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Using a first principles theoretical approach, we show that vacancies give anomalously strong
suppression of the lattice thermal conductivity, κ, of cubic Boron arsenide (BAs), which has recently
been predicted to have an exceptionally high κ. This effect is tied to the unusually large phonon
lifetimes in BAs and results in a stronger reduction in the BAs κ than occurs in diamond. The
large bond distortions around vacancies cannot be accurately captured using standard perturbative
methods and are instead treated here using an ab initio Green function approach. As and B
vacancies are found to have similar effects on κ. In contrast, we show that commonly used mass
disorder models for vacancies fail for large mass ratio compounds such as BAs, incorrectly predicting
much stronger (weaker) phonon scattering when the vacancy is on the heavy (light) atom site. The
quantitative treatment given here contributes to fundamental understanding of the effect of point
defects on thermal transport in solids and provides guidance to synthesis efforts to grow high quality
BAs.

PACS numbers: 63.20.kg, 63.20.kp, 61.72.-y, 63.20dk

I. INTRODUCTION

Cubic boron arsenide (BAs) has recently been pre-
dicted to have an ultrahigh lattice thermal conductivity,
κ, comparable to that of diamond1,2. This has led to
an increased interest in the material because of the novel
way in which its high κ is achieved, and because of its po-
tential for use in thermal management applications. To
date, experimental verification of the high κ of BAs has
proved challenging because of the difficulty in growing
high quality single crystal samples3,4. In particular, in
Ref. 3, the presence of high As vacancy concentrations
was suspected from chemical vapor transport synthesis.
Therefore it is of importance to accurately calculate the
effect of As vacancies on the BAs κ.

BAs is a semiconductor with energy gap of about 1.5
eV5. Thus, heat is carried primarily by phonons. The
standard method of studying the effect of point defects
such as vacancies on phonon thermal transport is the
Born approximation6, which treats the defect in lowest-
order perturbation theory. However, vacancies repre-
sent large perturbations, making the Born approximation
questionable. Furthermore, simple theories have treated
vacancies as effective on-site mass defects7. For large
mass ratio compounds, such theories would predict much
larger phonon scattering from vacancies on the heavy
atom site compared to those on the light atom site. Re-
cently, that view has been called into question. Instead,
it has been shown that vacancies should be treated only
as bond defects since a change in the mass of a non-
interacting atom does not perturb the dynamics of the
system8.

In this work, we calculate the phonon-vacancy scatter-
ing rates and lattice thermal conductivity of BAs for both
As and B vacancies as a function of vacancy concentra-

tion using a Green’s (Green)9 function based T-matrix
approach8,10,11, which treats the perturbation to all or-
ders. Section II describes the first principles theory of
phonon thermal transport. In Section III, the T-matrix
treatment of phonon-vacancy scattering is given. Section
IV describes the computational details, while section V
presents the results along with discussion. Section VI
summarizes our findings.

II. AB INITIO PHONON HEAT TRANSPORT

In semiconducting and insulating materials phonons
are the main carriers of heat. Three-phonon scat-
tering and phonon-defect scattering typically limit the
lattice thermal conductivity around and above room
temperature12. The non-equilibrium phonon distribu-
tion resulting from an applied temperature gradient in
a material is described through the Peierls-Boltzmann
transport equation (BTE):

vλ · ∇T
∂nλ
∂T

=

(
∂nλ
∂t

)
collisions

(1)

where λ ≡ (q, s) labels the phonon mode with wavevector
q and polarization s, nλ is the non-equilibrium distribu-
tion of phonons, vλ is the phonon group velocity, and
∇T is the applied temperature gradient. Here, the left
hand side term represents phonon drift due to the applied
temperature gradient, and the right hand side is due to
phonon scattering.

In our first principles approach, we take the temper-
ature gradient, ∇T , to be small. The non-equilibrium
phonon distribution can then expanded in powers ∇T
and, retaining only up to linear order in ∇T , it can be
written as nλ = n0λ+

(
−∂n0λ/∂T

)
Fλ ·∇T , where n0λ is the
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Bose distribution. In this limit, the BTE is also linearized
in ∇T and can be recast as Fλ = τ0λ (vλ + ∆λ). Here,
1/τ0λ is the total scattering rate in mode λ, which in-
cludes intrinsic phonon-phonon scattering and scattering
from defects, and ∆λ is a linear function of Fλ. Explicit
definitions of these quantities are given in Refs. 13 and
14. The three-phonon rates are given by Eq. 4 in Ref.
13; isotopes are treated as mass defects, and the phonon-
isotope scattering rates in the Born approximation can be
expressed in closed form for binary cubic compounds15:

1

τ isoλ
=

π

6N

∑
k

gk|êλk |2Dk(ωλ) (2)

where Dk(ωλ) =
∑
λ′ |êλ

′

k |2δ(ωλ − ωλ′) is the partial
phonon density of states of the kth atom in the unit cell,
and

gk =
∑
s

fsk

(
∆Msk

Mk

)2

(3)

is the mass variance parameter for that atom, with
∆Msk ≡ Msk −Mk. In these equations, N is the num-
ber of unit cells in the crystal, (2π)−1ωλ and êλk are the
phonon frequency and eigenvector in mode λ, fsk and
msk are the concentration and the mass of the sth type
of isotope on the kth atom and mk is the average mass
of species k atoms. The thermal conductivity tensor is
given by:

καβ =
kB
V

∑
λ

(
~ωλ
kBT

)2

n0λ(n0λ + 1)vαλF
β
λ (4)

where α and β are Cartesian components, kB is the
Boltzmann constant and V is the crystal volume. For
cubic compounds, the thermal conductivity is a scalar:
κ ≡ καα.

III. PHONON-VACANCY SCATTERING

The phonon modes are obtained from the dynamical
equation

ω2uiα =
∑
jβ

Kiα,jβ√
MiMj

ujβ (5)

where Mi is the mass of the ith atom, uiα is the atomic
displacement of the ith atom in the direction α, and
Kiα,jβ are the harmonic interatomic force constants
(IFCs). In general, point defects introduce two perturba-
tion potentials: V M and V K, representing the mass and
IFC perturbations. The mass perturbation for a defect
at defect site i is: V M

iα,jβ = −ω2 (M ′i −Mi) δijδαβ/Mi,
where the primed mass is the mass of the defect. Note
that this type of perturbation acts only at the defect site.
In contrast, the bond perturbation extends over a region

around the defect site. This perturbation is:

V K
iα,jβ =

(
K ′iα,jβ −Kiα,jβ

)
√
MiMj

(6)

where K ′iα,jβ gives the harmonic force constant between
sites i and j after the system has relaxed around the
defect. When calculating V M and V K from first princi-
ples, care should be taken that the force constants sat-
isfy translational and rotational invariance. This can be
enforced by slight modification of the interatomic force
constants (IFCs), as shown in Ref. 8.

Vacancy defects are commonly treated within the Born
approximation and as on-site defects characterized by an
effective mass perturbation that includes both mass and
bond perturbations7,16–18. For example, in the model
of Ratsifaritana and Klemens (RK)7,17,18, the vacancy
perturbation is taken to be:

V M
iα,jβ + V K

iα,jβ = −ω2
(
2 +M i/M

)
δijδαβ (7)

where the 2 estimates the effect from broken bond link-
ages, mi is the mass of the removed atom on unit cell
site i and M is the average atomic mass. Note that this
expression depends explicitly on the mass of the removed
atom, which has profound implications for large mass ra-
tio compounds such as BAs, as discussed below.

However, treating a vacancy as a mass defect is con-
ceptually wrong. In a lattice the presence of an atom is
felt by its interactions with its neighbors. Creation of a
vacancy, therefore, is equivalent to the removal of all the
interactions of the rest of the crystal with the atom to
be removed. This is true regardless of the mass of the
atom. Therefore having a non-zero V M in the case of
a complete vacancy is incorrect. Quantitative results in
favor of this argument has been made in Ref. 8 for the
case of diamond. The discussion in the paragraph above
highlights the fact that there is an additional important
difference for large mass ratio compounds.

The phonon-vacancy scattering cross section, σ, is ob-
tained by solving the Lippmann-Schwinger equation19

and is given in our case by8,10,11

σλ =
Ωsπ

ωλvλ

∑
λ′

∣∣〈λ′|T+(ω2
λ)|λ〉

∣∣2 δ (ω2
λ′ − ω2

λ

)
(8)

where Ωs is the supercell volume into which phonon
eigenstate |λ〉 is normalized and T+ is known as the T-
matrix given by

T+ =
(
I − V G+

0

)−1
V (9)

where I is the identity matrix, V is the perturbation ma-
trix and G+

0 is the retarded, unperturbed Green function
for phonons given by:

G+
0,ij(ω

2) = lim
z→ω2+i0

∑
λ

〈i|λ〉〈λ|j〉
(
z − ω2

λ

)−1
(10)
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where |i〉, |j〉 represent displacements in the i, j lattice
degrees of freedom.

The expansion of Eq. 9 in the perturbation, V , gives
us the Born series:

T+ = V + V G+
0 V + V G+

0 V G
+
0 V + ... ≈ V (11)

where the right-hand side of Eq. 11 defines the typically
used first Born approximation.

From σ the phonon-vacancy scattering rate is obtained
as 1/τvacλ = fvλσλ/V0 where f is the volume fraction of
vacancies and V0 is the volume per atom in the pristine
lattice. Here, it is assumed that the vacancies are ran-
domly distributed throughout the crystal and that the
vacancy concentration is low enough so that each vacancy
behaves as an independent scattering center. We note
that the vacancy concentrations considered here are less
than 0.2% corresponding to less than one in every 500
atoms. For such dilute concentrations, effects associated
with proximity of multiple vacancies such as coherent
scattering of phonons should be negligible. The phonon-
vacancy scattering rates are used along with the phonon-
isotope scattering rates (Eqs. 2, 3) and the phonon-
phonon scattering rates to construct the total scatter-
ing rates, which are used in an iterative solution of the
phonon BTE14.

Below we compare the results of three approaches to
treat vacancies: i) Using the exact T-matrix approach,
treating the vacancy as a bond perturbation in Eq. (9),
V = V K, evaluated to all orders; ii) Using the Born ap-
proximation and treating the vacancy as a bond pertur-
bation: T+ = V K; iii) Using the RK model, which uses
the Born approximation and uses Eq. 7 as the mass per-
turbation; iv) Same as iii but treating the perturbation
using the full T-matrix. The comparisons of these differ-
ent models are given in Fig. 6.

IV. COMPUTATIONAL DETAILS

Our first principles approach involves computing the
second and third order interatomic force constants (IFCs)
using the finite displacement method with the VASP20–23

implementation of density functional theory (DFT) us-
ing the PAW pseudopotentials24,25 in the PBE26,27 ap-
proximation. Helper pre- and post-processing softwares
phonopy28,29 and thirdorder.py13,14 are used to create the
finite displacements in a 4× 4× 4 supercell (128 atoms),
and also to read-off the IFCs. The DFT run is carried
out on a 2×2×2 Γ-centered Monkhorst-Pack q-grid. The
energy cut-off is set at 398 eV. For the pristine lattice,
the relaxed BAs lattice constant is a = 4.82 Å, slightly
larger than the measured value of 4.78 Å in Ref. 3. Here
we consider the two cases of single As and single B vacan-
cies. After the creation of each vacancy, the surrounding
atom positions are relaxed, fixing the supercell volume
to that of the pristine supercell. The acoustic sum rule
is imposed in the computation of both the pristine and
defected supercell harmonic IFCs.

The harmonic IFCs for the pristine and the defected
system are used to calculate the perturbation matrix, V K

using Eq. 6. Since anharmonic interactions are weak, the
vacancy is represented sufficiently well by the change in
the harmonic IFCs only. The changes in the harmonic
IFCs are considered for a cluster radius of 6.1 Å around
the vacancy, taking into account the first- and second-
nearest neighbor interactions for the atoms in the six
nearest shells around the vacancy site. From the pertur-
bation matrix, σ is calculated on a 28 × 28 × 28 k-grid.
The phonon-vacancy scattering rates for each vacancy
concentration are then combined using Matheissen’s rule
with phonon-phonon and phonon-isotope scattering rates
determined from ShengBTE14,30 . The total scattering
rates are used in an iterative solution of the linearlized
Boltzmann equation and a converged κ is obtained using
the ShengBTE platform.

V. RESULTS AND DISCUSSIONS

The phonon dispersions of BAs and diamond are shown
in Figs. 1a and 1b. These figures illustrate different
features that help give each material its high intrinsic
thermal conductivity. In BAs, the large frequency gap
between acoustic (a) and optic (o) phonons (a − o gap)
prevents the a+a↔ o (aao) scattering since energy can-
not be conserved. Also, the phase space for a + a ↔ a
(aaa) scattering is severely restricted owing to the bunch-
ing of the acoustic branches coupled with a theorem that
says that three phonons from the same acoustic branch
cannot conserve both momentum and energy31. These
two vibrational properties along with the isotopic purity
of the heavy As atom give BAs an ultrahigh intrinsic κ of
over 3000 Wm−1K−1 at room temperature. In contrast,
the light carbon atoms and strong covalent bonding give
diamond the high phonon frequency scale contributing to
its high κ.

The distortions of bond lengths and bond angles
around As and B vacancies are shown in Figs. 2a and
2b. The maximum change in bond length(angle) is
2.5(3.3)% of that of the pristine case for As vacancies and
0.42(0.96)% for B vacancies and occurs at the nearest and
second nearest neighbor sites from the As vacancy, and
at the second nearest neighbor sites from the B vacancy.
In the case of diamond these numbers are 3.3% and 3.7%,
respectively8. The distortions around the As and B va-
cancies extend up to about 5 Å from the defect site, a
distance that is much smaller than the 4×4×4 supercell
size of about 13.6 Å. Nevertheless, we have performed
calculations for As vacancies in BAs with a 5× 5× 5 su-
percell (250 atoms). As seen in Figs. 2a and 2b, bond
length and bond angle distortions for this case are almost
exactly the same as those for the 4×4×4 supercell justi-
fying its use for all further calculations described below.

Fig. 3 shows the phonon-phonon scattering rates (solid
black squares) and the phonon-vacancy scattering rates
for 0.01 and 0.1% As vacancy concentrations in BAs in
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FIG. 1. Phonon Dispersions of BAs (a) and diamond (b)
along high symmetry directions.

the Born approximation (open and solid blue circles) and
T-matrix method (open and solid red triangles) in the
longitudinal acoustic (LA) branch. Other branches show
similar behavior. In the Born approximation the scat-
tering rates are significantly underestimated except at
high frequencies where they exceed the scattering rates
calculated in the T-matrix formalism. Similar behav-
ior was found previously for diamond8. Note the dip in
the phonon-phonon scattering rates in the mid-high fre-
quency range, which is due to the suppressed phase space
for phonon-phonon scattering from the large a − o gap
and the acoustic bunching shown in Fig. 1a. It is this
frequency region that gives the largest contribution to
the vacancy-free BAs κ. This is shown by the black dot-
ted curve in Fig. 4. From this figure, we see that when
the phonon-vacancy scattering rates are comparable to or
larger than the phonon-phonon scattering rates, a large
suppression of κ is expected.
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FIG. 2. Distortion of bond (a) length and (b) angle for As
and B vacancies. Blue lines represent the relaxed bond length,
2.09 Å, and angle, 109.5◦, for the pristine crystal, respectively.
The data points corresponding to As vacancy for the 4×4×4
and 5 × 5 × 5 supercells coincide almost perfectly.

Fig. 5 shows the κ .vs. As vacancy concentration
within the Born and T-matrix approaches. Surprisingly,
the two results are quite close for As vacancy concentra-
tions up to about 0.01%. This fortuitous agreement is
in fact a consequence of two failures of the Born approx-
imation: It underestimates the scattering rates at low
frequency and overestimates them at high frequency, as
seen in Fig. 3. For concentrations below 0.01%, these
two errors cancel. This is seen in the κ(ν) curves for
0.01% in Fig. 4 which shows similar areas under the red
(T-matrix) and blue (Born) dashed curves. With increas-
ing As vacancy concentration above 0.01%, the phonon-
vacancy scattering rates become much stronger than
the phonon-phonon scattering rates where the phonon-
phonon scattering shows a dip. Then, the larger T-
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FIG. 4. The contribution to κ at 300K as a function of fre-
quency, ν, where κ =

∫
κ(ν)dν. The black dotted curve gives

κ(ν) for vacancy-free BAs for naturally occurring isotope mix
(19.9% 10B, 80.1% 11B); the thin blue dashed and solid curve
gives Born approximation results for 0.01 and 0.1% As vacan-
cies, respectively, while the thick red dashed and solid curves
give the corresponding results obtained using the T-matrix
approach.

matrix scattering rates are seen in Fig. 4 to give a larger
reduction in κ than in the Born approximation (compare
red and blue solid curves). This difference becomes about
a factor of two for 0.2% As vacancies.

As noted above, previous models to estimate the ef-
fect of vacancies on the lattice thermal conductivity use
the Born approximation with an on-site effective mass
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κ
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m
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K−

1
)

T-matrix
Born

FIG. 5. The room temperature thermal conductivity of BAs
as a function of As vacancy concentration in the Born ap-
proximation (thin blue curve) and using the T-matrix method
(thick red curve).

perturbation7,16–18. This corresponds to Eqs. 7 and 11
inserted in Eq. 8. The resulting thermal conductivities
.vs. As and B vacancy concentrations (green solid and
dashed curves) are plotted in Fig. 6 along with the corre-
sponding results from the full T-matrix calculations (red
curve and red points). Note that the RK model signif-
icantly underestimates the effect of the light atom (B)
vacancy and overestimates the effect of the heavy atom
(As) vacancy. This is a general feature of large mass ra-
tio compounds, which has two underlying reasons. First,
the mass perturbation itself is larger for the heavy atom:
In BAs, the value of the parentheses in Eq. 7 is 3.75 for
As vacancies, 1.7 times larger than the 2.25 for B vacan-
cies. Secondly, the heavy atom dominates the vibrational
motion of the heat-carrying acoustic modes15,31, e.g. the
phonon eigenvector components for As are much larger
than those for B throughout the Brillouin zone.

The blue line and blue triangles in Fig. 6 show results
using the RK mass perturbation, Eq. 7, in the full T-
matrix scattering crossection. Since B vacancies give a
weak mass-defect perturbation, the Born approximation
and T-matrix results are almost the same. In contrast,
for As vacancies the T-matrix result shows that the ac-
tual phonon-vacancy scattering is weaker than estimated
by the Born approximation. Here, since the mass per-
turbation is proportional to ω2, the Born approximation
fails badly in the high frequency range. Nevertheless,
even the T-matrix treatment still incorrectly predicts an
order of magnitude smaller κ for As vacancies compared
to B vacancies at a concentration of 0.2%. Thus, the
failure of the RK model in large mass ratio compounds
stems both from treating the vacancy as a mass defect
and from the failure of the Born approximation in treat-
ing large perturbations.

Given the differences in the distortions of atoms around



6

10-3 10-2 10-1

vacancy concentration (atomic %)
101

102

103

κ
 (W

m
−

1
K−

1
)

As vacancy, Born, RK
B vacancy, Born, RK
As vacancy, T-mat, RK
B vacancy, T-mat, RK
As vacancy, T-Mat, bond-defect
B vacancy, T-Mat, bond-defect

FIG. 6. The room temperature thermal conductivity of BAs
as a function of atomic percent As and B vacancies using the
T-matrix (thick red line and red circles) method compared to
the corresponding results for As (thin green solid curve) and
B (green dashed curve) obtained from the RK model treated
in the Born approximation. Result for RK model treated in
the T-matrix approach for As is given by the blue line while
blue triangles are for B vacancy.

As and B vacancies seen in Figs. 2a and 2b, it is some-
what surprising that the T-matrix results for As and B
vacancies seen in Fig. 6 are almost the same throughout
the range of vacancy concentrations considered. In fact,
the scattering rates for As and B vacancies do show mod-
est differences, but effects on κ(ν) tend to cancel over the
full frequency range of the acoustic phonons.

High quality diamond, designated type-II a reflecting
low concentrations of nitrogen defects, is also thought to
have very low vacancy concentrations; the observed ul-
trahigh thermal conductivities32–34 could not be achieved
otherwise. The reduction in κ introduced by irradi-
ating type-II a diamond was studied by Burgemeister
and Ammerlaan35, and good agreement with this data
was recently achieved from first principles calculations8,
demonstrating that such calculations can properly cap-
ture the interplay between phonon-phonon and phonon-
vacancy scattering. Since BAs is predicted to have
roughly the same room temperature κ as diamond, it
is then natural to compare the effects of vacancies on the
thermal conductivities of these two materials. Fig. 7
shows that BAs is more strongly affected by the presence
of vacancies than is diamond. For example, at 0.1% va-
cancy concentration, the natural BAs κ is reduced from
the calculated pristine value of about 2300 Wm−1K−1 to
120 Wm−1K−1, a reduction of 95%. In natural diamond,
on the other hand, κ is reduced by 88% from the pris-
tine value of about 2500 Wm−1K−1 to 300 Wm−1K−1.
At 0.01% defect concentrations, these numbers are 73%
and 55%, respectively for BAs and diamond. As men-
tioned above, for BAs, the elimination of scattering be-
tween acoustic and optic phonons and small phase space

10-3 10-2 10-1

vacancy concentration (atomic %)

102

103

κ
 (W

m
−

1
K−

1
)

Diamond
BAs

FIG. 7. The room temperature thermal conductivities of BAs
and diamond as functions of atomic percent of As and C va-
cancies, respectively.

for scattering between acoustic phonons in the mid-high
range of the acoustic phonon spectrum gives very weak
scattering rates and correspondingly large contributions
to the BAs κ over this relatively narrow frequency range.
For large vacancy concentrations, the phonon-vacancy
scattering is strong over this frequency range, which then
has a profound effect on κ. For diamond, this is not the
case. Instead, the κ contributions extend over a wide
frequency range, and the phonon-vacancy scattering is
therefore less effective at reducing κ. This result is con-
sistent with the fact that the phonon mean free paths
contributing to the intrinsic BAs κ are quite large, in
the 1− 3µm range, while those for diamond are smaller,
mostly below 1µm2. Consequently, to achieve room tem-
perature κ in BAs over 1000 Wm−1K−1, the target As
vacancy atomic percent should be no more than 0.004%.
This translates to an As vacancy concentration of about
3× 1018 cm−3.

It is interesting to compare the temperature depen-
dence of the κ for BAs and diamond for fixed vacancy
concentration. In diamond, phonon-phonon scattering
around and above room temperature has a strong tem-
perature dependence. This occurs because the diamond
frequency scale is high, and as T increases above 300K,
scattering of the heat-carrying acoustic phonons by optic
phonons becomes stronger. In contrast, in BAs three-
phonon scattering between the heat-carrying acoustic
phonons and optic phonons is quite weak because there
is no phase space for aao processes and only a very small
phase space for aoo processes. As a result, the BAs κ
shows a weaker T dependence than that of diamond, as
seen in Fig. 8 for the case of 0.01% As vacancies. Thus,
for example, at 300 K the κ of BAs is about 40% that
of diamond, while at 900 K, it is almost 75% that of
diamond.
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VI. CONCLUSIONS

The effect of As vacancies on the lattice thermal con-
ductivity, κ, of cubic boron arsenide has been investi-
gated using an ab initio approach that treats the vacancy
to all orders in perturbation theory. The large contribu-
tion to the defect-free BAs κ coming from a narrow range
of frequencies is suppressed for large As vacancy concen-
tration leading to larger κ reduction compared to that for
diamond. However, the T -dependence of the κ of BAs is
shown to be weaker than that of diamond making the ef-
fect of vacancies on these two ultrahigh κ materials more
comparable at higher T .

The physically-motivated treatment of vacancies solely
as bond defects gives almost the same κ reduction for B
as for As vacancies. In contrast, the common treatment
of vacancies as mass defects predicts a sensitive depen-
dence of phonon-vacancy scattering on the mass of the
constituent atom and gives much too large suppression
of κ with As vacancy concentration. We note that this

difference provides a means of testing experimentally the
validity of mass defect models for vacancies. If two sam-
ples of the same large mass ratio binary compound could
be grown in a controlled way so that each sample had
the same vacancy concentration of one or the other con-
stituent atom, then if a similar reduction in κ occurs, this
would discount the mass defect models.

The Born approximation, commonly used to treat
phonon-defect scattering, is demonstrated to underesti-
mate the reduction in the BAs κ when the vacancy is
treated as a bond defect and to overestimate this reduc-
tion when the vacancy is treated as a mass defect. This
failure highlights the need to treat vacancies in large mass
ratio compounds using the full T-matrix approach pre-
sented here.

Despite the strong effect on the BAs κ due to vacancies,
high κ can still be achieved with advances in synthesis ap-
proaches. For vacancy concentrations of below 3 × 1018

cm−3, the calculated room temperature BAs κ is over
1000 Wm−1K−1. We note that in GaN, a large mass ra-
tio compound mirroring BAs across the group IV column
of the periodic table, Ga vacancy concentrations of less
than a few times 1016 cm−3 have been achieved36. If sim-
ilarly low As vacancy concentrations could be achieved
in BAs, its ultrahigh thermal conductivity should remain
unaffected.
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