted that,
for unstrained zincblende and diamond structures, the
U (l) = 0 for l = 1, 2 due to crystal symmetry. Con-
sequently, the strain induced off-diagonal onsites Eαi,βj
are all zero. The onsite energies in our model depend on
the atom type and neighbor type instead of the material
type. The atom type and bond type can be clearly de-
fined, while the material type can not, as demonstrated
by Fig.1. Thus the tight binding model in this work does
not have ambiguity at the material interfaces

Since this work limits orbitals α and β to s,p,d and
s*, the dipole potentials lead to non-zero off-diagonal on-
site among s-p, and p-d orbitals. While the quadrupole
potential lead to non-zero off-diagonal onsite among p-p,
and d-d orbitals. Therefore, there is no confusion to use

Cαiβi,j instead of C
(l)
αi,βi,j

. Since the strain considered in

this work has amplitudes up to 4%, it turns out the bond
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length dependency of Cαiβi,j can be neglected. Fitting
parameters for onsite elements introduced in this work
include Eαi , Iαi,j , λαi,j and Cαiβi,j . For atoms in alloys
or material interfaces, where an atom might has different
type of neighbors, an averaged Cαiβi,j over neighbors j
is used.

D. Interatomic couplings

Interatomic couplings H
(0)
αi,βj

due to U (0) which couple

orbital α of atom i and orbital β of atom j follows the
Slater Koster formulas22,29. Bond length dependent two
center integrals in this work are approximated by expo-
nential law

Vαiβj |m|(dij) = Vαiβj |m|e
−ηαiβj |m|(dij+δdij−d0). (15)

The δdij is the parameter introduced in order to match
the ETB band structure with experimental results.

The interatomic coupling due to multipole potential
U (l) are written as

V
(l)
αi,βj

= 〈ψα(r)|U (l)(r)+U (l)(r−dij)|ψβ(r−dij)〉. (16)

By substituting U (l) with equation (4), this integral can
be written as

V
(l)
αi,βj

=
∑
γ,kM

(l)
α,γ(d̂ik)Q

(l)
γi,βj

(dik) + (17)∑
γ′,k′ Q

(l)
αi,γ′j

(djk′)M(l)
γ′,β(d̂jk′)

where the k denotes the nearest neighbors of atom i and
the k′ denotes the nearest neighbors of atom j. The

Q
(l)
γ,β(dik) and Q

(l)
α,γ′(djk′) are given by

Q
(l)
γi,βj

(dik) = 〈ψγ(r)|U (l)(r, dik)|ψβ(r− dij)〉 (18)

Q
(l)
αi,γ′j

(djk′) = 〈ψα(r)|U (l)(|r− dij |, djk′)|ψγ′(r− dij)〉

The |ψγ(r)〉 has the same radial part as |ψα(r)〉 , al-

though γ and α are different. Q
(l)
γi,βj

(dik) andQ
(l)
αi,γ′j

(djk′)

are three center integrals involving orbitals of atom i,j
and potential U (l) from atom k or k′. However, since
the quadrupole potential U (l) are centered either at

atom i or j, the Q
(l)
γi,βj

(dik) and Q
(l)
αi,γ′j

(djk′) has the

expression of two center integrals describing by Slater
Koster formulas. To simplify the formula, we approxi-
mate the effect of U (l)(r, dik)’s by using averaged poten-
tial over k and k′ to remove the dependency of atom k
and k′, Ū (l)(r) = 1

nk

∑
k U

(l)(r, dik) , Ū (l)(|r − dij |) =
1
nk′

∑
k′ U

(l)(|r − dij |, djk′). Similar to the onsite ener-

gies, the strain induced terms V
(l)
αi,βj

are all zero for un-

strained bulk zincblende and diamond materials.
For dipole potentials, the complete explicit expression

of equation (17) is lengthy. In this work, we find it is suf-
ficient to approximated equation (17) with Slater Koster
formula for dipole potentials. The U (1) introduces strain

correction δV
(1)
αiβj |m| to interatomic interaction parame-

ters Vαiβj |m|(dij) given by equation (15). The δV
(1)
αiβj |m|

has the expression

δV
(1)
αiβj |m| =

4π

3
Pαi,βj ,|m| (pij + pji)+

4π

3
Sαi,βj ,|m| (qij + qji) ,

(19)
where the pij and qij estimate the dipole potential along
bond dij . Pαi,βj ,|m| and Sαi,βj ,|m| are fitting parameters.
pij and qij are given as

pij =
∑
k,m

Y1,m
(
Ωdi,k

)
Y1,m

(
Ωdi,j

)
(20)

qij =
∑
k,m

Y1,m
(
Ωdi,k

)
Y1,m

(
Ωdi,j

) δdik
d̄

. (21)

pji =
∑
k′,m

Y1,m
(
Ωdj,k

)
Y1,m

(
Ωdj,i

)
(22)

qji =
∑
k′,m

Y1,m

(
Ωdj,k′

)
Y1,m

(
Ωdj,i

) δdjk′
d̄

.

The d̄ is the average bond length. More discussion of
his approximation is given in appendix B. pij and qij
estimate the impact of dipole moment to neighbors. The
non-zero pij correspond to non-zero off-diagonal strain
components, while the nonzero term qij corresponds to
bond length changes which break crystal symmetry.

For quadrupole potentials, we find it is sufficient to
drop the bond length dependency of Ū (2)(r) and Ū (l)(|r−
dij |) from equation (18) since we consider strain up to
4% in this work. Thus Qγi,βj (dik) and Qαi,γ′j (dk′j) can

be simplified by

Qγi,βj = 〈ψγ(r)|Ū (2)(r)|ψβ(r− dij)〉 (23)

Qαi,γ′j = 〈ψα(r)|Ū (2)(|r− dij |)|ψγ′(r− dij)〉 (24)

Here the fitting parameters in Slater Koster form
Qαi,βj ,|m| are introduced.

III. RESULTS

In this work, ab-initio level calculations of group IV
and III-V systems are performed with VASP32. The
screened hybrid functional of Heyd, Scuseria, and Ernz-
erhof (HSE06)6 is used to produce the bulk and the
superlattices band structures with band gaps compara-
ble with experiments33. In the HSE06 hybrid functional
method scheme, the total exchange energy incorporates
25% short-range Hartree-Fock (HF) exchange and 75%
Perdew-Burke-Ernzerhof(PBE) exchange34. The screen-
ing parameter µ which defines the range separation is
empirically set to 0.2 Å for both the HF and PBE parts.
The correlation energy is described by the PBE func-
tional. In all presented HSE06 calculations, a cutoff en-
ergy of 350eV is used. Γ-point centered Monkhorst Pack
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bond
Vscsaσ
Vs∗cs∗aσ
Vscs∗aσ
Vscpaσ
Vs∗cpaσ
Vscdaσ
Vs∗cdaσ
Vpcpaσ
Vpcpaπ
Vpcdaσ
Vpcdaπ
Vdcdaσ
Vdcdaπ
Vdcdaδ
Vsas∗cσ
Vsapcσ
Vs∗apcσ
Vsadcσ
Vs∗adcσ
Vpadcσ
Vpadcπ
ηscsaσ
ηs∗cs∗aσ
ηscs∗aσ
ηscpaσ
ηs∗cpaσ
ηscdaσ
ηs∗cdaσ
ηpcpaσ
ηpcpaπ
ηpcdaσ
ηpcdaπ
ηdcdaσ
ηdcdaπ
ηdcdaδ
ηsas∗cσ
ηsapcσ
ηs∗apcσ
ηsadcσ
ηs∗adcσ
ηpadcσ
ηpadcπ

Si-Si
-1.7377
-4.2881
-1.7587
2.9260
2.5379
-2.0901
-0.1627
3.7002
-1.2896
-0.9729
2.1919
-0.9507
1.8412
-1.3776

1.5188
0.7884
0.9121
1.0267
0.6723
1.2901
0.7353
0.9903
1.3057
0.7324
0.8449
0.8837
1.4832
1.4183

Ge-Ge
-1.7530
-4.4947
-1.4865
2.9146
2.3919
-1.9432
-0.1556
3.8013
-1.3517
-0.7001
2.1684
-0.4385
1.5738
-1.6745

1.5938
0.7628
0.9936
1.1150
0.6652
1.2611
0.7792
1.0020
1.3256
0.4988
0.7391
0.6221
1.4947
1.5345

Ge-Si
-1.7411
-4.6183
-1.6734
2.8349
2.5087
-2.2045
-0.2007
3.6856
-1.2686
-1.0464
1.9985
-0.3279
1.6931
-1.6394
-1.5824
2.8553
2.0593
-2.2859
-0.3354
-0.9837
2.0199
1.5187
0.5629
1.1773
1.0444
0.7828
1.2553
0.7795
0.9412
1.2571
0.7486
0.8194
0.6172
1.4207
1.5080
0.8371
1.1317
0.9643
0.9601
0.7171
0.7872
0.8921

Al-P
-1.7682
-4.0139
-2.0131
2.9402
2.1206
-2.2681
-0.3042
3.5838
-1.2121
-0.7139
2.2351
-0.9666
1.9252
-1.5266
-1.2241
2.5861
2.6252
-2.1557
-0.5445
-1.2443
1.8639
1.5395
0.7239
0.9612
1.1504
0.8908
1.0099
0.6760
0.9720
1.4131
0.7045
0.9310
0.7986
1.3402
1.3826
1.0682
1.0207
0.9204
1.1400
0.6734
0.7138
0.9125

Al-As
-1.8219
-4.3097
-2.0242
3.1045
2.1783
-2.2634
-0.3051
3.7366
-1.3318
-0.6818
2.2795
-0.7343
1.8295
-1.6782
-1.2520
2.5919
2.6105
-2.1862
-0.4197
-1.1628
1.9673
1.5402
0.7385
0.9635
1.1291
0.9000
0.9765
0.6901
0.9481
1.4223
0.6716
0.9336
0.8016
1.2909
1.4205
1.0682
1.0266
0.9233
1.1880
0.6640
0.7090
0.8956

Al-Sb
-2.1063
-4.2962
-1.8153
3.3534
2.2283
-2.4048
-0.3387
4.1011
-1.6433
-0.9318
2.4007
-0.7374
1.7864
-1.8053
-1.5371
2.9884
2.5435
-2.0941
-0.2418
-0.9421
2.0986
1.5484
0.6720
1.0249
0.9883
0.9711
0.8921
0.6394
0.9539
1.3508
0.5149
0.9104
0.8906
1.2642
1.5074
1.0043
1.0507
0.8024
1.2410
0.6954
0.7175
0.7612

Ga-P
-1.7010
-4.1464
-1.8778
2.8997
2.0854
-2.2303
-0.2808
3.5451
-1.1631
-0.8561
2.1997
-0.4721
1.5643
-1.4702
-1.1986
2.6045
2.6205
-1.7346
-0.4906
-0.7510
1.8737
1.5399
0.7270
0.9639
1.0862
0.8632
1.1882
0.6625
0.9887
1.4554
0.6995
0.9056
0.7629
1.4121
1.4383
0.9752
1.0821
0.9074
1.1570
0.6609
0.7059
0.9149

Ga-As
-1.7842
-4.3164
-1.8820
2.9935
2.1256
-2.1456
-0.2812
3.7312
-1.2992
-0.7416
2.2874
-0.4906
1.4887
-1.6107
-1.1588
2.7008
2.5674
-1.9422
-0.3828
-0.6656
2.0486
1.5565
0.7447
0.9515
1.1004
0.7836
1.1300
0.6818
0.9646
1.3846
0.6976
0.8730
0.6990
1.2959
1.4491
0.9898
1.1126
0.8269
1.0945
0.6838
0.6976
0.8941

Ga-Sb
-2.0232
-4.2066
-1.7410
3.2439
2.4986
-2.2758
-0.1848
4.1685
-1.5846
-1.1356
2.3716
-0.5153
1.6402
-1.8241
-1.6281
3.0092
2.2691
-2.1687
-0.3829
-0.3859
2.1917
1.5076
0.6439
1.0117
1.0413
0.9136
1.1453
0.6042
1.0211
1.4392
0.5096
0.9348
0.6763
1.4977
1.4208
0.9824
1.0806
0.8240
0.9333
0.7762
0.7726
0.8046

In-P
-1.9110
-3.7944
-2.2047
3.0736
2.2361
-2.2543
-0.3446
3.6073
-1.2755
-0.5488
2.2517
-0.4615
1.6186
-1.6310
-1.1401
2.5465
2.6249
-1.6800
-0.7584
-0.5816
1.8626
1.5274
0.7325
0.9559
1.0960
0.8578
1.1067
0.6949
1.0454
1.4932
0.7044
0.8241
0.8025
1.3955
1.3471
0.9630
1.0298
0.8790
1.0923
0.6906
0.7041
0.9100

In-As
-1.9667
-4.2049
-2.1482
3.2715
2.2493
-2.2986
-0.2867
3.9261
-1.4074
-0.6025
2.2879
-0.4708
1.6103
-1.8837
-1.1581
2.6184
2.6070
-1.7252
-0.4789
-0.5791
1.9421
1.5436
0.7794
0.9384
1.0707
0.8618
1.0693
0.6982
1.0434
1.4411
0.6964
0.7977
0.8020
1.4221
1.3581
0.9941
1.0809
0.8193
1.1253
0.6837
0.6993
0.9198

In-Sb
-2.2797
-4.1696
-1.8748
3.5395
2.2701
-2.4392
-0.1813
4.2661
-1.7708
-0.9446
2.4045
-0.6675
1.7524
-2.0733
-1.3964
3.0903
2.3266
-2.0149
-0.3659
-0.3351
2.0716
1.5461
0.6794
0.9793
1.0835
0.9525
0.9973
0.7439
0.9518
1.4457
0.5439
0.8398
0.7115
1.3794
1.2748
0.9732
1.1634
0.7068
0.9660
0.7474
0.7927
0.8251

TABLE IV: Bond length dependent interactomic coupling parameters for group IV and III-V materials. In Si and Ge, both ’a’
and ’c’ denote the same atom. For Si-Ge bond, ’a’ correspond to Si and ’c’ correspond to Ge. The parameters V ’s are in the
unit of eV. parameters η’s are in the unit of Å−1.

kspace grids are used for both bulk and superlattice sys-
tems. The size of the kspace grid for strained bulk cal-
culations is 6 × 6 × 6, while one for 001 superlattices is
6× 6× 3. k-points with integration weights equal to zero
are added to the original uniform grids in order to gener-
ate energy bands with higher k-space resolution. PAW35

pseudopotentials are used in all HSE06 calculations. The
pseudopotentials for all atoms include the outermost oc-
cupied s and p atomic states as valence states. Ab-initio
band structures of strained and unstrained bulk materials
are aligned based on model solid theory36,37. With the
model solid theory, relative band offsets are determined
by using different superlattices.

A. Room temperature targets

Ab-initio calculations usually assume zero temperature,
while ETB models matching room temperature experi-
ments are required for realistic device modeling. In this
work, in order to get ab-initio band structures matching
experiments under room temperature, artificial hydro-
static strain is applied to individual material to mimic
the effect of room temperature and to compensate the
error of ab-initio calculations. With hydrostatic strain,
lattice constants change from a0 to a0+δa. This artificial
lattice constant change can be used to adjust the ab-initio
band gap of semiconductors to match finite temperature
experimental band gap. Table XI shows the required δa
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bond
Psapcσ
Psadcσ
Ppapcσ
Ppapcπ
Pscpaσ
Pscdaσ
Ssapcσ
Ssadcσ
Spapcσ
Spapcπ
Sdadcσ
Sdadcπ
Sdadcδ
Sscpaσ
Sscdaσ
Qsapcσ
Qsadcσ
Qpapcσ
Qpapcπ
Qdadcσ
Qdadcπ
Qdadcδ
Qscpaσ
Qscdaσ

Si-Si
-1.5396
0.7752
-0.9283
1.6156

0.7491
1.4609
1.6103
-3.8712
0.7450
4.0875
3.9344

6.5771
-1.3985
-2.5641
-0.9290
1.9700
6.9775
-0.4367

Ge-Ge
-1.5663
0.7925
-0.6865
1.2451

0.8861
1.5098
1.6759
-2.6283
0.6304
3.2465
3.2883

5.1614
-1.4161
-1.9725
-0.7786
2.0320
6.8269
-0.4345

Si-Ge
-1.5006
0.8145
-0.7794
1.5188
-1.5006
0.8145
0.8200
1.4848
1.4812
-3.4877
0.7508
3.8909
3.7768
0.8200
1.4848
6.2119
-1.3773
-2.2944
-0.9155
2.0051
6.9180
-0.2475
6.2119
-1.3773

Al-P
-1.6592
0.3091
-1.0469
1.8003
-2.3325
0.3045
1.9743
1.5210
3.1829
-4.5544
0.9623
3.6546
3.7809
1.1003
2.3270
6.5773
-2.2243
-2.6508
-0.4430
2.0628
6.3774
-0.8822
7.3014
-1.6439

Ga-P
-1.5167
0.7372
-0.3635
1.6262
-1.5468
0.6986
0.7668
1.4103
2.0255
-4.4913
0.7014
3.7256
4.0881
0.7325
1.4101
5.6126
-1.0040
-2.3040
-0.5811
2.0977
6.1846
-0.2823
6.3718
-1.3167

In-P
-1.3417
1.1406
-0.2978
1.0269
-2.7879
0.4468
1.7468
1.3737
2.6098
-4.4096
0.2811
3.7468
3.5400
0.8607
2.0861
4.3389
-2.1996
-2.3389
-0.0174
2.3898
7.1001
-0.7120
6.0554
-1.3153

Al-As
-0.9448
1.0546
-1.5842
1.3440
-2.6736
0.3458
1.8554
1.8819
2.8324
-4.3925
0.7210
4.2782
3.7232
0.4794
2.3560
4.6049
-2.0707
-2.6020
-0.0880
2.4063
5.9092
-1.3089
7.0724
-0.8685

Ga-As
-1.3555
0.5127
-0.4684
1.0823
-2.2816
0.5314
1.4927
1.8221
1.8866
-4.2555
0.7340
3.1996
3.6569
0.5577
2.2435
5.2229
-1.5659
-1.2315
-1.1158
2.4369
7.0035
-0.7043
6.1072
-1.0584

In-As
-1.5821
1.0312
-0.4048
0.7503
-1.7354
0.7030
1.2099
1.5578
2.4993
-4.2825
0.6007
3.4492
3.9674
0.7424
1.4634
4.7711
-1.4199
-1.1147
-0.7130
1.7380
6.9446
-0.4713
5.4079
-1.1532

Al-Sb
-1.1122
0.8430
-1.1008
0.4365
-2.4051
0.4151
1.5753
1.4029
2.7592
-3.6569
0.4945
2.9925
2.8669
0.7568
2.2419
4.7149
-1.5381
-2.4559
0.1086
1.9471
6.3621
-1.2464
5.3544
-0.7379

Ga-Sb
-1.2324
0.6116
-0.9431
0.4087
-2.6815
0.4081
1.1479
1.8530
2.2525
-3.4164
0.1092
4.0625
2.6015
0.1379
2.3834
3.6729
-2.0985
-1.3465
-0.6194
2.3476
5.9208
-1.1962
6.9797
-0.7086

In-Sb
-1.0398
1.0719
-0.6557
0.5719
-1.8459
0.8668
1.9147
0.7074
2.7781
-2.8257
0.3453
3.3261
3.6276
-0.1957
2.0629
3.5491
-1.4815
-1.8447
-0.0713
2.2434
6.6177
-0.6252
5.2978
-1.1249

TABLE V: Interatomic coupling due to dipole and quadrupole potentials. In Si and Ge, both ’a’ and ’c’ denote the same atom.
For Si-Ge bond, a correspond to Si and c correspond to Ge. All parameters are in the unit of eV.

(a) (b)

(c) (d)

z

x

y

FIG. 2: Strained systems considered in this work. (a) hydro-
static strain, (b) with two bond length changes, (c) diagonal
strain with εxx = εyy = −0.5εzz, (d) off-diagonal strain with
εxy 6= 0

in order to match HSE06 band gaps with room temper-
ature experimental data. It can be seen that the most
of the required δa are in general less than 1% hydro-
static strain. The AlP requires δa up to 2%a0. By this
adjustment, band gaps of most of the presented semicon-
ductors reach less than 0.05eV mismatch compared with
experimental results. The largest mismatch appears in
AlAs which has the mismatch of about 0.1eV. Since the
parameterization algorithm used in this work relies on
the ab-initio wave functions, the concern of this artificial
adjustment is that whether it will change ab-initio wave
functions significantly. Fig. 6 shows the contribution of
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HSE06
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FIG. 3: Band structure of III-Vs materials with ETB and
HSE06 calculations. Presented band structures of IV mate-
rials include Si (a) and Ge (b). ETB band structures are in
good agreement with HSE06 results. The HSE06 bands are
adjusted to match experimental results under room tempera-
ture.

different orbitals in ab-initio wave functions as a function
of lattice constant. Here the ab-initio wave functions of
InX with different lattice constants are represented by
the same basis functions. It can be seen that the ev-
ery percent of hydrostatic strain introduced changes the
contribution of orbitals up to 0.02. Thus the artificial ad-
justment introduces negligible changes to wave functions.
Similar trend can be observed in other group III-V and
IV materials. In this work, the ETB parameters are all
fitted with respect to ab-initio results that are adjusted
with respect to room temperature experiments.
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FIG. 4: Band structure of III-Vs materials with ETB and HSE06 calculation. Presented band structures of III-V materials
include (a) AlP , (b) GaP , (c) InP ,(d) AlAs , (e) GaAs,(f) InAs ,(g) AlSb ,(h) GaSb ,(i) InSb. ETB band structures are in
good agreement with HSE06 results.
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FIG. 5: Band structure of Si with different lattice constants. (a) Si with a lattice constant of 5.4 Å, (b)Si with a lattice constant
of 5.8 Å, (c) direct and indirect band gaps of Si with different lattice constants. The lowest conduction band at Γ point transit
from p-bands to s-bands at about 5.8 Å. When lattice constant is 5.4 Å, Si is a indirect gap semiconductor, the X conduction
valley is the lowest conduction valley. As lattice constant increases, the band gap at of X valley (Eg(X)) increases slightly,
while the bandgap of L valleys (Eg(L)) and direct band gap (Ecs(G)− Ev) decrease significantly.
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Si Ge
targets
Eg(Γ)
Eg(X)
Eg(L)
∆SO

mhh100

mhh110

mhh111

mlh100

mlh110

mlh111

mso

mcΓ

mcXl

mcXt

mcLl

mcLt

HSE06 ETB error
3.301 3.332 0.9%
1.141 1.155 1.2%
2.246 2.245 0.1%
0.051 0.051 0.0%

0.260 0.266 2.5%
0.522 0.535 2.4%
0.649 0.672 3.5%
0.190 0.179 5.9%
0.139 0.134 3.7%
0.132 0.127 3.6%
0.225 0.218 2.8%

- -
0.856 0.754 11.9%
0.191 0.194 1.2%
1.641 1.774 8.1%
0.130 0.147 13.2%

Ref
3.34
1.12
2.04
0.04

0.29
0.54
0.75
0.20
0.15
0.14
0.23

−
0.91
0.19
3.43
0.17

HSE06 ETB error
0.755 0.744 1.4%
0.974 0.945 3.0%
0.709 0.678 4.4%
0.313 0.311 0.4%

0.203 0.197 2.7%
0.378 0.381 0.6%
0.506 0.523 3.2%
0.040 0.040 1.0%
0.037 0.037 0.3%
0.035 0.035 0.2%
0.093 0.091 2.2%

0.032 0.033 3.7%
0.840 0.768 8.5%
0.189 0.203 7.5%
1.577 1.738 10.2%
0.081 0.101 23.8%

Ref
0.81
0.90
0.66
0.30

0.21
0.37
0.51
0.05
0.04
0.04
0.10

−
0.90
0.20
1.59
0.08

TABLE VI: Targets comparison of bulk XP. Critical band
edges and effective masses at Γ, X and L from ETB and
HSE06 calculations are compared. The Eg and ∆SO are in
the unit of eV; effective masses are scaled by free electron mass
m0. The error column summarizes the relative discrepancies
between HSE06 and ETB results. The Reference bandedge
and effective masses are from Ref 30.
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FIG. 6: Contribution of p orbitals to the top valence bands(a)
and contribution of s orbitals to the lowest conduction bands
of InX (X=P,As,Sb). The p orbitals of In and cation atoms
contribute to the top valence bands. When lattice constant
change one percent, p orbitals contribution are changed by
less than 0.0002. The s orbitals of In and anion atoms con-
tribute to the lowest conduction bands. When lattice constant
change one percent, s orbitals contribution are changed by less
than 0.02.

B. ETB parameters for strained materials

The ETB model in this work makes use of sp3d5s*
basis functions. The sp3d5s* empirical ETB model
with nearest neighbor interactions has been proved to
be a sufficient model for bulk zincblende and diamond
structures16,25,38. To parameterize the ETB model from
ab-initio results, both ab-initio band structure and wave
functions are considered as fitting targets. The process
of parameterization from ab-initio results was described

by Ref. 25. This method is applicable to any model that
is able to deliver explicit wave functions, and is not re-
stricted to the HSE06 calculations. E.g. empirical pseu-
dopotential calculations or more expensive but accurate
GW calculations can be used.

To obtain ETB parameters for strained materials, the
process of parameterization from ab-initio results by Ref.
25 is applied to multiple strained systems. To consider
multiple systems in the fitting process, a total fitness to
be minimized is defined as a summation of fitness of all
systems considered (labeled by index s) Ftotal =

∑
s Fs.

The fitness Fs is defined to capture important targets
of each stained system considered in the fitting process.
The strained systems considered in this work are shown
by Fig. 2, including zincblende or diamond structures
with a) hydro static strain, b) pure bond length changes,
c) diagonal strains and d) off-diagonal strain. For Hydro-
static strain cases, materials with different lattice con-
stant ranging from 5.2 to 6.6 Å are considered. While for
other kind of strains, strains with amplitudes from −4%
to 4% are considered.

For hydrostatically strained materials, fitting targets
includes band structures, important band edges, effec-
tive masses and wave functions at high symmetry points.
Those targets were considered in previous work (ref.25)
in order to get ETB parameters for unstrained bulk mate-
rials. To extract ETB parameters for arbitrarily strained
materials, wave functions and energies at high symmetry
points are also considered as fitting targets. For strained
systems, it is sufficient to use the strain induced band
edge splitting at high symmetry points as targets. Effec-
tive masses at those points are not considered as fitting
targets. Effective masses in strained materials are re-
lated to the splitting of band edges and effective masses
of unstrained systems. For example, the effective masses
of valence bands in a strained group III-V or IV mate-
rial can be well described by a Luttinger model11. The
well known conduction band effective mass change under
shear strain( with strain component εxy ) can also de-
scribed by camel back model12. Those models include
the strain effect as k-independent perturbation terms.
The strain induced terms correspond to the band edge
splitting at high symmetry points.

It should be noted that the usage of wave function
data eliminates the arbitrariness of parameters among
materials. It can be seen from tables I,IV, III,V that
the parameters of different materials have small relative
variations. Many of the tight binding parameters show
a clear monotonic dependence of the principle quantum
number of atoms. For instance, the Vpcpaσ’s have a trend
|VpcpPσ| < |VpcpAsσ| < |VpcpSbσ| as it is shown in table IV.
This trend of parameters is related to the wave functions
of top valence bands at Γ point. Similar to the trend of
Vpcpaσ, the contribution of p orbitals of cations wpc also
shows a monotonic trend of wpc(InP ) < wpc(InAs) <
wpc(InSb), while the p orbitals of anions wpa show an
opposite trend wpa(InP ) > wpa(InAs) > wpa(InSb) as
it is shown in Fig. 6 (a). Furthermore, the Fig. 6 also
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AlP GaP InP
targets
Eg(Γ)
Eg(X)
Eg(L)
∆SO

mhh100

mhh110

mhh111

mlh100

mlh110

mlh111

mso

mcΓ

mcXl

mcXt

mcLl

mcLt

HSE06 ETB error
4.305 4.303 0.0%
2.391 2.327 2.0%
3.751 3.715 1.0%
0.064 0.064 0.0%

0.508 0.505 0.7%
0.998 0.981 1.7%
1.273 1.270 0.2%
0.250 0.237 5.0%
0.201 0.193 3.9%
0.193 0.185 4.0%
0.343 0.328 4.3%

0.189 0.185 2.4%
0.781 0.789 1.0%
0.242 0.231 4.8%
1.610 1.674 3.9%
0.177 0.192 8.6%

Ref
3.55
2.49
3.54
0.07

0.52
0.87
1.12
0.21
0.18
0.17
0.30

0.22
2.68
0.16
−
−

HSE06 ETB error
2.797 2.793 0.1%
2.256 2.250 0.3%
2.504 2.492 0.5%
0.098 0.098 0.0%

0.355 0.351 1.4%
0.667 0.655 1.9%
0.843 0.836 0.9%
0.160 0.153 4.0%
0.132 0.127 3.4%
0.127 0.122 3.5%
0.229 0.222 3.3%

0.131 0.132 0.5%
1.532 1.305 14.8%
0.224 0.231 3.0%
1.581 1.722 8.9%
0.138 0.163 18.2%

Ref
2.89
2.28
2.64
0.08

0.33
0.52
0.65
0.20
0.16
0.15
0.25

0.13
2.00
0.25
1.20
0.15

HSE06 ETB error
1.397 1.391 0.4%
2.283 2.272 0.4%
2.162 2.143 0.9%
0.124 0.124 0.0%

0.405 0.403 0.4%
0.726 0.728 0.2%
0.918 0.942 2.6%
0.114 0.110 3.2%
0.102 0.098 3.1%
0.099 0.095 3.1%
0.190 0.186 1.8%

0.087 0.084 3.4%
1.476 1.348 8.6%
0.244 0.251 2.6%
1.984 1.941 2.2%
0.144 0.166 15.5%

Ref
3.00
2.38
1.94
0.11

0.53
0.88
1.14
0.12
0.11
0.11
0.21

0.08
−
−
−
−

TABLE VII: Targets comparison of bulk XP. Critical band edges and effective masses at Γ, X and L from TB and HSE06
calculations are compared. The Eg and ∆SO are in the unit of eV; effective masses are scaled by free electron mass m0. The
error column summarizes the relative discrepancies between HSE06 and ETB results. The Reference bandedge and effective
masses are from Ref 31.

AlAs GaAs InAs
targets
Eg(Γ)
Eg(X)
Eg(L)
∆SO

mhh100

mhh110

mhh111

mlh100

mlh110

mlh111

mso

mcΓ

mcXl

mcXt

mcLl

mcLt

HSE06 ETB error
2.891 2.887 0.2%
2.050 2.054 0.2%
2.880 2.872 0.3%
0.317 0.317 0.0%

0.437 0.441 1.0%
0.838 0.841 0.4%
1.082 1.104 2.0%
0.166 0.161 2.9%
0.141 0.137 2.3%
0.135 0.132 2.4%
0.272 0.257 5.6%

0.126 0.123 2.2%
0.850 0.864 1.6%
0.231 0.223 3.5%
1.557 1.627 4.5%
0.144 0.160 10.6%

Ref
3.00
2.16
2.35
0.34

0.47
0.82
1.09
0.19
0.16
0.15
0.28

0.15
0.97
0.22
1.32
0.15

HSE06 ETB error
1.418 1.416 0.2%
1.919 1.912 0.4%
1.701 1.692 0.6%
0.367 0.367 0.0%

0.308 0.317 3.0%
0.569 0.581 2.2%
0.744 0.762 2.4%
0.081 0.081 0.8%
0.073 0.072 0.3%
0.070 0.070 0.2%
0.162 0.156 3.8%

0.065 0.066 1.3%
1.564 1.331 14.9%
0.213 0.216 1.4%
1.613 1.669 3.5%
0.110 0.129 17.9%

Ref
1.42
1.90
1.70
0.28

0.35
0.64
0.89
0.09
0.08
0.08
0.17

0.07
1.30
0.23
1.90
0.08

HSE06 ETB error
0.350 0.348 0.7%
2.052 2.021 1.5%
1.514 1.502 0.8%
0.391 0.391 0.0%

0.344 0.352 2.2%
0.625 0.639 2.3%
0.835 0.865 3.6%
0.026 0.026 1.0%
0.026 0.026 1.0%
0.025 0.025 0.9%
0.102 0.095 6.7%

0.022 0.021 1.6%
1.458 1.275 12.5%
0.232 0.238 2.4%
1.904 1.820 4.4%
0.114 0.131 15.0%

Ref
0.35
1.37
1.07
0.39

0.33
0.51
0.62
0.03
0.03
0.03
0.14

0.03
1.13
0.16
0.64
0.05

TABLE VIII: Targets comparison of bulk XAs. Critical band edges and effective masses at Γ, X and L from TB and HSE06
calculations are compared. The Eg and ∆SO are in the unit of eV; effective masses are scaled by free electron mass m0. The
error column summarizes the relative discrepancies between HSE06 and ETB results. The Reference bandedge and effective
masses are from Ref 31.

shows that the InX orbitals have a similar rate of vari-
ation under hydrostatic strain; consequently, the scaling
factor ηppσ’s for all materials has the value from 0.94 to
1.05.

The atom type dependent onsite parameters are listed
on table I. Table II and IV summarizes the bond length
dependent onsite and interatomic coupling parameters
respectively. From table IV, it can be seen that inter-
atomic parameters for different III-V materials have sim-

ilar values. Multipole dependent onsite parameters and
interatomic coupling parameters are listed in table III
and V respectively. The relative band offsets are incor-
porated in the ETB parameters. The top valence bands
obtained by the ETB model corresponding to the value
from HSE06 calculations instead of zero. However we
shifted top valence bands to zero in presented figures
when showing band structures in order to improve the
readability. The parameters P ’s Q’s and S’s in principle
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AlSb GaSb InSb
targets
Eg(Γ)
Eg(X)
Eg(L)
∆SO

mhh100

mhh110

mhh111

mlh100

mlh110

mlh111

mso

mcΓ

mcXl

mcXt

mcLl

mcLt

HSE06 ETB error
2.223 2.225 0.1%
1.597 1.601 0.2%
1.831 1.835 0.2%
0.655 0.642 1.9%

0.315 0.322 2.4%
0.593 0.615 3.6%
0.761 0.805 5.8%
0.125 0.121 3.4%
0.106 0.103 2.8%
0.102 0.099 2.8%
0.238 0.220 7.7%

0.108 0.109 1.0%
1.458 1.216 16.6%
0.219 0.209 4.7%
1.520 1.543 1.5%
0.121 0.132 8.9%

Ref
2.30
1.62
2.21
0.68

0.36
0.61
0.81
0.13
0.11
0.11
0.22

0.14
1.36
0.12
1.64
0.23

HSE06 ETB error
0.707 0.703 0.5%
1.205 1.202 0.2%
0.865 0.870 0.6%
0.714 0.714 0.0%

0.232 0.251 8.3%
0.426 0.456 7.0%
0.566 0.606 7.0%
0.041 0.041 0.8%
0.038 0.038 0.1%
0.037 0.037 0.1%
0.137 0.124 9.5%

0.037 0.037 0.3%
2.362 1.826 22.7%
0.194 0.219 12.5%
1.587 1.568 1.2%
0.090 0.108 19.2%

Ref
0.73
1.03
0.75
0.76

0.25
0.49
0.71
0.04
0.04
0.04
0.12

0.04
1.51
0.22
1.30
0.10

HSE06 ETB error
0.172 0.170 1.6%
1.566 1.549 1.1%
0.891 0.867 2.8%
0.754 0.770 0.7%

0.245 0.277 12.9%
0.452 0.507 12.2%
0.609 0.694 13.9%
0.012 0.013 6.1%
0.013 0.014 4.7%
0.012 0.012 6.6%
0.117 0.108 7.5%

0.011 0.012 8.7%
0.877 0.790 10.0%
0.219 0.230 5.0%
1.685 1.575 6.5%
0.096 0.111 15.7%

Ref
0.17
−

0.93
0.81

0.26
0.43
0.56
0.02
0.01
0.01
0.11

0.01
−
−
−
−

TABLE IX: Targets comparison of bulk XSb. Critical band edges and effective masses at Γ, X and L from TB and HSE06
calculations are compared. The Eg and ∆SO are in the unit of eV; effective masses are scaled by free electron mass m0. The
error column summarizes the relative discrepancies between HSE06 and ETB results. The Reference bandedge and effective
masses are from Ref 31.

Si Ge
targets
bv
dv

Ξ001

Ξ110

HSE06 ETB error
2.58 2.60 0.8%
6.01 5.78 3.8%
8.31 8.23 1.0%
15.59 15.22 2.4%

Ref
2.10
4.85
8.60
−

HSE06 ETB error
2.81 2.80 0.1%
5.88 5.89 0.0%
8.35 8.35 0.0%
17.21 17.10 0.6%

Ref
2.86
5.28
−
−

TABLE X: Targets comparison of deformation potentials of group IV materials. Reference experimental values are from Ref.
37.

material a0 (Å) gap (eV) δa (Å) δa/a0(%) gap (eV)
exp,300K exp,300K HSE06 HSE06 HSE06

Si 5.43 1.12 -0.0273 0.5 1.141
Ge 5.658 0.66 -0.010 -0.2 0.755
AlP 5.4672 2.488 0.124 2.3 2.391
GaP 5.4505 2.273 0.01 0.2 2.256
InP 5.8697 1.353 0.042 0.7 1.397

AlAs 5.6611 2.164 0.05 0.9 2.05
GaAs 5.6533 1.422 -0.0226 -0.4 1.418
InAs 6.0583 0.354 0.0221 0.4 0.350
AlSb 6.1355 1.616 -0.0186 0.3 1.597
GaSb 6.0959 0.727 -0.0045 -0.1 0.707
InSb 6.4794 0.174 0.0406 0.6 0.172

TABLE XI: Experimental lattice constants and band gaps
of group IV and III-V materials under room temperature;
required changes of lattice constants δa in order to match
HSE06 band gap with experiments.

contain the same number of parameters as interatomic
interaction parameter V . However, it turns out that it is
sufficient to consider only s− p, s− d, p− p and d− d in-
teractions for parameters P ’s, Q’s and S’s. Others such
as s∗ − p, s∗ − d and p − d interactions are constrained
to zero.

C. Unstrained and strained materials

Fig. 3 and 4 show band structures of unstrained bulk
band structure for group IV and III-V materials. The
presented materials include Si, Ga, XP, XAs and XSb
with X = Al,Ga,In. It can be seen that the ETB results of
unstrained bulk group IV and III-V materials match cor-
responding HSE06 results well. Tables VI,VII,VIII and
IX compare the effective masses and critical band edges
between ETB and HSE06 calculations. Most of the effec-
tive masses of important valence and conduction valleys
are within 10% error. Effective masses of higher conduc-
tion valleys like ml or L valleys tend to have larger error.
Discrepancies of critical band edges at high symmetric
points between ETB and HSE06 are within 10meV.

Fig.5 shows Si band structures under hydrostatic
strain. The hydrostatic strain does not change crystal
symmetry, thus the degeneracy at high symmetry points
conserve under hydro static strain. However, it can be
observed by comparing Fig.5 (a) and (b) that the hydro-
static strains change the band edges significantly. With a
lattice constant of 5.4Å, the lowest conduction bands of
Si are X valleys, the L and s-type Γ valley (Ecs(G)) are
of more than 1eV above the X valleys. However, with a
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AlP GaP InP
targets
bv
dv

Ξ001

Ξ110

HSE06 ETB error
1.75 1.68 3.5%
5.37 5.57 3.7%
5.45 5.13 6.0%
15.44 16.79 8.8%

Ref
1.5
4.6
−
−

HSE06 ETB error
2.06 2.02 1.7%
5.25 5.43 3.6%
7.14 7.12 0.4%
17.66 17.90 1.4%

Ref
2.0
5.0
−
−

HSE06 ETB error
1.72 1.63 5.1%
4.43 4.81 8.6%
5.64 5.55 1.5%
17.34 18.33 5.7%

Ref
1.5
4.6
−
−

AlAs GaAs InAs
targets
bv
dv

Ξ001

Ξ110

HSE06 ETB error
1.79 1.79 0.2%
5.47 5.81 6.3%
5.10 4.89 4.1%
15.57 15.21 2.3%

Ref
2.3
3.4
−
−

HSE06 ETB error
2.11 2.00 5.5%
5.41 5.19 4.1%
6.55 6.62 1.1%
17.52 17.31 1.2%

Ref
2.0
4.8
−
−

HSE06 ETB error
1.75 1.70 2.7%
4.44 4.57 2.9%
4.93 4.92 0.1%
16.63 15.95 4.1%

Ref
1.8
3.6
−
−

AlSb GaSb InSb
targets
bv
dv

Ξ001

Ξ110

HSE06 ETB error
1.82 1.95 6.8%
5.44 5.20 4.3%
5.30 5.21 1.8%
13.96 13.42 3.8%

Ref
1.35
4.3
−
−

HSE06 ETB error
2.14 2.27 6.0%
5.32 5.38 1.1%
8.14 7.85 3.6%
15.32 14.29 6.7%

Ref
2.0
4.7
−
−

HSE06 ETB error
1.80 1.89 5.2%
4.60 4.67 1.5%
7.60 7.48 1.5%
14.57 14.11 3.2%

Ref
2.0
4.7
−
−

TABLE XII: Targets comparison of deformation potentials of III-V materials. The Reference bandedge and effective masses
are from Ref 31.
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FIG. 7: Strain induced band edge splitting of selected conduc-
tion bands and valence bands at Γ, X and L points of InAs.
At Γ point, 6 top most valence bands and 2 lowest conduction
bands are shown. 4 lowest conduction bands at X points are
shown. The lowest conduction band at L points are included
in the figures. The valence bands at X and L points are
not shown as those points are of low energy. The ETB band
edge splitting are in good agreement with the corresponding
HSE06 results.

larger lattice constant of 5.8Å, the L and Γ gap descend
dramatically , while the X gap even increase slightly.
The change of band gaps are shown clearly by Fig.5 (c),
it can be seen that at around 5.8Å, the L and s-type Γ
valley become lower than the X valleys. As the lattice
constant increase more, Si becomes a direct gap material
(lowest conduction band is Γ valley). In fact, if the lattice
constant is sufficiently large, Si becomes a metal as the
s-type Γ valley conduction band become even lower than
the valence bands. The trend shown by Fig.5 is valid for
other group IV and III-V materials which have diamond
or zincblende structures.

Fig. 7 shows the band edge splitting at Γ, X and L
points of InAs under different strains (strain produced
by uniaxial stress along [123] direction and biaxial strain
along [111]). The strain presented were not considered
in the fitting process and produces complicated bandedge
splitting especially for X and L valleys. It can be seen
that the ETB band edge splittings are in good agree-
ment with the corresponding HSE06 results. To quan-
titatively estimate the discrepancies between ETB and
HSE06 calculations for strained materials, the deforma-
tion potentials are extracted from both ETB and HSE06
results. The deformation potentials of group IV and III-
V materials are compared in tables X and XII. It can be
seen that the important deformation potentials by ETB
agree well with the HSE06 results. The discrepancies
are within 2%. The deformation potentials bv and dv
describe the band edge splitting of valence bands under
diagonal and off-diagonal strain components respectively.
Ξ001 and Ξ110 describe the conduction band edge split-
ting at X points due to diagonal and off-diagonal strain
components respectively. The definition of those defor-
mation potentials are specified in Appendix C.
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8 layer XAs/YAs
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FIG. 8: Atom structure of Si/Ge and XAs/YAs type superlat-
tices. (a) Si/Ge superlattice with 4 layers in the unit cell; (b)
Si/Ge superlattice with 8 layers in the unit cell. (c) XAs/YAs
superlattice with 4 layers in the unit cell; (d) XAs/YAs super-
lattice with 8 layers in the unit cell. (e) AX/BY superlattice
with 4 atoms in the unit cell; (f) AX/BY superlattice with 8
layers in the unit cell. The primitive unit cells are marked by
dashed lines.

D. Tight binding analysis of superlattices

To investigate the transferability of our ETB parame-
ters,band structures of group IV and group III-V super-
lattices are calculated by both ETB and HSE06 models.
The atom structures of the superlattices considered in
this work are shown in Fig.8. The superlattices consid-
ered in this work grow along 001 direction. Those super-
lattices contain only a few layers of atoms (with thickness
from about 0.5 nm to 1.5 nm). To model those superlat-
tices by ETB method, in principle, self-consistent ETB
calculations with Possion equation should be applied if
there is charge redistribution in the hetero-structures.
However the presented superlattices turn out to be ei-
ther type I or type II heterojunctions as the ab-initio
band structures shows band gap of at least 0.5eV for all
the presented superlattices. The charge redistribution in
type I or II heterostructures under zero temperature is
negligible because the valence bands of both materials
are perfectly occupied. The negligible build-in field can
also be realized by looking at the envelope of ab-initio lo-
cal potentials36,37. Thus, the presented ETB calculations
for superlattices all assumes zero build-in potentials. The
parameter δdij are all set to zero in order to compare with
ab-initio results.

Fig. 9 and Fig. 10 show the comparison of band struc-
tures of Si/Ge and Arsenides superlattices by ETB and
Hybrid functional calculations respectively. In these fig-
ures, band structures of Si/Ge, GaAs/AlAs, GaAs/InAs
and InAs/AlAs superlattices are presented. In both ETB
and hybrid functional calculations, zero temperature is
assumed. For each type of superlattices, band structure
of two different unit cells are shown. It can be seen that
the ETB band structures are in good agreement for en-
ergy from -2eV to 1eV above lowest conduction bands.
ETB band structures are obtained with the parameters
given by previous sections without introducing extra fit-
ting parameters. From Fig. 9 and Fig. 10, it can be seen
that ETB calculations without solving Poisson equation
(zero build-in potential is added ) match the HSE06 re-
sults well. More complicated cases include InAs/GaSb
superlattices which contain no common cations or anions
at material interface. The InAs/GaSb superlattices with
4 atomic layers can also be interpreted as InSb/GaAs su-
perlattice. From Fig. 12 (a) and (b), it can be seen that
ETB calculations match the HSE06 results well even for
interfaces with no common cations or anions.

In 001 superlattices, the primitive unit cells are de-
fined by vectors u1 = [0.5, 0.5, 0]a,u2 = [−0.5, 0.5, 0]a
and u3 = [0, 0, N ]a, where N can be any integer number.
According to the theory of Brillouin zone folding39–42, the
X points along [001] direction in a fcc Brillouin zone is
folded to the k = [0, 0, 0] point in the Brillouin zone of su-
perlattices. As a result, the lowest few conduction states
at k = [0, 0, 0] of 001 superlattices can have the feature
of Γ and X conduction valleys in pure materials. The
Γ and X conduction valleys can be easily distinguished
by the corresponding ETB wave functions. Considering
the valleys in a fcc Brillouin zone, the lowest conduction
states at Γ point are dominated by s and s* orbitals;
while the conduction states at X points have significant
contribution from both s and p orbitals. This can also be
realized by the effective masses of the valleys. The folded
X conduction valleys have anisotropic effective masses as
it is shown in Fig.10 (a) and (d); while the Γ valley have
isotropic effective masses as in Fig.10 (b) and (e). It can
be seen from Fig.10 that the lowest conduction state in
AlAs/GaAs superlattices have the feature of X conduc-
tion valley; while in InAs/GaAs and InAs/AlAs super-
lattices, the lowest conduction state has the feature of Γ
valley.

Fig. 9 (c), Fig.11 and Fig.12 (c) compare the ETB
band gap of for different superlattices with corresponding
HSE06 results. Fig. 9 (c) shows the band gaps in Si/Ge
superlattices. The compared superlattices in Fig.11
include superlattices with common anions (XP/YP,
XAs/YAs and XSb/YSb) and superlattices with common
cations (AlX/AlY, GaX/GaY and InX/InY). Fig.12 (c)
shows the band gaps of selected AX/BY type superlat-
tices, including InAs/GaSb, InAs/AlSb, InP/GaAs and
InP/AlAs. For the superlattices shown in the figure,
averaged lattice constant is used to create the unit cell
of the superlattices since lattice mismatch always exists
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FIG. 9: Band structures of Si/Ge superlattices by ETB and HSE06 calculations. Figures correspond to supercells which contain
4 atoms (a) and 8 atoms (b) and band gaps of Si/Ge superlattices verse number of atoms in the supercell (c).
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FIG. 10: Band structures of Arsenides superlattices by ETB and HSE06 calculations. Presented band structures include band
structures of superlattices of 001 AlAs/GaAs((a),(d)), InAs/GaAs((b),(e)) and InAs/AlAs((c),(f)). Upper figures correspond
to supercells which contain 4 atoms(Fig 8 (a)), while lower figures corresponds to supercells with 8 atoms (Fig 8 (b)).

in superlattices. It can be seen that ETB methods in
this work delivered accurate band gaps for ultra small
superlattices. For ultra small superlattices, the band
gaps are not always monotonic functions of thickness.
This non-monotonic dependency of band gaps can be
seen in many of the presented superlattices which have
common cations (Fig.11 (d), (e) and (f)). The ETB
band gap of superlattices agree well with corresponding
HSE06. For superlattices which contain common cations
or anions (shown in Fig.11), the largest discrepancy of
about 0.03eV appears in GaP/GaSb superlattices. While
the discrepancy of superlattices which contain no com-
mon cation or anions, the largest discrepancy reaches a
slightly higher of about 0.05eV. These comparisons sug-
gest that the ETB model and parameters by this work
has good transferability.

IV. CONCLUSION

Environment dependent ETB model with nearest neigh-
bor interactions is developed. ETB parameters for group
IV and III-V semiconductors are parameterized with
respect to HSE06 calculations. Good agreements are
achieve for unstrained and arbitrarily strained materials.
The ETB parameters show good transferability when ap-
plied to ultra-small superlattices. The ETB band struc-
tures of superlattices match the corresponding HSE06
result well. Tight binding band gaps of varieties of su-
perlattices show less than 0.1 eV discrepancies compared
with HSE06 calculations. This work demonstrated that
an ETB model with good transferability can be achieved
with nearest neighbor interactions for group IV and III-V
materials.
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Appendix A: Expression of M(l)
α,γ

(
d̂
)

For a unit vector d̂ = [x, y, z], the explicit form

of M(l)
α,γ

(
d̂
)

are given as follows. For p and d

orbitals, the order of orbitals are arranged accord-
ing to quantum number m, with {py, pz, px} and

{dxy, dyz, d2z2−x2−y2 , dxz, dx2−y2}. Here the M(l)
α,γ

(
d̂
)

are written as matrices with α and γ as row and column
indices respectively.

The matrix [M(1)
00,1m′

(
d̂
)

] is given by

√
3

4π

[
y z x

]
. (A1)

The matrix [M(1)
1m,2m′

(
d̂
)

] is given by

√
3

4
√

5π

 √3x
√

3z −y 0 −
√

3y

0
√

3y 2z
√

3x 0√
3y 0 −x

√
3z

√
3x

 . (A2)
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The matrix [M(2)
1m,1m′

(
d̂
)

] is given by

3

4π

 2y2−x2−z2
3 yz yx

yz 2z2−x2−y2
3 xz

yx xz 2x2−y2−z2
3

 . (A3)

The matrix [M(2)
2m,2m′

(
d̂
)

] is given by

M(2)
m,m′

(
d̂
)

=
15

28π



− 2z2−x2−y2
3 xz − 2√

3
xy yz 0

x̂z − 2x2−y2−z2
3

1√
3
yz xy −yz

− 2√
3
xy 1√

3
yz 2z2−x2−y2

3
1√
3
yz −x

2−y2√
3

yz xy 1√
3
xz − 2y2−x2−z2

3 xz

0 −yz −x
2−y2√

3
xz − 2z2−x2−y2

3


. (A4)

Appendix B: Dipole potentials

The interatomic coupling due to multipole was given by

equation (17). For dipole moment, the termM(1)
α,γ(d̂) are

given by equations (A1) and (A2). The explicit form of

V
(1)
α,β are given in this appendix. For example,the px− py

couplings V
(1)
x,y is given by

V (1)
x,y =

∑
kM

(1)
x,s(d̂ik)Q

(1)
s,y(dik) (B1)

+
∑
k′ Q

(1)
x,s(djk′)M(1)

s,y(d̂jk′)

+
∑
d,k′M

(1)
x,d(d̂ik)Q

(1)
d,y(dik)

+
∑
d,kQ

(1)
x,d(djk′)M

(1)
d,y(d̂jk′),

The Q
(1)
α,β ’s are two center integrals given by equation

(18). Using the explicit expression of M and Slater
Koster formula of Q(1), the terms in equation (B1) are
written as

∑
k

M(1)
x,s(d̂ik)Q(1)

s,y(dik) =
∑
k xijyikQ

(1)
spσ(dik) (B2)∑

k′

Q(1)
x,s(djk′)M(1)

s,y(d̂jk′) =
∑
k′ xijyjk′Q

(1)
spσ(djk′),

∑
d,k′

M(1)
x,d(d̂ik)Q

(1)
d,y(dik) = 1√

15
xijyijpij,k

(
3Q

(1)
pdσ(dik)− 2

√
3Q

(1)
pdπ(dik)

)
+ xikyij

(
−Q(1)

pdσ(dik) + 3
√

3Q
(1)
pdπ(dik)

)
(B3)

∑
d,k

Q
(1)
x,d(djk′)M

(1)
d,y(d̂jk′) = 1√

15
xijyijpij,k′

(
3Q

(1)
pdσ(djk′)− 2

√
3Q

(1)
pdπ(djk′)

)
− xjk′yij

(
−Q(1)

pdσ(djk′) + 3
√

3Q
(1)
pdπ(djk′)

)
,

The pij,k =
∑
m Y1,m(Ωd̂ij )Y1,m(Ωd̂ik) and pji,k′ =∑

m Y1,m(Ωd̂ji)Y1,m(Ωd̂jk′
), satisfying

∑
k pij,k = pij and∑

k pji,k′ = pji with pij and pji given by equations
(20) and (22). It can be seen that the terms with pij
or pji has resemblance with Slater Koster formula of
Vxy = xy (Vppσ − Vppπ). To make the expression sim-
pler, in this work, only the terms with pij,k and pji,k′ are
preserved. Let

3Q
(1)
pdσ√
15

(dik) =
4π

3

(
Pppσ +

δdik
d0

Sppσ

)
(B4)

2
√

3Q
(1)
pdπ√

15
(dik) =

4π

3

(
Pppπ +

δdik
d0

Sppπ

)
(B5)

The V
(1)
x,y can be approximated by

V (1)
x,y = xijyij(δV

(1)
ppσ − δV (1)

ppπ), (B6)

here the δV
(1)
ppσ and δV

(1)
ppπ are defined by

δV (1)
ppσ = 4π

3 (pij + pji)Pppσ + 4π
3 (qij + qji)Sppσ (B7)

δV (1)
ppπ = 4π

3 (pij + pji)Pppπ + 4π
3 (qij + qji)Sppπ (B8)

The pij , pji, qij and qji are given by equations (20) and
(22). Similar process can be applied to other V 1

α,β ’s. The
generalized approximation was summarized by equation
(19).
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Appendix C: deformation potential

• deformation potentials of top valence bands is de-
fined by a 4 band Luttinger k.p Hamiltonian at Γ
point.

Hε = −


Pε +Qε −Sε Rε 0
−S†ε Pε −Qε 0 Rε
R† 0 Pε −Qε Sε
0 R†ε S†ε Pε +Qε

 (C1)

with

Pε = −av (εxx + εyy + εzz) (C2)

Qε = −bv
2

(εxx + εyy − 2εzz) (C3)

Rε =

√
3bv
2

(εxx − εyy)− idvεxy (C4)

Sε = −dv(εxz − εyz) (C5)

This 4 band Hamiltonian describe the strain behav-
ior top valence bands of zincblende and diamond
structures. bv describe the the Hole splitting un-

der 001 strains( εxx = εyy = −0.5εzz, or). dv de-
scribes the Hole splitting under shear components
(εxy, εyz, εxz).

• the deformation potential of CB(X valleys)43,

Ec = Ξ001(k̂ · ε · k̂) (C6)

where ε is the strain tensor, k̂ is a unit vector along
the direction of one of the conduction band minima.

and the deformation potential of conduction X val-
leys due to εxy is described by 2 band Hamiltonian[

Eu Ξ110εxy
Ξ110εxy El

]
. (C7)

This Hamiltonian describes the upper and lower con-
duction bands at X point of zincblende and diamond
structures. The energy difference ∆E between the up-
per and lower conduction bands has the relation ∆E =√

(Eu − El)2 + 4Ξ2
110ε

2
xy
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