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We investigate the phase diagram of a quantum spin-1 chain whose Hamiltonian is invariant under
a global onsite A4, translation and lattice inversion symmetries. We detect different gapped phases
characterized by SPT order and symmetry breaking using matrix product state order parameters.
We observe a rich variety of phases of matter characterized by a combination of symmetry breaking
and symmetry fractionalization and also the interplay between the onsite and spatial symmetries.
Examples of continuous phase transitions directly between topologically nontrivial SPT phases are
also observed.

I. INTRODUCTION

The program of classifying and characterizing different
phases of matter has been revived and actively pursued
in recent years. One aspect is to classify phases based on
global symmetries. In the Landau-Ginzburg paradigm,
given a class of many-body Hamiltonians invariant under
a global symmetry defined by a group G, different phases
of matter can be enumerated by the spontaneous symme-
try breaking of G and labeled by the residual symmetry
H that G is broken down to. One could also envision the
existence of local order parameters which arise from sym-
metry breaking and hence be able to distinguish between
these phases. However, after the discovery of the Quan-
tum Hall Effect [1, 2], it was realized that the Ginzburg-
Landau symmetry-breaking picture might not be enough
to classify all phases of matter [3]. Some systems like the
fractional quantum hall states [2], spin liquids [4], quan-
tum double models [5] and string-net models [6] do not
even need symmetries and are called intrinsic topologi-
cal phases or simply topological phases. Even with sym-
metries, several new phases have been discovered which
are not classified by symmetry-breaking or characterized
by local order parameters; such as topological insula-
tors [7] and the Haldane phase of spin-1 chains [8–10]
and these phases are called symmetry protected topolog-
ical (SPT) phases [11–13]. Furthermore, if we consider
global symmetry in systems with intrinsic topological or-
der, we can have more phases called symmetry enriched
topological phases [14–16]. In gapped 1D spin chains,
which we focus on in this paper however, it has been
shown that there cannot be any intrinsic topological or-
der and hence all phases are either symmetry breaking
or SPT phases [11, 17–21].

Given that the classification program has been much
explored, there has been interest in developing ways
to detect which phase of matter a system belongs to.
Since local order parameters are insufficient to detect
phases that are not characterized by spontaneous sym-
metry breaking (SSB), there have been attempts to de-
velop other quantities that can detect SPT phases like
non-local ‘string’ order parameters [20, 22–25] and Ma-
trix Product State (MPS) order parameters [20]. Fur-
thermore, if we include the possibility of both symme-

try breaking and SPT phases, there is a rich set of pos-
sible phases [18]. Given a global symmetry group G,
the ground state can spontaneously break the symme-
try to one of its subgroups H ⊂ G. However for each
subgroup H, there can exist different SPT phases that
do not break symmetry spontaneously. The situation
is even more interesting if there are both internal and
space-time symmetries like parity and time reversal in-
variance. In this paper, we generalize the techniques of
Ref [20] and study the phase diagram for a two parameter
Hamiltonian of a spin-1 chain which is invariant under a
global onsite (internal) A4 symmetry, lattice translation
and lattice inversion (parity). Through suitable order
parameters, we detect both the different SSB and SPT
phases and label them using the classification framework
of Ref [18]. A total of eight distinct phases are identified
within the parameter space we consider. In particular, we
find among these a direct, continuous transition between
two topologically nontrivial A4-symmetric SPT phases,
distinguished by the 1D representations of the symme-
tries, as explained below.

This paper is organized as follows. In section II, we de-
scribed the A4 spin-chain Hamiltonian studied here and
present its phase diagram which contains the main results
of this paper. In section III, we review the classification
of 1D gapped-spin chains and list parameters which can
be used to completely classify phases. In section IV, we
describe the full details of the phase diagram of the A4

model, and also enumerate the several possible phases
that can in principle exist given the symmetry group of
the parent Hamiltonian. Section V presents, in detail,
the numerical techniques by which the states and pa-
rameters were obtained, and section VI gives a summary
of our results.

II. OVERVIEW OF MAIN RESULTS

A. The Hamiltonian

We will now describe an A4 and inversion symmetric
Hamiltonian whose phase diagram we study in detail.
The Hamiltonian we present here is a modified version
of the one used in Ref [26] where it was found that the
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there was an extended region where the ground state is
exactly the AKLT state and hence useful for single qubit
quantum information processing [27]. Here, we slightly
modify the Hamiltonian to retain the essential features
only and study the phase diagram.

The total Hamiltonian consists of three parts. The
first is the Hamiltonian for the spin-1 Heisenberg antifer-
romagnet which is invariant under the spin-1 representa-
tion of SO(3):

HHeis =
∑
i

~Si · ~Si+1, (1)

(2)

where ~Si · ~Si+1 ≡ Sxi S
x
i+1 + Syi S

y
i+1 + Szi S

z
i+1. We add

two other combinations, Hq and Hc to the Heisenberg
Hamiltonian which breaks the SO(3) symmetry to A4,
the alternating group of degree four and the group of even
permutations on four elements (equivalently, the rotation
group of a tetrahedron). These terms are defined as:

Hq =
∑
i

(Sxi S
x
i+1)2 + (Syi S

y
i+1)2 + (Szi S

z
i+1)2,

and

Hc =
∑
i

[(SxSy)iS
z
i+1 + (SzSx)iS

y
i+1 + (SySz)iS

x
i+1

+ (SySx)iS
z
i+1 + (SxSz)iS

y
i+1 + (SzSy)iS

x
i+1

+ Sxi (SySz)i+1 + Szi (SxSy)i+1 + Syi (SzSx)i+1

+ Sxi (SzSy)i+1 + Szi (SySx)i+1 + Syi (SxSz)i+1]. (3)

For details on how the perturbations are constructed,
see Appendix A or Ref [26].

The operators in Hc are symmetrized so that the
Hamiltonian is invariant under inversion as well as lattice
translation. With this we have a two-parameter Hamil-
tonian invariant under an onsite A4 symmetry along with
translation invariance and inversion.

H(λ, µ) = HHeis + λHc + µHq. (4)

B. Summary of numerical results

We employ the iTEBD algorithm[28] to numerically
analyze the ground states across a range of parameters
µ = [−3, 4], λ = [−2, 2] and find a wide variety of phases.
In the parameter space analyzed, a total of eight dis-
tinct regions can be identified (labeled with letters A-H
in Fig. 1). These regions are distinguished both by the
symmetries of the ground states, and also by the classi-
fication parameters of Ref [18].

From the symmetry group G of the parent Hamilto-
nian, which contains A4, spatial inversion, and transla-
tion symmetries, only the inversion and translation sym-
metries remain in the ground states of region A. Re-
gions B, C, and D, by contrast, all respect the full set

FIG. 1. (Color Online). The phase diagram for a two-
parameter Hamiltonian constructed to have an A4 onsite
symmetry group, as well as parity symmetry and one-site
translation invariance. The symmetries of the Hamiltonian
break down into five different residual symmetry groups in the
ground states. These break down further when classified ac-
cording to the relevant topological parameters, yielding eight
distinct phases overall. The diversity of phases from the com-
paratively simple Hamiltonian shows the necessity of carefully
accounting for all possible symmetries and topological param-
eters when attempting to characterize the phase of a ground
state. For a description of the phases A-H, see discussions in
the main text.

of symmetries of the parent Hamiltonians but are dif-
ferentiated by one of the SPT parameters: namely, the
overall complex phase produced under A4 transforma-
tions. These complex phases are different 1D irreducible
representations (irreps) of A4 and correspond to distinct
SPT phases protected by translation and onsite symme-
tries. In phase E, the ground state breaks the symmetry
to onsite Z2 and parity. The translation symmetry in this
region is broken down from single-site translation invari-
ance to two-site. This broken, two-site translation sym-
metry is also present in regions F and G, but here the
remaining symmetries of A4 and parity are completely
preserved. Like regions B, C, and D, regions F and G
have the same symmetry but are distinguished from one
another only by the values of their SPT parameters. Fi-
nally, in region H, the residual symmetry group has an
internal Z2×Z2 symmetry and parity along with an one-
site translation invariance.

Among these eight phases, five correspond to instances
of SSB and the remaining three correspond to SPT
phases without symmetry breaking. The complete set of
such parameters classifying these phases will be described
in section III, and the particular values which distinguish
them from one another are presented in section IV.
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Because the phases B, C, and D are not distinguished
by any symmetry-breaking criteria (and because none
of them are topologically trivial), the boundary lines
between them are of particular interest as examples of
non-trivial SPT to non-trivial SPT phase transitions.
Such transitions are considered uncommon and have re-
cently attracted particular interest[29–32], as compared
to the more typical case of a transition between SPT and
symmetry breaking phases, or trivial to non-trivial SPT
phase transitions. Our analysis, however, shows that this
model contains direct nontrivial SPT to SPT transitions,
and that the transition is second-order in nature. By di-
rectly calculating the ground-state energy and its deriva-
tives, we see sharp divergences in the second derivative,
but a continuous first derivative across the boundary be-
tween these phases. Representative behavior is shown in
Fig. 3.
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FIG. 2. Ground state energy along the line µ = 2. For each
data point, numerical states are computed across a range of
bond dimensions up to χ = 200, with an energy Eχ com-
puted for each. As the bond dimension increases, the energy
approaches a plateau. This allows the energy value at “infinite
bond dimension”, E∞, to be extrapolated using a standard
BST algorithm [33], with ∆E = |E∞ − Eχ| steadily decreas-
ing with χ. An example of this behavior is show in the inset
for the representative point λ = 0.6.

The numerical methods employed here also allows us
to probe the central charge of the conformal field theory
(CFT) associated with the continuous phase transitions.
As one approaches the transition, the correlation length
begins to diverge. The central charge of the CFT appears
in an important scaling relation between this diverging
correlation length and the mid-bond entanglement en-
tropy [34, 35]. In particular, it has been shown that

S =
c

6
log ξ (5)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

FIG. 3. (Color Online). Free energy derivatives along the
line µ = 2 in the phase diagram above show the nature of the
phase transitions. The continuous first derivative (blue) con-
trasts with divergence in the second derivative (red), showing
a second-order transition. All three regions are topologically
nontrivial SPT phases. The data here are numerical deriva-
tives of the extrapolated energy values in Fig. 2.

where c is the central charge, and ξ is the correlation
length measured in units of lattice spacing. S is the en-
tanglement entropy, given by performing a Schmidt de-
composition between sites and computing the entropy of
the resulting Schmidt coefficients λi,

S = −
∑
i

λi log λi. (6)

The MPS algorithms employed here to determine the
ground state are not well-suited to computing ground
states at the actual critical points. This is because the
numerical accuracy of these algorithms are controlled by
a tunable numerical parameter, the so called “bond di-
mension.” The closer we approach the critical point, the
bigger this parameter needs be chosen for the ground
states to be computed faithfully. By gradually increas-
ing the bond dimension near the critical point, we obtain
states with increasingly large correlation length, allow-
ing us to fit the scaling relation of Eq. 5. We can also
use this data to estimate the location of the transition,
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because away from the critical point, the scaling relation
will not hold, and S will saturate for large enough ξ (or
in practice, for large enough bond dimension). We find
the critical lines to be located at λ = ±0.865(2); fits at
multiple points along these lines suggest a central charge
of c = 1.35(1), as shown for example in Fig. 4.
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FIG. 4. (Color Online). Entanglement entropy versus the
log of the correlation length for states very close to the tran-
sition point. The slope is directly proportional to the central
charge of the associated CFT, via Eq. 5. Data is generated by
computing ground states at the point µ = 2, λ = 0.865, and
increasing the “bond dimension” of the numerical scheme to
allow us to find states closer to the critical point where the
correlation length diverges. The largest bond dimension used
is 200. The behavior shown here is representative of that seen
elsewhere along the lines λ = ±0.865. Away from these lines,
the entanglement entropy saturates at a finite value of ξ. The
best-fit line has a slope of 0.225(1), which corresponds to a
central charge of 1.35(1).

III. REVIEW OF CLASSIFICATION OF 1D
GAPPED PHASES OF SPIN CHAINS

We now review the classification of 1D gapped phases
of spin chains following [18]. Given the group of global
symmetries G, the classification gives us a set of labels
whose values distinguishes all possible phases of matter
that can exist. We will systematically list these labels for
various types of symmetries. It is the value of these la-
bels that we extract numerically to determine the phase
diagram presented in Sec II. First, we must give a brief
introduction to matrix product state (MPS) representa-
tions of one dimensional wavefunctions [36], which forms
the backbone of the classification scheme.

A. MPS formalism

Consider a one-dimensional chain of N spins. If each
spin is of d-levels i.e. the Hilbert space of each spin is
d-dimensional, the Hilbert space of the spin chain itself
is dN -dimensional. A generic state vector in this many
body Hilbert space is of the form

|ψ〉 =

d∑
i1=1

. . .

d∑
iN=1

ci1...iN |i1 . . . in〉 (7)

This means that the number of coefficients ci1...iN needed
to describe such a wavefunction grows exponentially with
the length of the chain. To write this wavefunction in the
MPS form, we need to associate for every spin site (la-
beled by m = 1 . . . N), a Dm×Dm+1-dimensional matrix
Aimm for each basis state |im〉 = |1〉 . . . |d〉 such that (as-
suming periodic boundary conditions without any loss of
generality here and henceforth)

ci1...iN = Tr[Ai11 A
i2
2 . . . A

iN
N ]. (8)

The matrices Aimm (which we will call MPS matrices) can,
in principle always be obtained via sequential singular
value decompositions of the coefficients ci1...iN , as de-
scribed in [37]; in practice, it is useful to employ the
canonical form of the MPS [36, 37]. For most of the pa-
per, the term “MPS” shall refer to wavefunctions written
in the form

|ψ〉 =
∑
i1...iN

Tr[Ai11 A
i2
2 . . . A

iN
N ]|i1 . . . iN 〉. (9)

Two important features of the MPS representation
bear relevance to the numerical methods employed in this
paper. The first isD = maxm(Dm), called the ‘virtual’ or
‘bond’ dimension, which in general may need to be very
large. However, if the wavefunction is the ground-state of
a gapped Hamiltonian and hence has a finite correlation
length, it can be efficiently written as an MPS wavefunc-
tion whose bond dimension approaches a constant value
that is independent of the size of the chain [37–39]. And
as one approaches a critical point, where the correlation
length diverges, an increasingly large bond dimension is
required to faithfully capture the ground states. Even
though the ground states at criticality therefore cannot
be accurately represented by an MPS, one can employ
the scaling results discussed above and in Fig. 4, where
increasingly large correlation lengths are probed by grad-
ually increasing the bond dimension.

Secondly, note that when a state possesses translation
invariance, the MPS matrices themselves may be chosen
to respect the same symmetry. A state invariant under
one-site translations, for example, can be represented in
the form above with the same MPS tensor at each site,
Aimm = Aim . This, in turn, allows a state with trans-
lation invariance of any length to be represented by d
matrices where d is the dimension of the local Hilbert
space. In general, a state with K-site translation invari-
ance requires Kd MPS matrices to represent it.
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B. Symmetry breaking

First, we consider the possibility that the ground state
spontaneously breaks the symmetry, G of a Hamiltonian
to H. This is the subgroup H ⊂ G that still leaves the
ground state invariant. This residual symmetry group
itself acts as one of the labels to indicate the phase of
matter. The case of the ground state not breaking any
symmetry itself corresponds to H = G. However there
may exist different SPT phases where the ground state
is invariant under the same H. In such a case, we would
need more labels along with H to label the phase of mat-
ter. These labels depend on what H itself is and will be
reviewed next.

We now consider the action of global symmetries on the
physical spins and how it translates to the action on the
MPS matrices on the virtual level. It was observed that
the representation of the symmetry on the virtual level
falls into distinct equivalence classes and these classes
correspond to the different SPT phases of matter ‘pro-
tected’ by the corresponding symmetry [12, 13, 18–21].
Here, we review the action of various symmetries on the
MPS matrices, the different equivalence classes and the
labels which distinguish them. The discussions here fol-
low Ref [18].

C. onsite/internal symmetry

Let us now consider Hamiltonians that are invariant
under the action of a certain symmetry group Gint on
each spin according to some unitary representation u(g)
i.e. [H,U(g)] = 0 where U(g) = u1(g) ⊗ · · · ⊗ uN (g). If
the ground state |ψ〉 does not break the symmetry of the
Hamiltonian, it is left invariant under the transformation
U(g) up to a complex phase

U(g)|ψ〉 = χ(g)N |ψ〉. (10)

Eq. (10) can be imposed as a condition on the MPS ma-
trix level as [17–20]

u(g)ijA
j
M = χ(g)V −1(g)AiMV (g). (11)

Note that we use the Einstein summation convention
wherein repeated indices are summed over. Because u
is a group representation, group properties constrain χ
to be a 1D representation and V generally to be a projec-
tive representation of Gint. A projective representation
respects group multiplication up to an overall complex
phase.

V (g1)V (g2) = ω(g1, g2)V (g1g2). (12)

The complex phases ω(g1, g2) are constrained by asso-
ciativity of group action and fall into classes labeled by
the elements of the second cohomology group of Gint over
U(1) phases H2(Gint, U(1)). In other words, the different
elements of H2(Gint, U(1)) label different classes of pro-
jective representations and hence different SPT phases of

matter. In particular, the identity element of the group
H2(Gint, U(1)) labels the set of linear representations of
Gint (which respect group multiplication exactly) and
the corresponding phase of matter is trivial, containing
or adiabatically connected to product ground states.

D. Lattice translation

Note that we assume an infinite system with periodic
boundary conditions for our discussions.

1. Without onsite symmetry

The group of lattice translations LT is generated by
single site shift S which acts as follows

S :
∑
i1...iN

ci1...iN |i1 . . . iN 〉 →
∑
i1...iN

ci1...iN |i2, . . . iN , i1〉

=
∑
i1...iN

ciN i1...iN−1
|i1 . . . iN 〉. (13)

In other words,

S : ci1...iN → ciN i1...iN−1
(14)

S : Tr[Ai11 . . . A
iN
N ]→ Tr[Ai12 . . . A

iN−1

N AiN1 ] (15)

On the MPS matrix level, the single site shift acts as:

S : AiM → AiM+1. (16)

The full group, LT generated by S is

LT = 〈S〉 = {e,S±1,S±2,S±3 . . .}, (17)

Sk : AiM → AiM+k, k ∈ Z. (18)

For a finite chain with periodic boundary conditions, we
have the constraint SN = e and hence LT ∼= ZN . For an
infinite chain, LT ∼= Z. It was shown [18] that there is
only 1 SPT phase protected by LT alone.

If lattice translation is a symmetry, we can choose

AiM = AiM ′ = Ai ∀ M,M ′ ∈ {1, . . . , N}, (19)

that is, the MPS matrices can be chosen to be indepen-
dent of the site label and the same for all sites.

2. With onsite symmetry

If lattice translation is a symmetry in addition to on-
site symmetry defined by a group Gint as described in
Sec (III C), the different 1D irreducible representations
(irreps) χ that can appear in Eq (11) also label different
phases of matter. The different SPT phases protected by
G = Gint × LT are labeled by {ω, χ}



6

E. Parity

1. Without onsite symmetry

The action of inversion or parity, P in general is gener-
ated by a combination of an onsite action by some unitary
operator w and a reflection, I that exchanges lattice sites
about a point.

P = w1 ⊗ w2 · · · ⊗ wN I (20)

where, the action of I is as follows:

I :
∑
i1...iN

ci1...iN |i1 . . . iN 〉 →
∑
i1...iN

ci1...iN |iN iN−1 . . . i1〉

=
∑
i1...iN

ciN ...i1 |i1 . . . iN 〉. (21)

In other words,

I : ci1...iN → ciN ...i1 ,

I : Tr[Ai11 A
i2
2 . . . A

iN
N ] → Tr[AiN1 A

iN−1

2 . . . Ai1N ]

= Tr[(Ai1N )T (Ai2N−1)T . . . (AiN1 )T ].

In the last equation, we have used the fact that the trace
of a matrix is invariant under transposition. On the MPS
matrix level, the action is

I : AiM → (AiN−M+1)T (22)

The full action of parity is

P : ci1...iN → wi1j1 . . . wiN jN cjN ...j1 ,

P : AiM → wij(A
j
N−M+1)T (23)

Since P2 = e, w is some representation of Z2. There is
a special lattice site that has been chosen as the origin
about which we invert the lattice. It is sensible for par-
ity to be defined without any reference to such a special
point. Hence we assume that any system invariant under
parity also has lattice translation invariance which allows
any site to be chosen as the origin. Note that the action
of inversion I and the generator of translations S do not
commute. They are related by

ISI = S−1 (24)

The full symmetry group including translation invariance
and parity, which we will call GP , generated by S and P
is (for a finite chain with periodic boundary conditions)

GP = 〈P,S|P2 = SN = e, ISI = S−1〉
∼= ZN o Z2

∼= DN . (25)

For an infinite chain which we are interested in, we have

GP = 〈P,S|P2 = e, ISI = S−1〉 ∼= Z o Z2
∼= D∞.

(26)

If GP is a symmetry of the Hamiltonian which is not
broken by the ground state wavefunction |ψ〉, we have,
under the action of P,

P|ψ〉 = α(P )N |ψ〉. (27)

The condition Eq. (27) can also be imposed on the level
of the MPS matrices that describe |ψ〉:

wij(A
j)T = α(P )N−1AiN, (28)

where, α(P ) = ±1 labels even and odd parity and N has
the property NT = β(P )N = ±N . {α(P ), β(P )} label
the 4 distinct SPT phases protected by GP [18].

2. With onsite symmetry

Let us consider invariance under the combination of an
onsite symmetry Gint as described in Sec(III C) with par-
ity. If the actions of the two symmetry transformations
commute on the physical level,

U(g)P|ψ〉 = PU(g)|ψ〉, (29)

i.e. G = Gint ×GP , this imposes constraints on the ma-
trix N defined in Sec. III E as [18].

N−1V (g)N = γP (g)V ∗(g). (30)

Where, γP (g) is a one-dimensional irrep of Gint that
arises from the commutation of onsite and parity trans-
formations [18] and V (g) is the representation ofGint act-
ing on the virtual space as discussed in Sec III C. Note
that we can rephase V (g) 7→ α(g)V (g) without chang-
ing anything at the physical level. However, Eq (30) is
modified replacing γP (g) 7→ γP (g)/α2(g). Hence, the 1D
irreps γP and γP /α

2 are equivalent labels for the same
phase for all the 1D irreps α of Gint. Different SPT
phases of matter protected by G = Gint ×GP are labeled
by {ω, χ(g), α(P ), β(P ), γP (g)} [18]. Where, as defined
before ω ∈ H2(Gint, U(1)) with ω2 = e and γP ∈ G/G2
where G is the set of 1D representations of Gint.

Because our Hamiltoinian is not invariant under time
reversal, we do not review the classification of SPT phases
protected by time-reversal invariance and combinations
with other symmetries here. We include the same in the
Appendix (B 1) for the sake of completion. The tech-
niques used in this paper can be extended easily to in-
clude time-reversal invariance.

IV. USING THE PARAMETERS TO
UNDERSTAND THE PHASES OF THE A4

HAMILTONIAN

A. Details of the phase diagram

Armed with the family of parameters described in the
last section, {ω, χ, α, β, γP }, we now describe in detail
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the different phases of the Hamiltonian of Eq (4) seen in
Fig. 1. The internal symmetry is A4 which is a group of
order 12 and can be enumerated by two generators with
the presentation

〈a, x|a3 = x2 = (ax)3 = e〉. (31)

The 3D representation of these generators are

a =

0 1 0
0 0 1
1 0 0

 , x =

1 0 0
0 −1 0
0 0 −1

 (32)

This can be visualized as the rotational symmetry group
of the tetrahedron.

First we briefly outline the steps followed:

1. For every point in parameter space µ = [−3, 4],
λ = [−2, 2] of the Hamiltonian of Eq (4), we use
the iTEBD algorithm [28] to compute the ground
state.

2. We determine the residual symmetry H ⊂ G of
the full symmetry group G = A4 ×GP that leaves
the ground state invariant. This includes checking
the level of translation invariance, which may be
broken down from one-site to two-site or beyond.

3. We determine the labels (subset of
{ω, χ(g)α(P ), β(P ), γP (g)}) that characterizes
the fractionalization of residual symmetry and
measure their values using the appropriate MPS
order parameters.

Several of these steps involve important numerical con-
siderations. Full details of our implementation of these
steps can be found in Sec V.

We find that there are eight different phases in total.
These phases, labeled “A” through “H” as indicated to
match the phase diagram in Fig. 1, are characterized as
follows:

1. Phase A: Parity and one-site translation only
i.e. H = GP (all internal symmetries are broken).
This region is therefore classified by the values of
{α(P ), β(P )} and is found to have values

• {α(P ) = −1, β(P ) = −1}

2. Phases B, C, and D: No unbroken symmetries.
The ground state in these three regions are invari-
ant under the full symmetry group G = A4 × GP .
The relevant labels are {ω, χ(g), α(P ), β(P )} (Since
all three 1D irreps of A4 are equivalent under the
relation γP ∼ γP /χ2, γP (g) is a trivial parameter).
The MPS matrices in all three regions transform
projectively i.e. these are non-trivial SPT phases
with ω = −1 where H2(A4, U(1)) ∼= Z2

∼= {1,−1}.
Also, α(P ) = −1, β(P ) = −1 for all three phases.
However, they can be distinguished by the values of
χ, i.e. observing that the 1D irrep produced under

the A4 symmetry transformation (Eq (10)) in the
three regions corresponds to the three different 1D
irreps of A4 . The values of the set of parameters
which characterize the regions are as follows.

• Phase B: {ω = −1, χ : {a = e
i2π
3 , x = 1}, α =

−1, β = −1}
• Phase C: {ω = −1, χ : {a = 1, x = 1}, α =
−1, β = −1}
• Phase D: {ω = −1, χ : {a = e−

i2π
3 , x =

1}, α = −1, β = −1}

3. Phase E: Parity, Z2 and two-site translation. This
region possess a hybrid parity GP , generated not
by inversion alone but rather the combination of
inversion and the order 2 element axa2 of A4.
Additionally, there is an unbroken onsite Z2 ac-
tions with elements {e, x}. The relevant labels are
{χ(g), α(P ), β(P ), γP (g)} with values

• {χ : {e = 1, x = 1}, α = 1, β = 1, γP = {e =
1, x = 1}}

4. Phases F and G: These regions possess the same
parity and onsite A4 symmetry as phases B, C, and
D, but have translation invariance which is broken
down to the two-site level. They are also distinct
from the above phases because the MPS matrices
transform under a linear representaion of A4, and
have a trivial representation of parity at the two
site level. The relevant labels are parameters are
{ω, χ(g), α(P ), β(P )} with values

• Phase F: {ω = +1, χ : {a = e−
i2π
3 , x =

1}, α = +1, β = +1}
• Phase G: {ω = +1, χ : {a = e+

i2π
3 , x =

1}, α = +1, β = +1}

5. Phase H: In this final region, the onsite symmetry
is broken down to a Z2×Z2 subgroup with elements
{e, x, a2xa, axa2}. Parity and translation symme-
try are both fully retained. It is therefore the only
region in our sample phase diagram which requires
all five labels {ω, χ, α, β, γP } to characterize. The
values here are

• {ω = +1, χ = {1,−1, 1,−1}, α = +1, β =
+1, γP = {1, 1, 1, 1}}

Note here that for compactness, the set of values given
χ and γ refer to the four elements {e, x, a2xa, axa2}, re-
spectively.

The diversity of phases seen in this phase diagram show
the importance of carefully checking for both conven-
tional symmetry-breaking phases and SPT phases. The
phases present here also underscore the importance of
considering the different possible instances of parity and
translation invariance which can occur, since in addition
to traditional one-site translation invariance and inver-
sion, one might find e.g. translation breaking without
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inversion breaking (phases F and G), or inversion which
only exists when hybridized with an onsite symmetry
(phase E). In the subsequent section, we show the wide
variety of phases which could potentially exist given the
symmetries of this parent Hamiltonian.

B. Counting the possible phases of with onsite A4

and parity symmetries

Looking beyond the eight phases which are observed
in our phase diagram, we now count the different phases
that are possible with the symmetry group that we con-
sidered.

G = A4 ×GP (33)

GP is the group generated by lattice inversion and trans-
lation that was described in Sec (III E) and A4 is the
alternating group of degree four i.e. the group of even
permutations on four elements. The order of this group
is 12 and can be enumerated with two generators,

〈a, x|a3 = x2 = (ax)3 = e〉. (34)

We list the full set of 12 elements in terms of these gen-
erators for convenience:

A4 = {e, a, a2, ax, a2x, xa, xa2, xax, xa2x, x, axa2, a2xa}
(35)

We use the results of Refs. [17, 18] which were reviewed
in Sec (III) and list the possible phases by the two pos-
sible mechanisms:

1. Symmetry breaking of G into the different possible
subgroups.

2. SPT phases of the residual symmetry, H.

The possible symmetry breaking patterns are enumer-
ated by listing all possible subgroups of G = A4 × GP .
Since in the thermodynamic limit, this is a group of in-
finite order formally isomorphic to A4 ×D∞, we cannot
list all possible subgroups. In particular, since the sym-
metry group we are interested in contains lattice trans-
lation LT , generated by single site shifts, in principle, it
can spontaneously break into various subgroups gener-
ated by two site shifts, three site shifts and so on when
the ground state dimerizes, trimerizes etc. To keep things
simple, here, we will list the possible phases where trans-
lation invariance is not broken. This means the effec-
tive group is A4 × P which is formally isomorphic to
A4 ×Z2. Including all isomorphisms, there are 26 differ-
ent subgroups contained in A4 × P which can label the
different residual symmetries, H of the ground state at
different levels of symmetry breaking. We shall list some
of the non-trivial groups and the associated SPT phases.
The counting would be similar when the ground state is
invariant under, say, two-site translation invariance by
considering two sites as one supersite and repeating the
analysis similarly for the rest of the unbroken symmetry
transformations.

1. H = A4 × P :

• The set of labels that classify the different
phases are {ω, χ, α(P ), β(P ), γP }.
• For onsite A4, we have H2(Gint, U(1)) = Z2

which gives us two choices for ω.

• Since A4 has 3 different 1D irreps, we have
three choices for χ.

• From the equivalence of 1D irreps described in
Sec (III E), all 1D irreps of A4 are equivalent
to each other and γP has only one choice.

• α(P ) and β(P ) have two choices each given by
±1.

• For H = A4 ×P, we have 2× 3× 2× 2× 1 =
24 possible phases.

2. H = Z2 × Z2 × P

• There is one instance of Z2 × Z2 ⊂ A4 with
Z2 × Z2 = {e, x, axa2, a2xa}.
• The set of labels that classify the different

phases are {ω, χ, α(P ), β(P ), γP }.
• For onsite Z2×Z2, we have H2(Gint, U(1)) =

Z2 which gives us two choices for ω.

• Since Z2 × Z2 has 4 different 1D irreps, we
have four choices for χ.

• Since each 1D irrep of Z2 × Z2 squares to 1,
all 4 of them are valid choices for γP .

• α(P ) and β(P ) have two choices each given by
±1.

• For H = Z2×Z2×P, we have 2×4×2×2×4 =
128 possible phases.

3. H = Z3 × P

• There are 4 instances of Z3 ⊂ A4:

(a) ZA3 = {e, a, a2}
(b) ZB3 = {e, xax, xa2x}
(c) ZC3 = {e, ax, xa2}
(d) ZD3 = {e, xa, a2x}

• The set of labels that classify the dif-
ferent phases for each instance are
{ω, χ, α(P ), β(P ), γP }.
• For onsite Z3, we have H2(Gint, U(1)) = {e}

which gives us one choice for ω.

• Since Z3 has 3 different 1D irreps, we have
three choices for χ.

• From the equivalence of 1D irreps described in
Sec (III E), all 1D irreps of Z3 are equivalent
to each other and γP has only one choice.

• α(P ) and β(P ) have two choices each given by
±1.
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• For H = Z3, we have 1 × 3 × 2 × 2 × 1 = 12
phases for each of the four instances and hence
a total of 48 possible phases.

4. H = Z2 × P

• There are 3 instances of Z2 ⊂ A4:

(a) ZA2 = {e, x}
(b) ZB2 = {e, axa2}
(c) ZC2 = {e, a2xa}

• The set of labels that classify the dif-
ferent phases for each instance are
{ω, χ, α(P ), β(P ), γP }.
• For onsite Z2, we have H2(Gint, U(1)) = {e}

which gives us one choice for ω.

• Since Z2 has 2 different 1D irreps, we have two
choices for χ.

• Since each 1D irrep of Z2 squares to 1, both
1D irreps are valid choices for γP .

• α(P ) and β(P ) have two choices each given by
±1.

• For H = Z2, we have 1 × 2 × 2 × 2 × 2 =
16 phases for each of the three instances and
hence a total of 48 possible phases.

5. H = Parity generated by lattice inversion only.

• There is one instance of this H = P = {e, I}
i.e. all generators are A4 are broken.

• The set of labels that classify the different
phases are {α(P ), β(P )}.
• α(P ) and β(P ) have two choices each given by
±1.

• For H = P, we have a total of 2 × 2 = 4
possible phases.

6. H = Parity generated by lattice inversion combined
with onsite Z2 operation.

• There are three possibilities:

(a) PA = {e, xI}
(b) PB = {e, axa2I}
(c) PC = {e, a2xaI}

• The set of labels that classify the different
phases for each instance are {α(P ), β(P )}.
• α(P ) and β(P ) have two choices each given by
±1.

• For H = PA/B/C , we have of 2 × 2 = 4 for
each of the three instances and hence a total
of 12 possible phases.

7. H = Z2 × PA/B/C

• There are three possibilities:

(a) ZA2 × PB = {e, x, a2xaI, axa2I}

(b) ZB2 × PC = {e, xI, a2xaI, axa2}
(c) ZC2 × PA = {e, xI, a2xa, axa2I}

• The set of labels that classify the dif-
ferent phases for each instance are
{ω, χ, α(P ), β(P ), γP }.
• With the number of choices for the labels be-

ing the same as mentioned in (4), there are
1 × 2 × 2 × 2 × 2 = 16 phases for each of the
three instances and hence a total of 48 pos-
sible phases.

There are also other possibilities which include the dif-
ferent subgroups of A4 with parity being broken com-
pletely, in which case we ignore the labels α(P ), β(P ), γP .
It is clear that even in the limited set of residual sym-
metries we have listed, there is a rich set of phases when
combined with SPT order.

V. NUMERICAL METHODS FOR OBTAINING
THE PHASE DIAGRAM

For gapped 1D spin chains, the authors of Ref. [11,
12, 20, 40] describe ways of numerically determining the
SPT parameter described above, and distinguishing dif-
ferent SPT orders. We build on the technique developed
in Ref. [20] where the authors obtain the SPT labels us-
ing the representations of symmetry at the virtual level.
The numerical characterization of the phase diagram of a
general parametrized Hamiltonian H(λ, µ, . . .) proceeds
according to the following steps:

1. Identify the group of symmetries of the Hamilto-
nian, G of the Hamiltonian.

2. For each point in parameter space {λ, µ, . . .}, ob-
tain the ground state |ψ(λ, µ, . . .)〉 of the Hamilto-
nian H(λ, µ, . . .) numerically as a MPS.

3. For each point in parameter space {λ, µ, . . .}, iden-
tify the subgroup of symmetries H ⊂ G that leaves
the ground state |ψ(λ, µ, . . .)〉 invariant. In our
case, this means checking each of the 24 elements
of G = A4 × P. We also must explicitly check the
translation invariance.

4. Obtain the relevant virtual representations for the
elements of H, i.e. χ, V, α(P ), and N .

5. From the representations and their commutation
relations, obtain all other labels that completely
characterize the phase.

In general, this process results in calculating the full
family {χ, ω, α(P ), β(P ), γ(P )} for each point in parame-
ter space. However, in some cases, the elements of H are
such that not all such parameters are necessary or even
well-defined. For example, if the subgroup H does not
contain the parity operator, then α(P ), β(P ) and γ(P )
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do not exist. Similarly, if H = Z3, there is only one possi-
ble value of ω, and hence we do not need it to distinguish
the phase. The complete set of cases potentially relevant
to our Hamiltonian was discussed above in Sec. IV B.

A. Ground state preparation

Having constructed our Hamiltonian with an explicit
symmetry group G = A4 × P, the next step is to ob-
tain the ground states. For this, we use the numer-
ical “iTEBD” algorithm [28, 41, 42] to compute the
ground states over a range of parameters, λ ∈ [−2, 2]
and µ ∈ [−3, 4] (this range is simply chosen based on
our results to include a large but not necessarily compre-
hensive sample of different SPT phases). The algorithm
computes the ground state of a Hamiltonian H through
the imaginary time evolution of an arbitrary initial state
|ψ〉, since |ψ〉 can be expanded in the energy eigenbasis
of Hamiltonian as |ψ〉 =

∑
i ci|Ei〉 and hence e−τH |ψ〉

will suppress all such components except for the ground
state |E0〉 in the large-τ limit. Except where otherwise
noted, data in this paper were prepared with a random
initial state represented as an MPS with bond dimension
χ = 24, and evolved according to a fixed sequence of
timesteps which were chosen to be sufficient to converge
the energy to the level of 10−8 at the most numerically
“difficult” states. Within each phase, a random set of
points have also been recomputed using states with a se-
ries of larger bond dimensions (χ = 36, 42, and 60) and a
longer sequence of imaginary timesteps, in order to ver-
ify that the observed characteristics are not likely to be
artifacts of the numerical parameters.

While the numerical details of the iTEBD algorithm
have been extensively documented elsewhere and are out-
side the scope of our concern here, there is one salient
point which must be remarked upon. For a Hamiltonian
H with two-body interactions, the algorithm relies on a
decomposition of the Hamiltonian into two sets of terms,
those acting first on an even site (HA) and those acting
first on an odd site (HB), so that H = HA + HB . As
such the imaginary time evolution operator can be ap-
proximated by the Suzuki-Trotter decomposition [43, 44],
which, to second order, gives

e−τH ≈ (e−δτHA/2e−δτHBe−δτHA/2)N , (36)

with δτ = τ/N . The total operator can then be applied
as a sequence of smaller operators, acting either on an
even site first, or an odd site first. This distinction, then,
requires the state to be represented with at least two
tensors, AjA and AjB , even if the the resulting state is ex-
pected to possess a one-site translation invariance (which
would generally allow it to be represented by only a single
tensor Aj . This fact will have relevance in later sections,
when the translational invariance of the MPS is explicitly
discussed).

For now, however, let us simplify the discussion by
considering a translationally invariant, infinite ground

state, represented by the tensor Aj . Note that there
is some gauge freedom allowed in the representation of
an infinite MPS state–the tensors Aj and eiφXAX−1

both represent the same one-site translationally invari-
ant state, for example. This freedom allows us to make
some choices about the structure of the representation
which will prove useful in subsequent calculations. In
particular, we can choose our MPS to be represented in
the so-called “canonical form” [36, 42], in which the state
satisfies the property,

Ajα,β(A∗)jα′,β′δ
β,β′ = δα,α′ (37)

This condition can also be thought of in terms of the
state’s transfer matrix (see Fig. 5). This object, a com-
mon construction used in MPS formalism to compute
things like expectation values, is given by:

T
(αα′)
(ββ′) ≡ A

j
α,β(A∗)jα′,β′ . (38)

Now consider the dominant eigenvector of T , which will
be some vector X(β,β′). Because the outgoing indices of
T are a composite of smaller indices (β, β′), any eigen-
vector of this matrix can also be thought of as a (smaller)

matrix in its own right, by interpreting X(β,β′) as Xβ
β′ .

The original vector X(β,β′) is called the vectorization of

the matrix Xβ
β′ . Now, the condition for canonical form

can be rephrased as the requirement that the dominant
eigenvector of the state’s transfer matrix is a vectoriza-
tion of the identity matrix, i.e.

(T )
(αα′)
(ββ′)δ

(ββ′) = δ(αα
′) (39)

This property of a transfer matrix in canonical form
(graphically depicted in Fig. 5) will be quite useful in
subsequent calculations.

Because it represents a contraction of the physical
indices of the tensors Aj , the transfer matrix can be
thought of as containing the overlap of the state with
itself at a single site. In other words, in an N -site peri-
odic state with one-site translation invariance, the norm
square of the state is given by taking a product of N
transfer matrices (one for each site) and then tracing over
them.

〈ψ|ψ〉 = Tr[TN ] (40)

This fact in turn produces a relationship between the
eigenvalues λj of the transfer matrix, and the norm
of the state. Consider for example an infinite-length,
translation-invariant state with unique largest eigenvalue
λ1, whose norm is given by limN→∞ Tr[TN ] =

∑
j λ

N
j ≈

λN1 . This state is normalized if |λ1| = 1. Hence in prac-
tice, computing the largest eigenvalue of the transfer ma-
trix gives us a convenient way to ensure normalization.
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FIG. 5. (Color Online). The transfer matrix of a
translationally-invariant matrix product state, demonstrated
in graphical tensor notation. In (a), the construction of the
transfer matrix is shown as a contraction of two MPS matri-
ces, with the virtual indices grouped to form a single matrix.
In (b), the relationship between the transfer matrix and the
norm square of the state is shown. Finally, in (c) we show
graphically the behavior of a matrix product state in canoni-
cal form: such a state has a transfer matrix whose dominant
eigenvector is a vectorized version of the identity matrix.

A general iMPS computed via iTEBD will not neces-
sarily be in exactly canonical form. However, because
this form is ultimately so useful, it is worthwhile to en-
force it for the ground state representations at the time of
their calculation. In [42], Orus and Vidal have given an
analytical prescription was given for placing an arbitrary
iMPS in canonical form. However, successive Schmidt
decompositions of the state during an iTEBD algorithm
are themselves equivalent to enforcing canonical form, so
long as the operators being applied to the state are uni-
tary. Of course, when one computes a ground state using
imaginary time evolution, the operators which are used,
of the form e−δτH (see Eq. 36), are not in general unitary.
But for δτ very small, they will be quite close. Since a
typical iTEBD algorithm ends with a sequence of very
small time step evolutions, the resulting states are also
typically “close” to canonical form [45]. To take this to
its logical extension, it is a good practice to terminate
every iTEBD algorithm with e.g. 100 steps of evolution
in which we apply only the identity gate (which corre-
sponds to the exact δτ = 0 limit). Of course, this identity
gate evolution is both explicitly unitary and incapable of
changing the underlying state. In this way, one can en-
sure that the states computed via iTEBD algorithm are
exactly in canonical form (up to numerical precision).

B. Symmetry detection and extraction of order
parameters

1. States with one-site translation invariant representations

The general numerical scheme for extracting the topo-
logical order parameters from a numerical MPS was pre-
sented in [20], where it was principally used to study the
order parameters ω, βP , and βT , a parameter for time-
reversal symmetry. Here we emphasize that it can be
used to extract other parameters like the 1D representa-
tion χ as well. We consider the situation first for onsite
symmetries and assume that the infinite state possesses
one-site translation invariance and is represented by a
tensors Aj . The generalization to other symmetries and
to different levels of translation invariance will be consid-
ered subsequently.

To check for symmetry and ultimately access the topo-
logical parameters, one first defines a “generalized” trans-
fer matrix Tu, which extends the definition in Eq. 38 to
include the action of some onsite operator u between the
physical indices, i.e.

Tu ≡ Ajuj,j′(A∗)j
′
, (41)

where, this time, we have suppressed the external indices
of the matrix (See Fig. 6 for a graphical depiction). In the
same manner that the original transfer matrix T repre-
sents the contribution of one site to the overlap 〈ψ|ψ〉, in
this case the generalized transfer matrix Tu represents the
contribution of one site to the expectation value 〈ψ|U |ψ〉,
where U =

⊗
j uj represents the application of u to every

site on the chain (see Fig. 6). And just as an iMPS is
not normalized unless T has largest eigenvalue 1, so too
is such state only symmetric under U if Tu has largest
eigenvalue with unit modulus.

To study the SPT classification of a state, we thus
begin by determining the symmetry. To check if the state
is symmetric under the application of U , then we first
construct Tu and compute the dominant eigenvector X
and the associated eigenvalue λ1. Note that, when the
dimensions of Tu is large, it is numerically far easier to
use some iterative procedure such as a power or Lanczos
algorithm [46–48] to extract this, since only the largest
eigenvalue is required and not the entire spectrum. If
|λ1| < 1, the state is not symmetric under U because
〈ψ|U |ψ〉 = limN→∞T (u)N will vanish. If, however, the
unique largest eigenvalue gives |λ1| = 1, then we can
proceed with the analysis.

Consider now a normalized iMPS in canonical form,
which is invariant under a set of symmetries u(g) at each
site for g in some symmetry group H ∈ G. Per Eq. 11
above, this invariance implies the existence of a set of
matrices V (g), which are generally projective represen-
tations, and χ(g), a one-dimensional representation. As
shown in [20], one can extract both the projective and
a 1-dimensional representation parameters directly from
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FIG. 6. (Color Online). The notion of the transfer matrix
can be generalized to include (a) onsite operation U =

⊗
j uj ,

or (b) a parity operation Pω. Generalizations to other sym-
metries are possible, but outside the scope of this paper as
they are not present in our model.

the dominant eigenvector and eigenvalue of the general-
ized transfer matrix. In particular, if X is the dominant

eigenvector (or more precisely, if Xβ
β′ is a matrix and it’s

vectorization X(ββ′) is the dominant eigenvector), then

V = X−1. The one-dimensional rep χ(g) is simply equal
to the dominant eigenvalue itself. In other words,

(Tu)
(αα′)
(ββ′)(V

−1)(ββ
′) = χ · (V −1)(αα

′) (42)

To see this, consider the left hand side of the equation
(In many ways, this line of argument is clarified when
represented by graphical notation; see also Fig. V B 1).
Combining the definition of the generalized transfer ma-
trix, Eq. 41, with the symmetry fractionalization condi-
tion in Eq. 11, we have

(Tu)
(αα′)
(ββ′) = χ · (V −1)αρAjρσV

σβ(A†)jα′β′

= χ · (V −1)αρT
(ρα′)
(σβ′)V

σβ .

When this is inserted in the left hand side of Eq. 42,
the resulting cancellation of V and V −1 gives us

(Tu)
(αα′)
(ββ′)(V

−1)(ββ′) = χ · (V −1)αρT
(ρα′)
(σβ′) δ

σβ′ . (43)

Then, relabeling the dummy indices ρ and σ into α and β,
we can appeal to the canonical form condition of Eq. 39
to see that

(Tu)
(αα′)
(ββ′)(V

−1)(ββ
′) = χ · (V −1)αα

′
, (44)

which proves that V −1 (vectorized) is an eigenvector with
eigenvalue χ. Furthermore, because the state is normal-
ized and because we required as a condition for symmetry

that|χ| = 1, this proves that V −1 is the dominant eigen-
vector, up to an overall phase factor in V . Hence, any
procedure to numerically extract the dominant eigenvec-
tor and largest eigenvalue from the generalized transfer
matrix is sufficient to extract both the 1D representation
χ and the projective representation required to compute
the projective parameters ω as defined above.
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FIG. 7. (Color online).The projective representation V of a
symmetry can be obtained from a state’s generalized transfer
matrix because the dominant eigenvector of said matrix will
be the vectorization of, V −1, so long as the original state is
in canonical form. This relation is demonstrated graphically
for the case of an onsite symmetry, but easily generalizes to
the parity case.

In the foregoing, we have considered only onsite sym-
metries applied globally to every site on the state[20]. To
include other types of symmetries, one simply generalizes
further the notion of the already-generalized transfer ma-
trix. For example, the parity symmetry defined by Eq. 20
can be studied by means of the matrix

TP ≡ Ajwj,j′(A†)j
′
. (45)

In comparison to Eq. 41, we have simply inserted the
action of the inversion operator I by performing a trans-
pose on the virtual indices of the second MPS tensor. In
this way, the resulting generalized transfer matrix still
represents a one-site portion of the overlap 〈ψ|P|ψ〉. By
the same arguments as above, and by analogy between
Eq. 11 and Eq. 28, one can see that the quantities α(P )
and N can be extracted from the dominant eigenvector
and eigenvalue as before, with the latter used to compute
the parity parameter β(P ) as described above.
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2. States without one-site translationally invariant
representations

Thus far, we have also assumed a state with one-site
translation invariance. However, even when the ground
state being studied does possess a one-site translational
symmetry, the tensors in the MPS representation of this
state may not, because the gauge freedom of an MPS
is not itself constrained to be translationally invariant.
For example, consider a set of translationally-invariant
tensors {A1, A2, A3 . . . } and the gauge transformation

Aj →


XAjZ−1, j even

ZAjX−1 j odd

(46)

for any appropriately-dimensioned matrices X and Z.
Such a gauge transformation results in an MPS repre-
sentation of the state whose tensors at even and odd
sites may look dramatically different. But both sets
of tensors (before and after the transformation) collec-
tively represent the same, translationally invariant state.
Cases like this are of particular interest here because, as
noted above, the iTEBD method (like other MPS ground-
state preparation algorithms) necessarily results in an
MPS representation with different tensors at even and
odd sites, regardless of the translational symmetry of the
physical state.

This feature does not affect our numerical calcula-
tion of the SPT order parameters ω and β(P ), which
are obtained as eigenvectors of the generalized trans-
fer matrices, but has important significance for the one-
dimensional parameters χ, α(P ), and γ(P ). Consider, for
example, a state which is represented by k sets of tensors
{Aj1 ...Ajk}, either because the underlying state has only
a k-site symmetry, or perhaps simply because our partic-
ular numerical representation requires it. The symmetry
condition of Eq. 11 must still hold on a k-site level; that
is, we will have

u(g)IJA
J = χ(g)kV −1(g)AJV (g), (47)

where AJ = Aj1Aj2 · · ·Ajk is now a tensor representing
the entire block of spins which are the unit cell of the
translation invariance, and the composite indices I and
J are equal to (i1i2 · · · ik) and (j1j2 · · · jk). Clearly if we
now define a k-site generalized transfer matrix,

T (k)
u ≡ AJuI,J′(A∗)J

′
(48)

then the arguments from the preceding section show that
V −1 can still be found as the dominant eigenvector of

T
(k)
u .
The largest eigenvalue, on the other hand, is now equal

not to χ, but to χk. In the typical case of an iTEBD
state, where k = 2, this is problematic because for many
common symmetry groups, the values of χ(g) will be ±1,

so a numerical calculation which gives only χ2 will be
unable to distinguish between the different phases. More
generally of course, a k-site representation will always
leave us initially unable to distinguish the cases where χ
is a kth root of unity.

Of course, if the underlying state has a one-site trans-
lation invariance (despite being represented by tensors
with only a two-site invariance), one expects that by
use of some suitable gauge transformations it should
be possible to transform the representation itself back
into a translationally-invariant form. Here, we show
how this can be done in practice. Suppose we have a
translationally-invariant state with, say, a two-site repre-
sentation {Aj , Bj+1} and an even number of total spins,
such that the state in question is given by either

|ψ〉 =
∑
j1...

Tr[Aj1Bj2Aj3 . . . BjN ]|j1j2 . . . jN 〉 (49)

or |ψ〉 =
∑
j1...

Tr[Bj1Aj2Bj3 . . . AjN ]|j1j2 . . . jN 〉 (50)

To recover a one-site representation, we first construct
a new tensor of the form:

Ãj =

(
0 Bj

Aj 0

)
. (51)

This new tensor in fact describes the same wavefunc-
tion |ψ〉. This can be seen by considering the product:

∏
j

Ãj =

(
Aj1Bj2Aj3Bj4 · · · 0

0 Bj1Aj2Bj3Aj4 · · ·

)
.

(52)

If we take Ãj to be the tensor specifying a new MPS
and compute the coefficients, we will have

|ψ̃〉 =
∑
j1···

Tr[Ãj1 . . . ÃjN ]|j1 . . . jN 〉

=
∑
j1···

Tr

∏
j

Ãj

 |j1 . . . jN 〉 (53)

and thus, upon substituting Eq. 52, we find

|ψ̃〉 =
∑
j1···

Tr[Aj1Bj2 · · · ]|j1 . . . 〉 (54)

+
∑
j1···

Tr[Bj1Aj2 · · · ]|j1 . . . 〉 (55)

= 2|ψ〉 (56)

In other words, the state described by the tensor Ãj is
essentially identical to the state specified by the original
tensors {Aj , Bj+1}. The only difference is that the cor-
rect product of tensors needed to give the coefficients of
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the state in Eq. 49 will always appear twice, differing only
by an irrelevant one-site translation (because the under-
lying state has a one-site translation invariance to begin
with, these two copies of the state are still equivalent).

Because the new tensor Ãj now contains two degener-
ate descriptions of the same state, it can be placed in a
block diagonal form by appealing to the procedure given
in Ref. [36] for block-diagonalizing an MPS representa-
tion (see also Appendix C in [49]). The resulting blocks
will each independently represent the state, but with one-
site translation invariance.

The procedure, briefly outlined, is as follows: first, one
must ensure that the tensor Ãj is itself in the canonical
form, in the sense that it satisfies Eq. 37. To do this,
construct the transfer matrix for Ãj and compute the
dominant eigenvector. This may result in a degenerate
manifold of eigenvectors, but by properties of the transfer
matrix, at least one of these will be the vectorization of
some positive matrix X [50]. Since this X is invertible,

we can then take Ãj → X−1/2ÃjX1/2. By construction
this new definition of Ãj will satisfy the canonical form.

From this, we once again construct a transfer matrix
and compute its dominant eigenvector(s). At least one
corresponds to a matrix Z which is not proportional to
the identity matrix (up to numerical precision). Fur-
thermore, since the vectorization of Z† is also an eigen-
vector of the transfer matrix in canonical form, we can
take Z → (Z + Z†)/2 so that Z is Hermitian (unless
(Z+Z†)/2 is itself proportional to the identity, in which
case one can always choose instead Z → i(Z − Z†)/2.)
Finally, we compute the largest magnitude eigenvalue z1
of this new matrix Z, so that we can construct a matrix
W = 1− (1/z1)Z to be a matrix which is manifestly not
full rank. Let P be a projector onto the support of W ,
and P⊥ the projector onto its complement. We can now

decompose Ãj around theses spaces, as

Ãj = PÃjP + P⊥ÃjP⊥ + PÃjP⊥ + P⊥ÃjP. (57)

The reason for the construction of the matrix W from a
fixed point now becomes clear, as it has been shown that
for such matrix W and its associated projector P , we
have ÃjP = PÃjP [36]. Consequently, the final term in
Eq. 57, which represents one of two off-diagonal blocks

in Ãj , vanishes identically. This, in turn, ensures that
the remaining off-diagonal block cannot mix with either

of the diagonal blocks in any product Ãji ˜Aji+1 · · · . It
therefore does not participate in the calculation of the
coefficients of the corresponding states, and can be ig-
nored.

The remaining terms, PÃjP and P⊥ÃjP⊥, represent
the relevant blocks along the diagonal of the tensor. We
remark that in principle, one may need to carry out the

above procedure iteratively for each such block (PÃjP

and P⊥ÃjP⊥) to see if further block reduction is possi-
ble. But in practice, for the two-site iTEBD ansatz, a
single iteration should suffice. Then, by construction of

Ãj , each will be an equivalent representation of the same
state, and each can represent the state with only a one-
site translation invariance. In other words, if we simply

treat PÃjP as the tensor representing the state, we can
use all the procedures in the preceding section to directly
compute the entire family of SPT parameters.

An alternative method for extracting the one-
dimensional parameters when their values are kth roots
of unity would be to compute the ground state with a
version of the iTEBD algorithm designed to act on an n-
site unit cell, where n does not divide k. In this case, the
dominant eigenvalue of the generalized transfer matrix
will be χn, from which χ can now be calculated with-
out ambiguity. Such generalized iTEBD algorithms have
been employed successfully (see for example [51]), but
may be less numerically stable, and cannot be used for a
general state unless one is sure that n is commensurate
with the underlying translation invariance of the state.
Nevertheless, both methods are possible in practice, and
we have used both to cross-check one another in the re-
sults presented in this paper.

3. States with broken translation invariance

Finally, it may also be the case that a state lacks a
one-site translationally invariant representation precisely
because the ground state is not one-site translationally
invariant. When this occurs, one can still compute topo-
logical order parameters for onsite symmetries, but only
once they and the associated symmetries have been suit-
ably redefined to be consistent with the translational
invariance. In other words, if the state has a k-site
translation invariance and is represented by the k ten-
sors {Aj1Aj2 . . . Ajk}, one combines the tensors in the
same manner contemplated above, forming a new ten-
sor AJ = Aj1Aj2 · · ·Ajk with an enlarged physical index
which is given by the composite index J = (j1j2 . . . jk).
We then also re-interpret the onsite symmetry operation
to be uIJ = ui1j1⊗u

i2
j2
⊗ . . . uikjk under the same convention.

Once again, with the tensors merged so they continue
to represent an individual “unit cell” of the state, then
the relation of Eq. 11 will still hold, and we can compute
the projective representations of the symmetry from the
dominant eigenvalue of the transfer matrix. Unlike the
situation described above, however, where the dominant
eigenvalue did not give the one-dimensional representa-
tion χ (but rather χk), in this case the eigenvalue for
the merged cell still gives an order parameter. Indeed,
there is no longer a physical meaning to the kth root of
the eigenvalue, because one-site translation is no longer
a symmetry.

For such states, it is also essential to carefully verify the
level of any residual translation symmetry. As discussed
above, the traditional iTEBD algorithm assumes a two-
site invariant representation of the state; hence, if this
algorithm produces a state which appears to have trans-
lation symmetry which is broken on the one-site level
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but present at a two-site level, it cannot be assumed that
two-site translation is a symmetry of the true ground
state; such symmetry may instead have been forced by
the algorithm. In this work, whenever one-site transla-
tion symmetry is broken, we recompute the ground state
using a version of iTEBD with a larger (say, four-site)
unit cell. If the two-site translation invariance is still
present after such a test, it can then be safely assumed
to be a genuine property of the true ground state, and
not a property forced by the numerical ansatz. In gen-
eral, an algorithm with an k-site ansatz cannot by itself
confirm translation invariance at the k-site level.

C. Obtaining the SPT labels {ω, β(P ), γ(g)}

It is clear how the one-dimensional representations χ
and α(P ) can be used by themselves to label a phase,
since each is a single number. Now, however we must
discuss how to extract similar numerical labels from the
projective representations and other matrices obtained
above (V,N, etc). Hence, we must define a procedure to
obtain an order parameter from these matrices. A good
order parameter that gives us an SPT label has to satisfy
the following conditions:

• It should be sensitive to the fractionalization of the
symmetry at the virtual level.

• It should be invariant under the allowed gauge
transformations of MPS states V 7→ XVX−1,
V 7→ eiθV where V is some symmetry acting on
the virtual level.

1. ω ∈ H2(Gint, U(1))

The authors of [20] show that tracing over products
of elements of the form V (g1)V (g2)V †(g1)V †(g2) satis-
fies both the above requirements and also gives us the
information to extract the class of ω. We will now con-
sider Gint = A4 and its subgroups (H = Z2 × Z2,Z2,Z3

and the trivial group) for which H2(Gint, U(1)) = Z2

(H = A4,Z2 ×Z2) or the trivial group (everything else).
For groups which have H2(Gint, U(1)) = Z2, we will list
order parameters which picks the value ±1 depending on
whether the representation is linear or projective indicat-
ing if the SPT phase of matter is trivial or non-trivial.
(Note: as defined before, D refers to the bond dimension
and V (g) is the representation of onsite symmetry at the
virtual level (11) )

1. • Gint = A4 = 〈a, x|a3 = x2 = (ax)3 = e〉
• H2(A4, U(1)) = Z2

• ω = 1
DTr

[
(V (a)V (x)V †(a)V †(x))2

]
= ±1

2. • Gint = Z2×Z2 = 〈x1, x2|x21 = x22 = (x1x2)2 =
e〉

• H2(Z2 × Z2, U(1)) = Z2

• ω = 1
DTr

[
V (x1)V (x2)V †(x1)V †(x2)

]
= ±1

3. • Gint = Z3 or Z2 or the trivial group

• H2(G,U(1)) = trivial group

• ω = 1 (no projective representations)

2. β(P ) and γ(g)

It was shown in [20] that β(P ) can be obtained as

β(P ) =
1

D
Tr [NN∗] (58)

From Eq (30) we can see that γ(g) that results from the
commutation of onsite and parity can be obtained as

γ(g) =
1

D
Tr
[
N−1V (g)NV T (g)

]
(59)

Here, however, an important technical point arises. Al-
though eq (59) has a similar form to the equations used
to compute ω and β, it differs in an important respect.
Recall that, as calculated above, the matrices V and N
are obtained only up to arbitrary overall phase factors.
These phases are irrelevant to the calculation of ω and β,
as both V and V ∗ appear equally in the equations which
define them. In Eq. 59, however, the matrix V T will fail
in general to cancel the phase contributed by V .

Since the V (g) can carry a different phase for each g,
we must find a way to self-consistently fix the phase fac-
tors of each. In principle, this can always be done by
appealing to the properties of projective representations.
The extracted matrices V should satisfy a set of relation-
ships

V (g1)V (g2) = ω(g1, g2)V (g1g2), (60)

with the phases ω(i, j) forming the “factor system” of
the representation. Since the matrices which we numer-
ically extract by the above procedure do not automati-
cally satisfy this relationship, let us label them Ṽ , with
Ṽ (g) = θgV (g) for some phase factor θg. From this, one
can conclude that the numerical matrices obey a similar
relation:

Ṽ (g1)Ṽ (g2) =
θg1g2
θg1θg2

ω(g1, g2)Ṽ (g1g2). (61)

By analogy to Eq. 60, let us define

ω̃(g1, g2) =
θg1g2
θg1θg2

ω(g1, g2). (62)

Note that these phases ω̃(g1, g2) can be computed numer-

ically from (1/D)Tr[Ṽ (g1)Ṽ (g2)Ṽ (g1g2)−1]. Further-
more, since parity is assumed to be a symmetry of the
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state in question (if it is not, then the concept of a γ
parameter is undefined and the phase factors θ are irrel-
evant), then we must have ω(g1g2)2 = 1 [18]. Inverting
Eq. 62 and applying this condition tells us that

θ2g1θ
2
g2 ω̃(g1, g2)2 = θ2g1g2 . (63)

Since the ω̃ are known, this set of equations, which run
over all the group elements g, are sufficient to solve for
the phases θ. In fact, when V is unitary, it is clear from
the definition of γ in Eq. 59 that only θ2, and not θ itself,
is needed to correct for the spurious phase factors, which
further simplifies the system of equations which must be
solved.

In practice, another convenient way to fix these phase
factors is by interpreting the projective representations
of the group, Ṽ as linear representations of the covering
group (or at least, one of the covering groups). For exam-
ple, in the case of Z2 × Z2, the quaternion group Q8 is a
covering group. Hence the elements of the projective rep-
resentation of Z2×Z2, V (g) can have their overall phases
fixed so that they obey the structure of this group; in par-
ticular, for the representation of the identity element we
must have V (e)2 = 1, and for all others, V (g)2 = −1.

VI. SUMMARY AND FUTURE DIRECTIONS

In this paper, we have studied the phase diagram of
a quantum spin-1 lattice with an onsite A4 symmetry
along with invariance under lattice translation and in-
version. Using numerical methods, we obtain the ground
state of the Hamiltonian for a range of parameters and us-
ing appropriate matrix product state order parameters,
we study the phase diagram. In the parameter range
we study, we detect 8 gapped phases characterized by a
combination of symmetry breaking and symmetry frac-
tionalization. In a recent paper [31], the authors study
continuous phase transitions between two SPT phases
(which do not break symmetry) and determine that the
central charge of the conformal field theory (CFT) that

describes that system at the phase boundary has a cen-
tral charge c ≥ 1. In our phase diagram, we observe that
the phase boundaries separating phases B and C and
also C and D by continuous phase transitions are char-
acterized by a CFT with c ≈ 1.35 which is consistent
with c ≥ 1. However, there is a distinction that must be
noted. The authors of Ref [31] state their result for phase
transitions between two distinct SPT phases protected
by onsite symmetries i.e. when two phases have linear
and projective representations in the virtual space. For
our case, the phases B, C and D are distinct because of
the presence of translation invariance in addition to the
internal A4 symmetry. Specifically, the ground states
belonging to three phases are invariant under A4 trans-
formations up to U(1) factors that corresponds to the
three 1D representations of A4 rather than projective
representations. In fact, all three phases have non-trivial
projective representations in the virtual space. Further-
more, the authors of Ref [29] conjecture that there can
exist no continuous phase transitions between non-trivial
SPT phases when the internal symmetry is discrete at all
length scales. The phase transitions mentioned above ap-
pear to be counter examples. However, at the moment
we do not know whether the discrete symmetry in our
model is enhanced to a continuous one at the transitions
between the A4 SPT phases. It seems, however, that the
transitions seen in this model are not the result of fine-
tuning, as they appear in a finite range of the parameter
µ. These observations suggest that it is interesting to
study the nature of phase transitions and the physics in-
volved in the phase boundary when the protecting sym-
metry has both internal and onsite symmetries. Further
analysis in this direction is left for future exploration.
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[24] D. Pérez-Garćıa, M. M. Wolf, M. Sanz, F. Verstraete,
and J. I. Cirac. String order and symmetries in quantum
spin lattices. Phys. Rev. Lett., 100:167202, Apr 2008.

[25] Jutho Haegeman, David Pérez-Garćıa, Ignacio Cirac,
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Appendix A: Constructing the symmetric
Hamiltonian

We provide details of the construction of the Hamil-
tonian in Sec II. We remind the reader that the group
of onsite symmetries we consider is A4, the alternating
group of degree four and the group of even permutations
on four elements. The order of this group is 12 and can
be enumerated with two generators,

〈a, x|a3 = x2 = (ax)3 = e〉. (A1)

The onsite representation, u(g) we consider that the spins
transform under is the faithful 3D irrep of A4 with gen-
erators

a =

0 1 0
0 0 1
1 0 0

 , x =

1 0 0
0 −1 0
0 0 −1

 (A2)

We use group invariant polynomials as building blocks
to construct Hermitian operators invariant under group
action. A group G invariant n-variable polynomial
f(x1, x2, . . . xn) is unchanged when the n-tuplet of
variables (x1, x2 . . . xn) is transformed under an n-
dimensional representation of the group U(g).

f(x′1, x
′
2 . . . x

′
n) = f(x1, x2 . . . xn) (A3)

x′i = U(g)ijxj . (A4)

If we have n Hermitian operators Xi=1...n that are n-
dimensional and transform covariantly like the n vari-
ables of the polynomial xi=1...n, i.e. U(g)XiU

†(g) =
U(g)ijXj , then we can elevate the group invari-
ant polynomials to group invariant operators as
f(x1, x2, . . . xn)→ f(Xi, X2 . . . Xn) carefully taking into
account that unlike the numbers xi, the operators Xi do
not commute.

Since we need three-dimensional operators of A4, we
consider the set of independent three variable polynomi-
als invariant under the action of the 3D irrep of A4 [52]:

f1(x, y, z) = x2 + y2 + z2, (A5)

f2(x, y, z) = x4 + y4 + z4, (A6)

f3(x, y, z) = xyz. (A7)

We know that the spin operators Si satisfying [Si, Sj ] =
iεijkS

k transform covariantly under any SO(3) rotation,
in particular for the finite set of rotations that corre-
sponds to the subgroup A4 ⊂ SO(3). Thus, to find in-
variant operators for the three-dimensional representa-
tion, we need to take the spin operators in the appropri-
ate three-dimensional basis in terms of the Spin-1 states
|J = 1,mz〉 ∼= |mz〉 = {| ± 1〉, |0〉} so as to get the irrep
defined above.

|x〉 =
1√
2

(|−1〉−|1〉), |y〉 =
i√
2

(|−1〉+|1〉), |z〉 = |0〉,

and elevate the polynomials f1, f2, f3 to operators as

F1 = SxaS
x
b + SyaS

y
b + SzaS

z
b , (A8)

F2 = (SxaS
x
b )2 + (SyaS

y
b )2 + (SzaS

z
b )2, (A9)

F3 = SxaS
y
b S

z
c + SzaS

x
b S

y
c + SyaS

z
bS

x
c

+ SyaS
x
b S

z
c + SxaS

z
bS

y
c + SzaS

y
b S

x
c , (A10)

where the indices a, b, c label any other quantum numbers
collectively like lattice sites and can be chosen as per
convenience, say to make the operators local as we will
do next. As a model Hamiltonian, we could use any
function of the invariant operators F1, F2 and F3 and
ensure that everything is symmetric under the exchange
of lattice labels to impose inversion symmetry.

We start with the Hamiltonian for the Spin-1 Heisen-
berg antiferromagnet which is constructed using F1 with
{a, b} chosen to make the interactions nearest neighbor:

HHeis =
∑
i

~Si · ~Si+1, (A11)

where ~Si · ~Si+1 ≡ Sxi Sxi+1 + Syi S
y
i+1 + Szi S

z
i+1.

We add the two other combinations to the Heisenberg
Hamiltonian so as to break the SO(3) symmetry to A4

by using F2 and F3 as follows:

Hq =
∑
i

~S2
i · ~S2

i+1 (A12)

where, ~S2
i · ~S2

i+1 ≡ (Sxi S
x
i+1)2 + (Syi S

y
i+1)2 + (Szi S

z
i+1)2,

and

Hc =
∑
i

[(SxSy)iS
z
i+1 + (SzSx)iS

y
i+1 + (SySz)iS

x
i+1

+ (SySx)iS
z
i+1 + (SxSz)iS

y
i+1 + (SzSy)iS

x
i+1

+ Sxi (SySz)i+1 + Szi (SxSy)i+1 + Syi (SzSx)i+1

+ Sxi (SzSy)i+1 + Szi (SySx)i+1 + Syi (SxSz)i+1]. (A13)



19

The operators are symmetrized so that the Hamiltonian
is invariant under inversion as well as lattice translation.
With these pieces, we arrive at the total Hamiltonian
which is invariant under A4 ×GP :

H = HHeis + λHc + µHq. (A14)

Appendix B: Review of classification of SPT phases
protected by Time reversal symmetry

1. Without onsite symmetry or parity

The time reversal symmetry group GT is generated by
the anti-unitary action T which is a combination of an
onsite unitary operator v and complex conjugation, θ

T = v1 ⊗ v2 · · · ⊗ vN θ (B1)

where, if the basis at each site |i〉 is real, the action of θ
is simply

θ : ci1...iN → c∗i1...iN (B2)

θ : Tr[Ai11 . . . A
iN
N ]→ Tr[(Ai11 )∗ . . . (AiNN )∗] (B3)

T 2 = ±1 in general. However, it was shown in Refs. [17,
18] that only the case of T 2 = 1 corresponds to gapped
phases and we will consider only this case. GT = {e, T }.
The action on the MPS matrices is

T : AiM → vij(A
j
M )∗ (B4)

If GT is a symmetry of the Hamiltonian which is not
broken by the ground state |ψ〉, we have, under the action
of T ,

T |ψ〉 = |ψ〉. (B5)

Note that the possibility of α(T ) analogous to α(P ) of
Sec. (III E) can be eliminated by re-phasing the spin basis
(See Refs. [18, 26]). The condition Eq. (27) can also be
imposed on the level of the MPS matrices that describe
|ψ〉:

vij(A
j
M )∗ = M−1AiMM, (B6)

Here, M has the property MT = β(T )M = ±M . β(T ) =
±1 labels the two SPT phases protected by GT . [18]

2. With parity

If the actions of parity and time reversal com-
mute, the 8 SPT phases protected by GP × GT are
labeled by {α(P ), β(P ), β(T )} as defined before in
Secs (III E,B 1). [18].

3. With onsite symmetry

If the action of the onsite symmetry transformation
U(g) commutes with T , we have a similar result to
Eq. (30).

U(g)T |ψ〉 = T U(g)|ψ〉, (B7)

this imposes constraints on the matrix M defined as [18].

M−1V (g)M = γT (g)V ∗(g). (B8)

The different SPT phases protected by G×T are labeled
by {ω, β(T ), γT (g)} where, ω ∈ H2(Gint, U(1)) which
satisfy ω2 = e, γT ∈ G/G2 using the same arguments as
Sec (III E 2). If translation invariance is also a symme-
try, the set of 1D representations χ(g) in Eq (11) which
satisfy χ(g)2 = 1 also label different phases in addition
to the ones already mentioned before. [18]

4. With onsite and parity

The different SPT phases protected by G × T × GP
are labeled by {ω, χ(g), α(P ), β(P ), β(T ), γ(g), γT (g)}
where, ω ∈ H2(Gint, U(1)) which satisfy ω2 = e, γ(g)
and γT (g) ∈ G/G2, χ(g)2 = 1 and G is the set of 1D
representations of Gint. [18]
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