
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Hyperscaling violation at the Ising-nematic quantum critical
point in two-dimensional metals

Andreas Eberlein, Ipsita Mandal, and Subir Sachdev
Phys. Rev. B 94, 045133 — Published 25 July 2016

DOI: 10.1103/PhysRevB.94.045133

http://dx.doi.org/10.1103/PhysRevB.94.045133


Hyperscaling violation at the Ising-nematic quantum critical point

in two dimensional metals

Andreas Eberlein,1 Ipsita Mandal,2 and Subir Sachdev1, 2

1Department of Physics, Harvard University, Cambridge MA 02138, USA
2Perimeter Institute for Theoretical Physics,

Waterloo, Ontario, Canada N2L 2Y5

Abstract

Understanding optical conductivity data in the optimally doped cuprates in the framework of quantum

criticality requires a strongly-coupled quantum critical metal which violates hyperscaling. In the simplest

scaling framework, hyperscaling violation can be characterized by a single non-zero exponent θ, so that in

a spatially isotropic state in d spatial dimensions, the specific heat scales with temperature as T (d−θ)/z,

and the optical conductivity scales with frequency as ω(d−θ−2)/z for ω � T , where z is the dynamic critical

exponent defined by the scaling of the fermion response function transverse to the Fermi surface. We

study the Ising-nematic critical point, using the controlled dimensional regularization method proposed

by Dalidovich and Lee (Phys. Rev. B 88, 245106 (2013)). We find that hyperscaling is violated, with

θ = 1 in d = 2. We expect that similar results apply to Fermi surfaces coupled to gauge fields in d = 2.
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I. INTRODUCTION

The widespread observation of ‘strange metal’ behavior in numerous correlated electron com-

pounds underscores the need for a general theoretical framework for understanding metallic states

without quasiparticle excitations.1 Theories of such metallic states involve fermionic excitations

across a Fermi surface coupled to low energy and long-wavelength excitations of some gapless

boson. This boson can either be a symmetry-breaking order parameter at a critical point,2–11 an

emergent deconfined gauge field,7,12–16 and/or a critical ‘Higgs’ field associated with phase tran-

sition between different phases of a gauge theory.17,18 In all of these cases, the critical theory of

the non-quasiparticle metal can be formulated as a continuum theory with an exactly conserved

momentum density P .18–20 The other conserved quantities in such theories are the fermion number

density and the energy density.

Such a continuum theory can provide a reliable computation for numerous single particle and

other non-transport response functions. However, the conservation of P leads to singularities in

the transport properties which have to be regulated by various “lattice” contributions. Umklapp

scattering and/or impurities are needed to dissipate the momentum, and to obtain finite transport

co-efficients in the d.c. limit. At frequencies ω > T , e.g. in the optical conductivity of interest in

the present paper, the effects of P are less important; nevertheless, it is important to subtract out

the singular contributions in the d.c. limit to properly define the scaling properties of frequency-

dependent transport co-efficients. In a number of recent papers, ‘memory function’, hydrodynamic,

and holographic methods have been employed to understand the lattice contributions to the low

frequency transport.21–27

For our purposes, it is useful to describe the transport properties in the limit where P is exactly

conserved. Then the thermoelectric response is described by

(
J

Q

)
=

(
σ α

Tα κ

)(
E

−∇T

)
, (1.1)

where T is temperature, E is an applied electric field, J is the electrical current, and Q is the

heat current. The electrical conductivity, σ, and thermoelectric conductivities α, κ, are in general

spatial matrices, but we will only consider here spatially isotropic systems without an external

magnetic field, and then these conductivities are numbers. The thermal conductivity, κ, is defined

under conditions under which J = 0, and so

κ = κ− Tα2

σ
. (1.2)

In systems with P conserved, the thermoelectric conductivities have poles at zero frequency, ω,
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and obey26

σ =
Q2

M

(
1

−iω

)
+ σQ

α =
SQ
M

(
1

−iω

)
+ αQ

κ =
TS2

M

(
1

−iω

)
+ κQ, (1.3)

where σQ, αQ, κQ are the frequency-dependent conductivities after the pole has been subtracted

out. The residues of the pole are related exactly to static thermodynamic observables: these are the

entropy density, S, the current-momentum correlator Q ≡ χJx,Px , and the momentum-momentum

correlator M ≡ χPx,Px . Combining Eqs. (1.2) and (1.3), we observe that the pole at ω = 0 does

not appear in κ, and in the d.c. limit21,28

κ = κQ − 2

(
TS
Q

)
αQ +

(
TS2

Q2

)
σQ , ω → 0. (1.4)

In many cases, the σQ, αQ, κQ conductivities are not independent of each other, and obey

identities connecting them at all frequencies.29 This is the case in systems with Hamiltonians

which are invariant under relativistic or Galilean transformations. However, our interest here is in

systems which conserve P , but do not enjoy relativistic or Galilean invariance, and such systems

have not been as extensively studied. In such situations, it appears that σQ, αQ, and κQ are

independent response functions.

Let us now turn to the specific case of the Ising-nematic quantum critical point in two-

dimensional metals.5–7,10 Among the thermodynamic observables introduced above, Q and M
take constant non-critical values which depend upon microscopic details. However, the entropy

density, S does have a singular T dependence. From general scaling considerations, and allowing

for violating of hyperscaling in which the spatial dimension d→ d− θ, we expect30

S ∼ T (d−θ)/z, (1.5)

with z the dynamic critical exponent. We can view Eq. (1.5) as the definition of the value θ. In

Section IV, we will use the controlled ε-expansion for the Ising-nematic critical theory introduced

by Dalidovich and Lee10 to compute S. In d = 2 we find the value

θ = 1. (1.6)

Roughly speaking, this violation of hyperscaling can be traced to the fact that the momentum

integral along the Fermi surface is non-singular, and so only introduces an overall factor of the

Fermi surface size. The single momentum dimension corresponding to this integral corresponds to

the value in Eq. (1.6).
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For the frequency-dependent thermoelectric conductivities, similar scaling arguments,11 followed

by d→ d− θ yield

σQ ∼ αQ ∼
κQ
T
∼ T (d−2−θ)/z Υ(ω/T ), (1.7)

where Υ is a scaling function, and the three conductivities have separate scaling functions. In

Sections III-E, we will use the Dalidovich-Lee ε expansion to compute σQ in the regime ω � T

(this is the ‘optical’ conductivity). In this regime, and for d = 2, we find σQ ∼ ω(d−2−θ)/z, as

expected from Eq. (1.7), with the value of θ again given by Eq. (1.6).

We note that we have defined the value of z by the scaling of the fermion response function

transverse to the Fermi surface. The Ising-nematic critical point has z = 3/2 and θ = 1 in

d = 2, and so we have σQ ∼ ω−2/3. This scaling of the optical conductivity was obtained earlier13

for the case of a Fermi surface coupled to a U(1) gauge field, but was given a different physical

interpretation.11

We will begin in Section II by describing the action for the Ising nematic critical point. The

optical conductivity will be computed in Section III, and the free energy and entropy density in

Section IV.

II. ACTION AND SCALING ANALYSIS AT TREE LEVEL

We consider a theory of fermions in (2 + 1) dimensions which are coupled to a critical boson,

S(ψ̄, ψ,Φ) =
∑
s=±

N∑
j=1

∫
d3k

(2π)3
ψ̃†sj(k)(ik0 + skx + k2

y)ψ̃sj(k)

+
1

2

∫
d3k

(2π)3
(k2

0 + k2
x + k2

y)Φ(−k)Φ(k)

+
e√
N

∑
s=±

N∑
j=1

∫
d3k

(2π)3

∫
d3q

(2π)3
λsΦ(q)ψ̃†sj(k + q)ψ̃sj(k),

(2.1)

where e is the fermion-boson coupling constant, s = ±1 labels the two Fermi surface patches and

λs equals 1 (s) for the Ising-nematic critical point (fermions coupled to a U(1) gauge field). This

model has been studied by many authors, including Refs. 7 and 10. In the following, we restrict

ourselves to the Ising-nematic critical point and set λs = 1.

Introducing the spinor notation

ψj(k) =
(
ψ̃+,j(k), ψ̃†−,j(−k)

)T
ψ̄j(k) = ψ†j(k)γ0 (2.2)
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with the gamma matrices γ0 = σy and γx = σx, the action can be rewritten as

S(ψ̄, ψ,Φ) =
N∑
j=1

∫
d3k

(2π)3
ψ̄j(k)[ik0γ0 + i(kx + k2

y)γx]ψj(k)

+
1

2

∫
d3q

(2π)3
(q2

0 + q2
x + q2

y)Φ(−q)Φ(q)

+
ie√
N

∫
d3k

(2π)3

∫
d3q

(2π)3
Φ(q)ψ̄j(k + q)γxψj(k).

(2.3)

In order to obtain a controlled perturbative expansion for correlation functions, we use the

dimensional regularization proposed by Dalidovich and Lee,10 which increases the codimension of

the Fermi surface. The dimensionally regularized action in (d+ 1) dimensions reads

S(ψ̄, ψ,Φ) =
N∑
j=1

∫
dd+1k

(2π)d+1
ψ̄j(k)[iΓ ·K + iγxδk]ψj(k)

+
1

2

∫
dd+1q

(2π)d+1
[Q2 + q2

x + q2
y]Φ(−q)Φ(q)

+
ie√
N

√
d− 1

N∑
j=1

∫
dd+1k

(2π)d+1

∫
dd+1q

(2π)d+1
Φ(q)ψ̄j(k + q)γxψj(k),

(2.4)

where K = (k0, k1, . . . , kd−2) represents frequency and (d − 2) components of the full (d + 1)-

dimensional energy-momentum vector. k1, . . . , kd−2 are the time-like auxiliary dimensions. The

gamma matrices for the new dimensions are Γ = (γ0, γ1, . . . , γd−2). We introduced the abbreviation

δk = kx +
√
d− 1k2

y and keep the definitions γ0 = σy and γx = σx.

Rescaling momenta as

K = b−1K ′ kx = b−1k′x ky = b−1/2k′y, (2.5)

the fermionic quadratic part of the action is invariant under rescaling for

ψj(k) = bd/2+3/4ψ′j(k
′). (2.6)

Rescaling the bosonic fields as

Φ(k) = bd/2+3/4Φ′(k′) (2.7)

the term∼ q2
y in the bosonic quadratic part is invariant under rescaling while the terms proportional

to Q2 and q2
x are irrelevant. The interaction part changes under rescaling like

e′ = eb
1
2

(5/2−d), (2.8)

identifying d = 5/2 as the upper critical dimension. The coupling e is irrelevant for d > 5/2

and relevant for d < 5/2. This allows to access non-Fermi liquid physics perturbatively by using

ε = 5/2− d as expansion parameter.
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Keeping only marginal terms, the ansatz for the local field theory reads

S(ψ̄, ψ,Φ) =
N∑
j=1

∫
dd+1k

(2π)d+1
ψ̄j(k)[iΓ ·K + iγxδk]ψj(k) +

1

2

∫
dd+1k

(2π)d+1
k2
yΦ(−k)Φ(k)

+
ieµε/2√
N

√
d− 1

N∑
j=1

∫
dd+1k

(2π)d+1

∫
dd+1q

(2π)d+1
Φ(q)ψ̄j(k + q)γxψj(k),

(2.9)

where we introduced the momentum scale µ in order to make the coupling e dimensionless. Per-

turbative corrections to this action at one-loop level reintroduce dynamics for the bosonic field.

The bare propagators read

D0(q) =
1

q2
y

(2.10)

G0(k) =
Γ ·K + γxδk
i(K2 + δ2

k)
. (2.11)

III. CURRENT-CURRENT CORRELATION FUNCTION AND OPTICAL CONDUC-

TIVITY

In this section, we compute the optical conductivity σ(ω) = σxx(ω, q = 0) at T = 0 via the

Kubo formula,

σ(ω) = − 1

Ωm

〈JxJx〉(iΩm)|iΩm→ω+i0+ . (3.1)

The current operator Jx is obtained by minimally coupling the action in Eq. (2.9) to a vector

potential that is non-zero only in the x-direction. We obtain

Jx(x) =
N∑
j=1

ψ̄j(x)ieAγxψj(x) (3.2)

where we termed the charge eA in order to distinguish it from the coupling constant in the action.

Note that the current operator in Eq. (3.2) describes a “chiral” current. The current operator

for the particle current is given by

JNx (x) =
N∑
j=1

ψ̄j(x)eNγ0ψj(x). (3.3)

The chiral current is more convenient to use within codimensional regularization. In the physical

dimension d = 2, the correlation functions for both currents are the same within the fixed point

theory of Dalidovich and Lee.10 They differ at the three-loop level7 where both patches are coupled.

In the following sections we compute the current-current correlation function in O(ε) and sub-

sequently determine its scaling behaviour.
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(a) (b) (c)

FIG. 1. Feynman diagrams for the contributions to the current-current correlation function in (a) O(N)

and (b,c) O(1). The wiggly line represents the bosonic propagator and the curly line the vector potential.

A. Current-current correlation function at one-loop level

The current-current correlation function at one-loop level for q = ωe0 = Q is given by a simple

fermionic loop with two current insertions, as shown in Fig. 1(a),

〈JxJx〉1loop(iω) = e2
A

N∑
j=1

∫
dd+1k

(2π)d+1
tr
(
γxG0(k + q)γxG0(k)

)
= −2e2

AN

∫
dd+1k

(2π)d+1

δ2
k −K · (K + Q)

(K2 + δ2
k)((K + Q)2 + δ2

k)
.

(3.4)

Evaluation as described in Appendix C 1 yields for d = 5
2
− ε

〈JxJx〉1loop(iω) = −e2
AN

∫
dky
2π

u1Loop,ε=0|ω|1/2−ε, (3.5)

where

u1Loop,ε=0 =
Γ(5

4
)

3π3/4
≈ 0.128038. (3.6)

For ε = 1/2, the one-loop result is independent of frequency, as expected.

B. Two-loop self-energy correction to current-current correlation function

The self-energy correction to the current-current correlation function at two-loop level for q =

ωe0 = Q reads

〈JxJx〉SE(iω) = 2e2
A

N∑
j=1

∫
dd+1k

(2π)d+1
tr
(
γxG0(k + q)γxG0(k)Σ1(k)G0(k)

)
(3.7)

= 4e4/3e2
AαΣ,d

∫
dd+1k

(2π)d+1

( µ

|K|

) 2ε
3 2δ2

kK
2 + K · (K + Q)(δ2

k −K2)(
(K + Q)2 + δ2

k+q

)
(K2 + δ2

k)
2
, (3.8)
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where Σ1(k) is the fermionic self-energy at one-loop level, Eq. (A12). The self-energy correction is

shown diagrammatically in Fig. 1(b). This contribution contains a pole in ε−1 and evaluation as

described in Appendix C 2 yields

〈JxJx〉SE(iω) = e2
Ae

4/3ε−1

∫
dky
(2π)
|ω|

1
2
−ε
( µ

|ω|

)2ε/3

aΣ,ε=0 +O(ε0), (3.9)

where we set ε = 0 in the numerical prefactor,

aΣ,ε=0 =
π1/4uΣ,ε=0

8
√

2Γ(7
4
)
≈ 0.0086875. (3.10)

C. Two-loop vertex correction to current-current correlation function

The two-loop vertex correction contribution to the current-current correlation function, which

is shown diagrammatically in Fig. 1(c), is given by

〈JxJx〉VC(iω) = −ieA
N∑
j=1

∫
dd+1k

(2π)d+1
tr
(
γxG0(k + q)Γ1(K, iω)G0(k)

)
(3.11)

= −e2
AN

∫
dd+1k

(2π)d+1

tr
[
(Γ ·K + γxδk)γx(Γ · (K + Q) + γxδk)γxΓ̃1(K, iω)

]
(K2 + δ2

k)((K + Q)2 + δ2
k)

. (3.12)

for q = ωe0 = Q. The vertex correction to the current vertex at one-loop level, Γ1(K, ω) =

ieAγxΓ̃1(K, ω), is derived in Appendix B and given by Eq. (B6). Evaluation of Eq. (3.12) as

described in Appendix C 3 yields a result that is free of poles in ε−1. Setting ε = 0 in the numerical

prefactors, we obtain

〈JxJx〉VC(iω) = −αε=0
VC e

2
Ae

4/3|ω|
1
2
−ε
( µ

|ω|

)2ε/3
∫
dky
2π

(3.13)

where αε=0
VC ≈ 0.0230903.

D. Scaling behavior of optical conductivity and free energy

In this section we determine the scaling behaviour of the optical conductivity, first from general

scaling arguments and subsequently for the fixed point theory for the Ising-nematic quantum-

critical point using the above results for the current-current correlation function.

1. Scaling behavior of optical conductivity and free energy: General arguments

In a system with spatial dimension d, dynamical critical exponent z, 1/2− ε time-like auxiliary

dimensions and violation of hyperscaling exponent θ, the free energy has scaling dimension

[F ] = d− θ + z + (1/2− ε)z = d− θ + (3/2− ε)z. (3.14)
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The current operator is given by J = δF
δA

, where A is the vector potential with scaling dimension

one, and scales as [J ] = d− θ − 1 + (3/2− ε)z. From the Kubo formula Eq. (3.1), we obtain the

scaling dimension of the optical conductivity,

[σ] = −z − (d− θ)− (3/2− ε)z + 2[J ] = d− θ − 2 + (1/2− ε)z, (3.15)

where we took into account that the number of spatial dimensions is effectively reduced by θ.

In d = 2, the free energy and optical conductivity thus scale as

F (T ) ∼ T (2−θ)/z+3/2−ε, σ(ω) ∼ ω−θ/z+1/2−ε. (3.16)

In the ε expansion, it is expected10 that

z =
3

3− 2ε
. (3.17)

In a system with the hyperscaling property and θ = 0, we expect

F (T ) ∼ T 7/2−7ε/3 (3.18)

σ(ω) ∼ ω1/2−ε. (3.19)

If hyperscaling is violated, the free energy and optical conductivity are expected to scale as

F (T ) ∼ T 5/2−5ε/3 (3.20)

σ(ω) ∼ ω−1/2−ε/3 (3.21)

for θ = 1. Note that there are not expected to be any corrections to Eq. (3.20) and (3.21) at higher

orders in ε. In a perturbative expansion in ε, the result for the free energy and optical conductivity

would behave like

F (T ) ∼ T 5/2−ε(1− (1− 1/z) lnT + . . .
)

(3.22)

σ(ω) ∼ ω−1/2−ε(1 + (1− 1/z) lnω + . . .
)
, (3.23)

where 1− 1/z = 2ε/3 for the above-mentioned fixed point theory.

2. Scaling behavior of conductivity: Evaluation for fixed point theory

The two-loop vertex correction contribution computed in Sec. III C turned out to be finite,

so that only the self-energy correction yields a renormalization of the scaling-behavior of the

conductivity. The current-current correlation function is thus given by

〈JxJx〉(iω) ≈ 〈JxJx〉1Loop(iω) + 〈JxJx〉SE(iω) + . . . (3.24)

〈JxJx〉1Loop(iω) = −e2
AN

∫
dky
2π

u1Loop,ε=0|ω|1/2−ε (3.25)

〈JxJx〉SE(iω) = e2
Ae

4/3ε−1

∫
dky
2π
|ω|1/2−ε

( µ

|ω|

)2ε/3

aΣ,ε=0 + . . . , (3.26)
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where the last line contains only the pole contribution. Resummation yields

〈JxJx〉(iω) = −e2
AN

∫
dky
2π

u1Loop,ε=0|ω|1/2−ε
{

1− e4/3

Nε

( µ

|ω|

)2ε/3 aΣ,ε=0

u1Loop,ε=0

}
(3.27)

≈ −e2
AN

∫
dky
2π

u1Loop,ε=0|ω|1/2−ε
{

1 + γ ln
( |ω|
µ

)}
(3.28)

where

γ =
2

3

e4/3

N

aΣ,ε=0

u1Loop,ε=0

. (3.29)

The coupling e4/3

N
is evaluated at the fixed point10 using the β-function in O(ε), yielding(e4/3

N

)∗
= u−1

Σ,ε=0ε. (3.30)

Inserting this result together with u1Loop,ε=0 and aΣ,ε=0 from Eq. (3.6) and Eq. (3.10), respectively,

into Eq. (3.29), we indeed obtain the value

γ =
2ε

3
, (3.31)

which is expected from Eq. (3.23) for θ = 1.

E. Pole contribution to conductivity

In Sec. I, we argued that the conductivity typically consists of a pole contribution and a “quan-

tum” contribution σQ. In the results of the last sections, no pole contribution appeared. In order

to understand this better, we compute the current-momentum susceptibility in the following. It is

given by

χJx,Px = lim
q→0
〈JxPx〉(q0 = 0, q). (3.32)

At one-loop level and for q 6= 0, it reads

〈JxPx〉1Loop(q0 = 0, q) = −ieAN
∫
dd+1k

(2π)d+1

(
kx +

qx
2

)
tr
(
γxG0(k + q)γ0G0(k)

)
= ieAN

∫
dd+1k

(2π)d+1

(
kx +

qx
2

)tr
{
γx[Γ ·K + γxδk+q]γ0[Γ ·K + γxδk]

}
(K2 + δ2

k+q)(K
2 + δ2

k)

(3.33)

where

Px(x) =
i

2

N∑
j=1

(
ψ̄j(x)γ0∂xψj(x)− ∂xψ̄j(x)γ0ψj(x)

)
(3.34)

is the x-component of the momentum density operator associated with the physical time direction.

Computing the trace over gamma matrices,

tr
{
γx[Γ ·K + γxδk+q]γ0[Γ ·K + γxδk]

}
= 2K0(δk + δk+q), (3.35)
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and inserting the result into Eq. (3.33), it is easy to see that χJx,Px vanishes at one-loop level

because the integrand is an odd function of K0.

This result is also expected to hold beyond one-loop level, because the charge associated with the

“chiral” current Jx measures the difference between the occupation numbers at the two opposite

patches of the Fermi surface and vanishes. Moreover, in d = 2, Jx is equal to the fermionic density

operator of the model. In that case, χJx,Px = limq→0〈JxPx〉(q0 = 0, q) is a correlation function

between an operator that is odd under time reversal or spatial inversion (Px) and one that is even

under these symmetries (Jx) and thus has to vanish. The conductivity computed in the last section

is thus the “quantum” contribution σQ.

The optical conductivity for the particle current in d = 2 consists of the same quantum contri-

bution σQ and an additional pole contribution. The presence of the pole contribution follows from

the fact that the particle current-momentum susceptibility,

χJNP = lim
q→0
〈JNx Px〉(q0 = 0, q), (3.36)

is non-zero in d = 2. This is shown in Appendix D, where we obtain

〈JNx Px〉1Loop(0) = −eNN
π

∫
dky
(2π)

k2
y. (3.37)

at one-loop level.

IV. FREE ENERGY AND SPECIFIC HEAT AT FINITE TEMPERATURE

In this section we compute the free energy and specific heat at finite temperature in order to

study the T > 0 dynamics at the Ising-nematic QCP in d = 2. The first systematic evaluation of

the specific heat at metallic quantum critical points for various dynamical critical exponents z was

presented in Ref.31 for d = 3. The specific heat at the nematic QCP in an isotropic Fermi liquid

in d = 2 was evaluated at two-loop order in Ref..32 For the latter, the contribution to the specific

heat from longitudinal fluctuations is the same as the one that we find below for the Ising-nematic

QCP in d = 2 using the fixed point theory.10

A. Contribution of free fermions

The contribution of free fermions is given by

Ff,0(T )− Ff,0(0) = −
∫
d2k

(2π)2

∫
d1/2−εK ′

(2π)1/2−ε

[
T
∑
n=±

ln
(
1 + e−n

√
K′2+δ2

k/T
)
−
√

K ′2 + δ2
k

]
, (4.1)
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where we subtracted the result at T = 0 in order to make it finite. Shifting kx → kx −
√
d− 1k2

y

and rescaling K ′ → TK ′, kx → Tkx we obtain

= −T d
∫
d2k

(2π)2

∫
d1/2−εK ′

(2π)1/2−ε

[
ln
(
1 + e

√
K′2+k2

x
)

+ ln
(
1 + e−

√
K′2+k2

x
)
−
√
K ′2 + k2

x

]
(4.2)

= −T 5/2−ε
∫
dky
(2π)

αf,0, (4.3)

where

αf,0 =
S3/2

(2π)3/2

∫ ∞
0

dp
√
p
[
ln
(
1 + ep

)
+ ln

(
1 + e−p

)
− p
]

=
(2
√

2− 1)Γ(5
4
)ζ(5

2
)

√
2π5/4

≈ 0.375866 (4.4)

after setting ε = 0 in the numerical prefactor.

B. Contribution of free bosons

We compute the contribution of free bosons to the free energy for an inverse bare propagator

that is quadratic in all frequency and momentum arguments and obtain

Fb,0(T ) = T

∫
d2q

(2π)2

∫
d

1
2
−εQ′

(2π)
1
2
−ε

ln
(

1− e−
√

Q′2+q2/T
)

= −T 7/2−εαb,0. (4.5)

In the last step we set ε = 0 in the numerical prefactor and defined

αb,0 = −
S5/2

(2π)5/2

∫ ∞
0

dp p3/2 ln
(
1− e−p

)
=

3ζ(7
2
)

8
√

2π3/4Γ(5
4
)
≈ 0.139686. (4.6)

C. Interaction correction to the fermionic part of the free energy

The lowest-order interaction correction to the free energy is given by

Ff,b(T ) = −e
2µε(d− 1)

2N
T
∑
Ωm

∫
d2q

(2π)2

∫
d

1
2
−εQ′

(2π)
1
2
−ε
T
∑
ωn

∫
d2k

(2π)2

∫
d

1
2
−εK ′

(2π)
1
2
−ε
D1(Ωm,Q

′, q)

× tr
[
γxG0(ωn + Ωm,K

′ + Q′,k + q)γxG0(ωn,K
′,k)

]
,

(4.7)

where ωn and Ωm are fermionic and bosonic Matsubara frequencies, respectively. The correspond-

ing Feynman diagram is shown in Fig. 2. From this expression, we need to isolate the pole

contributions. In lowest order in ε, these are obtained by evaluating one frequency sum as an inte-

gral in the limit T → 0 and the other one at finite temperature. In case the continuous frequency

appears in the argument of the bosonic and a fermionic propagator, we can rewrite the diagram

as a fermionic loop with an insertion of the fermionic self-energy at T = 0. Note that there are

13



FIG. 2. Feynman diagram for the two-loop interaction correction to the free energy.

two such contributions. In case the continuous frequency variable appears in the two fermionic

propgators, we can replace them by the bosonic self-energy at T = 0.

The interaction correction to the fermionic part of the free energy is then given by

F
(1)
f,b (T ) = −e

2µε(d− 1)

N

∫
dQ0

(2π)

∫
d2q

(2π)2

∫
d

1
2
−εQ′

(2π)
1
2
−ε

∫
d2k

(2π)2

∫
d

1
2
−εK ′

(2π)
1
2
−ε
T
∑
ωn

D1(Q0,Q
′, q)

× tr
[
γxG0(ωn +Q0,K

′ + Q′,k + q)γxG0(ωn,K
′,k)

]
=

∫
d2k

(2π)2

∫
d

1
2
−εK ′

(2π)
1
2
−ε
T
∑
ωn

tr
[
Σ1(ωn,K

′,k)G0(ωn,K
′,k)

]
,

(4.8)

where Σ1 is the fermionic self-energy at T = 0, Eq. (A12), and we included a factor of two for the

two possibilities of obtaining the self-energy insertion.

After the computation of the trace over gamma matrices and a shift of kx → kx −
√
d− 1k2

y,

this contribution reads

F
(1)
f,b (T ) = −2e4/3

N
αΣ,dµ

2ε/3

∫
d2k

(2π)2

∫
d

1
2
−εK ′

(2π)
1
2
−ε
T
∑
ωn

1

(ω2
n + K ′2)2ε/6−1(ω2

n + K ′2 + k2
x)

= −αf,1
e4/3

N

∫
dky
(2π)

ε−1
(µ
T

)2ε/3

T 5/2−ε,

(4.9)

where in the last step we computed the integrals using Feynman parameters and defined αf,1 =

αf,0uΣ,0. Combining this result with the free fermion contribution yields

Ff,0(T )− Ff,0(0) + F
(1)
f,b (T ) = −αf,0

∫
dky
(2π)

T 5/2−ε − αf,1
e4/3

N

∫
dky
(2π)

ε−1
(µ
T

)2ε/3

T 5/2−ε

= −αf,0
∫
dky
(2π)

T 5/2−ε
(

1− γf ln
T

µ

)
,

(4.10)

where

γf =
2

3

αf,1
αf,0

e4/3

N
. (4.11)

Evaluating γf at the fixed point and exploiting ( e
4/3

N
)∗ = ε

uΣ,0
, we obtain γ∗f = 2ε

3
and thus

Ff,0(T )− Ff,0(0) + F
(1)
f,b (T ) = −αf,0

∫
dky
(2π)

T 5/2−ε
(

1− 2ε

3
ln
T

µ

)
. (4.12)
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This temperature dependence is expected in this order in ε from Eq. (3.22) in case hyperscaling is

violated with θ = 1 for d = 2. Resummation of the logarithm yields F (T ) ∼ T 5/2−5ε/3 ε=1/2
= T 5/3

for the free energy and C(T ) ∼ T 3/2−5ε/3 ε=1/2
= T 2/3 for the specific heat. In the next section we

show that the bosonic contribution to the free energy does not renormalize these dependences on

temperature in this order of approximation.

D. Interaction correction to the bosonic part of the free energy

In this section we evaluate the interaction correction to the bosonic part of the free energy. In

order to extract the leading order contribution in ε, the bosonic self-energy entering the diagram

as self-energy insertion and in the bosonic propagator is evaluated at T = 0, while the remaining

Matsubara frequency sum is evaluated at T > 0. This yields

F
(2)
f,b (T ) = −T

2

∫
d2q

(2π)2

∫
d

1
2
−εQ′

(2π)
1
2
−ε

∑
Ωm

D1(Ωm,Q
′, q)Π(Ωm,Q

′, q)

=
T

2
βde

2µε(d− 1)

∫
d2q

(2π)2

∫
d

1
2
−εQ′

(2π)
1
2
−ε

∑
Ωm

√
Ω2
m + Q′2

d−1

|qy|3 + βde2µε
√

Ω2
m + Q′2

d−1
.

(4.13)

Computing the integrals and evaluating the frequency sum using zeta-function regularization iden-

tities,11 we obtain

=
e2/3(βdµ

ε)1/3Sd−2(d− 1)

3
√

3(2π)d−2
T
∑
m

∫
dqx
(2π)

∫ ∞
0

dQQd−3
√

Ω2
m +Q2

d−1
3 (4.14)

=
Γ(1

4
− ε

2
)Γ(−1

2
+ 2ε

3
)Sd−2(d− 1)

6
√

3Γ( ε
6
− 1

4
)(2π)d−2

e2/3(βdµ
ε)1/3

∫
dqx
(2π)

T
∑
m

1

|Ωm|4ε/3−1
(4.15)

= −
π5/4(β5/2)1/3

12
√

6Γ(3
4
)

∫
dqx
(2π)

e2/3T 2−ε
(µ
T

)ε/3
, (4.16)

where we set ε = 0 in the numerical prefactor.

In this order of approximation, the interaction correction to the bosonic part of the free energy

does not contain a pole in ε and the bosonic contribution to the free energy is thus not renormalized.

V. CONCLUSIONS

We have computed the optical conductivity and the free energy at the Ising-nematic quantum

critical point in two-dimensional metals using the ε-expansion introduced by Dalidovich and Lee.10

This method allows to study the non-Fermi liquid regime at this strongly coupled critical point

in a controlled way as a stable fixed point of the renormalization group flow. We found that

hyperscaling is violated with a violation of hyperscaling exponent θ = 1 in d = 2.
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The optical conductivity scales as σ(ω) ∼ ω−2/3 at the fixed point, which is close to the be-

haviour found in optimally doped cuprates.33 This scaling behaviour of the optical conductivity

was obtained before in Ref.13 for a metal coupled to a U(1) gauge field, but was given a different

physical interpretation.11

We also computed the free energy at finite temperature, T > 0. The results for the fermionic

contribution to the free energy confirm violation of hyperscaling with the same exponent θ = 1 in

d = 2. At lowest order in ε, the bosonic contribution to the free energy was not renormalized.

In critical points without disorder, the violation of hyperscaling has previously been associated

with systems above their upper-critical dimension, where the critical theory is essentially a free field

theory.34 As far as we are aware, our computation in the present paper is the first to systematically

demonstrate violation of hyperscaling at a strongly-coupled fixed point. The origin of the violation

was the presence of a Fermi surface, and the independence of the singular terms on the momentum

direction parallel to the Fermi surface. A previous computation in a system with a Fermi surface,11

which was dominated by singular contributions at hot spots on the Fermi surface, instead found

that hyperscaling was preserved. We believe that with hyperscaling violation established, the path

is open in similar models to understand the anomalous optical conductivity of strange metals.33
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Appendix A: One-loop self-energies

The bosonic and fermionic self-energies at one-loop level were already computed in Ref..10 We

rederive them here for completeness. The following formulas are useful in the derivations. It is

often convenient to introduce Feynman parameters via

1

AαBβ
=

Γ(α + β)

Γ(α)Γ(β)

∫ 1

0

dx
xα−1(1− x)β−1

[xA+ (1− x)B]α+β
. (A1)
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Traces over products of gamma matrices are evaluated using the formulas for 2 × 2 matrices, as

we are interested in 2 ≤ d < 3,

tr(γi) = 0 (A2)

tr(γiγj) = 2δij (A3)

tr(γiγjγkγl) = 2(δijδkl − δikδjl + δilδjk), (A4)

where the indices run from 0 to d− 1.

At one-loop level, the bosonic self-energy is given by

Π1(q) =
e2µε

N
(d− 1)

N∑
j=1

∫
dd+1k

(2π)d+1
tr
(
γ1G0,j(k + q)γ1G0,j(k)

)
= −2e2µε(d− 1)

∫
dd+1k

(2π)d+1

δk+qδk −K · (K + Q)

(K2 + δ2
k)((K + Q)2 + δ2

k+q)

(A5)

where δk = kx +
√
d− 1k2

y. The diagrammatic represenation of this contribution is similar to

Fig. 1(a), but with current vertices replaced by fermion-boson couplings. Integrating over kx,

shifting ky → ky − δq
2qy

and integrating over ky yields

=
e2µε

4|qy|
√
d− 1

∫
dd−1K

(2π)d−1

(K · (K + Q)

|K||K + Q|
− 1
)
, (A6)

where
∫

dd−1K
(2π)d−1 =

∫
dK0

2π

∫
d1/2−εK′

(2π)1/2−ε and K = K0e0 + K ′. The remaining integral can be computed

using Feynman parameters, yielding

Π1(q) = −βde2µε
|Q|d−1

|qy|
, (A7)

where

βd =

√
d− 1Γ(d/2)2

2d
√
π
d−1| cos(πd

2
)|Γ(d)Γ(d−1

2
)
.

This result is the same as in Ref. 10.

The fermionic self-energy at one-loop level is given by

Σ1(q) = −e
2µε

N
(d− 1)

∫
dd+1k

(2π)d+1
D1(k)γxG0(q − k)γx

=
ie2µε

N
(d− 1)

∫
dd+1k

(2π)d+1
D1(k)

γxδq−k − Γ · (Q−K)

(Q−K)2 + δ2
q−k

(A8)

where (D1(q))−1 = q2
y + βde

2µε |Q|
d−1

|qy | is the one-loop renormalized bosonic propagator. This con-

tribution is diagrammatically shown in Fig. 3(a). Shifting kx → kx + qx +
√
d− 1(qy − ky)2, the
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(a) (b)

FIG. 3. Diagrammatic representation of the one-loop contributions to (a) the fermionic self-energy and

(b) the current vertex.

integrals simplify significantly because δq−k is effectively replaced by −kx. After this shift, ky

appears only in the bosonic propagator, and integration over kx and ky yields

Σ1(q) = −ie
2µε

N
(d− 1)

∫
dd−1K

(2π)d−1

∫ ∞
−∞

dky
2π

|ky|
|ky|3 + βde2µε|K|d−1

∫ ∞
−∞

dkx
2π

γxkx + Γ · (Q−K)

(Q−K)2 + k2
x

=
ie4/3µ2ε/3(d− 1)

3
√

3β
1/3
d N

∫
dd−1K

(2π)d−1

Γ · (K −Q)

|K| d−1
3 |K −Q|

.

(A9)

Using Feynman parameters for computing the remaining integral, we obtain

Σ1(q) = −i(Γ ·Q)
e4/3

N

( µ

|Q|

)2ε/3

αΣ,d (A10)

for the fermionic self-energy at one-loop level in agreement with Ref. 10, where

αΣ,d =
(d− 1)Γ(d−1

3
)Γ(d

2
)Γ(5−2d

6
)

3
√

3β
1/3
d 2d−1

√
π
d
Γ(d−1

6
)Γ(5d−2

6
)

(A11)

For d = 5
2
− ε and ε ≈ 0, αΣ,d has a pole in ε−1. The pole contribution to the self-energy reads

Σ1(q) = −i(Γ ·Q)
e4/3

N

( µ

|Q|

)2ε/3

uΣ,εε
−1 +O(ε0), (A12)

where αΣ,5/2−ε ≈ uΣ,εε
−1 and

uΣ,ε =
(3

2
− ε)Γ(3−2ε

6
)Γ(5−2ε

4
)

√
3β

1/3
5
2
−ε2

3/2−επ5/4−ε/2Γ(3−2ε
12

)Γ(21−10ε
12

)
. (A13)

For ε = 0, this reduces to uΣ,0 =
Γ( 5

4
)

2
√

3β
1
3
5/2

π
7
4

.

Appendix B: Current vertex at one-loop level

In this section we derive the one-loop correction to the bare current vertex Eq. (3.2). It has

been computed in Ref. 10 only for q = 0 and here we extend this calculation to ω 6= 0.
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The one-loop correction to the current vertex is shown diagrammatically in Fig. 3(b) and is

given by

Γ1(k, q) = −ieA
e2µε

N
(d− 1)

∫
dd+1p

(2π)d+1
γxG0(k + p+ q)γxG0(k + p)γxD1(p)

=
ieAe

2µε

N
(d− 1)

∫
dd+1p

(2π)d+1
D1(p)

1

[(K + P + Q)2 + δ2
k+p+q][(K + P )2 + δ2

k+p]

× γx[Γ · (K + P + Q) + γxδk+p+q]γx[Γ · (K + P ) + γxδk+p]γx.

(B1)

In the following we set q = ωe0 = Q. As δk+p = kx + px +
√
d− 1(ky + py)

2, py can be eliminated

from the fermionic propagators by shifting px → px − kx −
√
d− 1(ky + py)

2, effectively reducing

δk+p to px. Note that py still appears in the bosonic propagator D1 and that the current vertex

correction is only a function of K. It then reads

Γ1(K, iω) =ieA
e2µε

N
(d− 1)

∫
dd−1P

(2π)d−1

∫
dpy
2π

|py|
|py|3 + βde2µε

×
∫
dpx
2π

[−Γ · (K + P + Q) + γxpx][Γ · (K + P ) + γxpx]γx
[(K + P + Q)2 + p2

x][(K + P )2 + p2
x]

.

(B2)

For ω = 0, it is easy to see that the vertex correction vanishes after exploiting properties of gamma

matrices and computation of the px integral. Dalidovich and Lee10 argue that this is a sufficient

condition for the absence of poles in ε−1 in Γ1(K, iω), implying the absence of poles in ε−1 in the

two-loop vertex correction to the current-current correlation function. This is checked explicitly

below and in Appendix C 3.

For an explicit evaluation of the one-loop vertex correction in Eq. (B2), we simplify the product

in the numerator using properties of gamma matrices. All terms that are linear in px vanish

under the integral due to symmetries. Moreover, the py-integral has already been solved during

the computation of the fermionic self-energy. Rewriting the product in the denominators of the

fermionic propgators using Feynman parameters, we obtain

Γ1(K, iω) =ieAγx
(e2µε)2/3

N

2(d− 1)

3
√

3β
1/3
d

∫ 1

0

dx

∫
dd−1P

(2π)d−1

∫
dpx
2π

× p2
x − Γ · (K + P + Q)Γ · (K + P )

(P 2)
d−1

6

[
(P + K + xQ)2 + p2

x + x(1− x)Q2
]2 . (B3)

In the next step, we perform the px-integration and write the result in a way that makes it

transparent that the vertex correction vanishes for Q = 0,

=ieAγx
(e2µε)2/3(d− 1)

6
√

3Nβ
1/3
d

∫ 1

0

dx

∫
dd−1P

(2π)d−1

× (P + K + xQ)2 + x(1− x)Q2 − Γ · (K + P + Q)Γ · (K + P )

(P 2)
d−1

6

[
(P + K + xQ)2 + x(1− x)Q2

]3/2 .

(B4)
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The product in the denominator can further be rewritten using Feynman parameters, yielding

=ieAγx
(e2µε)2/3

6
√

3Nβ
1/3
d

Γ(3
2

+ d−1
6

)(d− 1)

Γ(3
2
)Γ(d−1

6
)

∫ 1

0

dx

∫ 1

0

dy

∫
dd−1P

(2π)d−1
y
d−1

6
−1(1− y)1/2

× (P + K + xQ)2 + x(1− x)Q2 − Γ · (K + P + Q)Γ · (K + P )[
(P + (1− y)(K + xQ))2 + y(1− y)(K + xQ)2 + x(1− x)(1− y)Q

] 3
2

+ d−1
6

(B5)

after completing squares in the denominator. We next shift P → P − (1 − y)(K + xQ). Terms

in the numerator that are odd in P vanish when computing the integral, and we obtain

Γ1(K, iω) = ieAγxΓ̃1(K, iω)

= ieAγx
(e2µε)2/3

6
√

3Nβ
1/3
d

Γ(3
2

+ d−1
6

)(d− 1)

Γ(3
2
)Γ(d−1

6
)

∫ 1

0

dx

∫ 1

0

dy

∫
dd−1P

(2π)d−1
y
d−7

6 (1− y)1/2

×
xQ ·

[
(1− 2x(1− y))Q + 2yK

]
− Γ ·QΓ · (yK − x(1− y)Q)[

P 2 + y(1− y)(K + xQ)2 + x(1− x)(1− y)Q2
] 3

2
+ d−1

6

(B6)

with Γ̃1(K, iω) defined in an obvious way. This result is used in Appendix C 3 for the computation

of the two-loop vertex correction to the current-current correlation function.

Appendix C: Evaluation of current-current correlation function

1. Free fermion contribution

The free fermion contribution to the current-current correlation function in Eq. (3.4) is straight-

forwardly evaluated using dimensional regularization. Shifting kx → kx−
√
d− 1k2

y, ky disappears

completely from the integrand, yielding

〈JxJx〉1Loop(iω) = −2e2
AN

∫
dky
2π

∫
dkx
2π

∫
dd−1K

(2π)d−1

k2
x −K · (K + Q)

(K2 + k2
x)((K + Q)2 + k2

x)

= −2e2
AN

∫
dky
2π

I1loop(Q).

(C1)

Introducing Feynman parameters, completing squares in the denominator and shifting K →K −
(1− x)Q, we obtain

I1loop(Q) =

∫
dd−1K

(2π)d−1

∫
dp

(2π)

∫ 1

0

dx
p2 −K2 + x(1− x)Q2

[K2 + p2 + x(1− x)Q2]2

=
πSd−1

(2π)d

∫ ∞
0

dkkd−2

∫ 1

0

dx
x(1− x)Q2

[k2 + x(1− x)Q2]3/2

=
Sd−1

(2π)d
√
πΓ(2− d/2)

Γ(d−1
2

)Γ(d/2)2

Γ(d)
|Q|d−2.

(C2)
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For d = 5/2− ε, the one-loop result for the current-current correlation function thus reads

〈JxJx〉1loop(iω) = −e2
ANu1Loop,ε

∫
dky
2π
|ω|1/2−ε, (C3)

where

u1Loop,ε =
2ε−1/2Γ(3+2ε

4
)Γ(5−2ε

4
)2

√
π

5/2−ε
Γ(5−2ε

2
)

. (C4)

2. Self-energy correction

The two-loop self-energy correction to the current-current correlation function, Eq. (3.8), can

be computed using Feynman parameters. After rewriting the integrand it reads

〈JxJx〉SE(ω) = 4(e2µε)
2
3 e2
AαΣ,d

∫
dd+1k

(2π)d+1

∫ 1

0

dx
1− x
|K| 2ε3

2δ2
kK

2 + K · (K + Q)(δ2
k −K2)[

x(K + Q)2 + (1− x)K2 + δ2
k

]3 . (C5)

Eliminating ky by a variable shift of kx and subsequent integration over kx yield

=
Γ(3)

4
(e2µε)

2
3 e2
AαΣ,d

∫
dky
2π

∫
dd−1K

(2π)d−1

∫ 1

0

dx
1− x
|K| 2ε3

×
[ 3K2 + K ·Q[
K2 + x(2K ·Q + Q2)

] 3
2

− 3K2(K2 + K ·Q)[
K2 + x(2K ·Q + Q2)

] 5
2

]
.

(C6)

Again using Feynman parameters to rewrite the products in the integrand, we obtain

=
Γ(3)

4Γ( ε
3
)
e2
A(e2µε)

2
3αΣ,d

∫
dky
2π

∫
dd−1K

(2π)d−1

∫ 1

0

dx

∫ 1

0

dy

×
[Γ(9+2ε

6
)

Γ(3
2
)

(1− x)y
ε
3
−1(1− y)

1
2 (3K2 + K ·Q)[

K2 + x(1− y)(2K ·Q + Q2)]
3
2

+ ε
3

−
Γ(15+2ε

6
)

Γ(5
2
)

3(1− x)y
ε
3
−1(1− y)

3
2K2(K2 + K ·Q)[

K2 + x(1− y)(2K ·Q + Q2)
] 5

2
+ ε

3

]
.

(C7)

Completing squares in the denominator as

K2 + x(1− y)(2K ·Q + Q2) = (K + x(1− y)Q)2 + x(1− y)(1− x+ xy)Q2, (C8)
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shifting K →K−x(1−y)Q, and neglecting terms that vanish due to symmetries when performing

the K-integration, we obtain

=
Γ(3)

4Γ( ε
3
)
e2
A(e2µε)

2
3αΣ,d

∫
dky
(2π)

∫
dd−1K

(2π)d−1

∫ 1

0

dx

∫ 1

0

dy(1− x)y
ε
3
−1

×
{Γ(9+2ε

6
)

Γ(3
2
)

(1− y)
1
2

3K2 − x(1− y)(1− 3x(1− y))Q2[
K2 + x(1− y)(1− y + xy)Q2

] 3
2

+ ε
3

−
Γ(15+2ε

6
)

Γ(5
2
)

3(1− y)
3
2[

K2 + x(1− y)(1− x+ xy)Q2
] 5

2
+ ε

3

[
K4 − x(1− y)(1− 2x(1− y))K2Q2

− 2x(1− y)(1− 2x(1− y))(K ·Q)2 − x3(1− y)3(1− x(1− y))Q4
]}

(C9)

The remaining integrals can easily be computed using Mathematica. First integrating over K and

subsequently over x and y, the pole contribution to the two-loop self-energy correction reads

〈JxJx〉SE(iω) =
π

1
4uΣ,ε=0

8
√

2Γ(7
4
)
e2
Ae

4/3ε−1

∫
dky
(2π)
|ω|

1
2
−ε
( µ

|ω|

)2ε/3

+O(ε0) (C10)

after exploiting αΣ,d ≈ uΣ,εε
−1 for ε ≈ 0 and setting ε to zero in the numerical prefactors.

3. Vertex correction contribution

In the following, we briefly describe the evaluation of the two-loop vertex correction contribution

to the current-current correlation function, Eq. (3.12). Eliminating ky from the integrand by

shifting kx → kx −
√
d− 1k2

y and expanding the products of gamma matrices in the numerator,

the integrand simplifies because all terms in the numerator that are odd in kx vanish due to

symmetries. We obtain

〈JxJx〉VC(iω) = −e2
AN

∫
dd+1k

(2π)d+1
tr
[ k2

x − Γ ·KΓ · (K + Q)

(K2 + k2
x)((K + Q)2 + k2

x)
Γ̃1(K, iω)

]
. (C11)

Introduction of Feynman parameters and subsequent integration over kx yields

= −e2
AN

∫
dd−1K

(2π)d−1

∫
dky
2π

∫ 1

0

dz

× tr
[K2 + (1− z)(2K ·Q + Q2)− Γ ·KΓ · (K + Q)

4
[
K2 + (1− z)(2K ·Q + Q2)

]3/2 Γ̃1(K, iω)
]
.

(C12)
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Inserting the one-loop correction to the current vertex in Eq. (B6), we obtain

= −e2
A

(e2µε)2/3

24
√

3β
1/3
d

Γ(3
2

+ d−1
6

)(d− 1)

Γ(3
2
)Γ(d−1

6
)

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫
dd−1K

(2π)d−1

∫
dd−1P

(2π)d−1

∫
dky
2π

y
d−7

6 (1− y)1/2

× tr
[K2 + (1− z)(2K ·Q + Q2)− Γ ·KΓ · (K + Q)[

K2 + (1− z)(2K ·Q + Q2)
]3/2

×
xQ ·

[
(1− 2x(1− y))Q + 2yK

]
− Γ ·QΓ · (yK − x(1− y)Q)[

P 2 + y(1− y)(K + xQ)2 + x(1− x)(1− y)Q2
] 3

2
+ d−1

6

]
.

(C13)

Again introducing Feynman parameters for the remaining product yields

= −e2
A

(e2µε)2/3

24
√

3β
1/3
d

Γ(3 + d−1
6

)(d− 1)

Γ(3
2
)2Γ(d−1

6
)

∫ 1

0

dw

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫
dd−1K

(2π)d−1

∫
dd−1P

(2π)d−1

∫ 1

0

dky
2π

× y
d−7

6 (1− y)1/2 tr
({

K2 + (1− z)(2K ·Q + Q2)− Γ ·KΓ · (K + Q)
}

×
{
xQ · [(1− 2(1− y))Q + 2yK]− Γ ·QΓ · (yK − x(1− y)Q)

})
× w1/2(1− w)

d+2
6

[
(1− w)P 2 + [w + (1− w)y(1− y)](K + α1Q)2 + α2

2Q
2
]−(3+ d−1

6
)

(C14)

after completion of squares in the denominator and definition of

α1(w, x, y, z) = α1 =
(1− w)xy(1− y) + w(1− z)

w + (1− w)y(1− y)
(C15)

α2(w, x, y, z) =α2 =
[
w(1− z) + x(1− x)(1− w)(1− z) + (1− w)x2y(1− y)

− α2
1(w + (1− w)y(1− y))

]1/2
.

(C16)

In the next step, we shift K →K−α1Q and subsequently evaluate the trace over gamma matrices.

Terms in the numerator which are odd in K vanish under the integral due to symmetries. The

trace over gamma matrices then yields

tr(. . .) = 2yK2Q2 − 4y(1− x− z + 2xz)(K ·Q)2

+ 2Q4
(
1− α1 − z(1− 2α1)

)(
yα1 − 2x2(1− y) + x(2− y − 2yα1)

)
.

(C17)

No contribution ∼K4 exists because the vertex correction vanishes for |Q| = |ω| → 0.

Rescaling K and P as

P → α2√
1− w

P K → α2√
w + (1− w)y(1− y)

K,

we obtain

〈JxJx〉VC(iω) = −e2
A

(e2µε)2/3

24
√

3β
1/3
d

Γ(3 + d−1
6

)(d− 1)

Γ(3
2
)2Γ(d−1

6
)

∫
dky
2π

×
(
N

(1)
VCQ

2S
(1)
VC(Q) +N

(2)
VCS

(2)
VC(Q) +N

(3)
VCQ

4S
(3)
VC(Q)

) (C18)
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where

S
(1)
VC(Q) =

∫
dd−1K

(2π)d−1

∫
dd−1P

(2π)d−1

K2[
P 2 + K2 + Q2

]3+ d−1
6

=
(3− 2ε)Γ(3

4
+ 5ε

6
)

Γ(13
4
− ε

6
)25−2επ3/2−ε (Q

2)−
3
4
− 5ε

6 (C19)

S
(2)
VC(Q) =

∫
dd−1K

(2π)d−1

∫
dd−1P

(2π)d−1

(K ·Q)2[
P 2 + K2 + Q2

]3+ d−1
6

=
Γ(3

4
+ 5ε

6
)

42−επ3/2−εΓ(13
4
− ε

6
)
(Q2)

1
4
− 5ε

6 (C20)

S
(3)
VC(Q) =

∫
dd−1K

(2π)d−1

∫
dd−1P

(2π)d−1

1[
P 2 + K2 + Q2

]3+ d−1
6

=
Γ(7

4
+ 5ε

6
)

23−2επ3/2−εΓ(13
4
− ε

6
)
(Q2)−

7
4
− 5ε

6 (C21)

N
(1)
VC =

∫ 1

0

dw

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
( α2

2√
w + (1− w)y(1− y)

√
1− w

)d−1

y
d−7

6 (1− y)1/2w1/2

× (1− w)
d+2

6 (α2
2)−(3+ d−1

6
) 2yα2

2

w + (1− w)y(1− y)

(C22)

N
(2)
VC =

∫ 1

0

dw

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
( α2

2√
w + (1− w)y(1− y)

√
1− w

)d−1

y
d−7

6 (1− y)1/2w1/2

× (1− w)
d+2

6 (α2
2)−(3+ d−1

6
)−4yα2

2(1− x− z + 2xz)

w + (1− w)y(1− y)

(C23)

N
(3)
VC =

∫ 1

0

dw

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
( α2

2√
w + (1− w)y(1− y)

√
1− w

)d−1

y
d−7

6 (1− y)1/2w1/2

× (1− w)
d+2

6 (α2
2)−(3+ d−1

6
)2(1− α1 − z(1− 2α1))

× (yα1 − 2x2(1− y) + x(2− y − 2yα1)).

(C24)

These integrals can easily be computed using Mathematica. They are free of poles in ε−1, so that

ε can be set to zero in numerical prefactors. This yields

〈JxJx〉VC(iω) = −αε=0
VC e

2
Ae

4/3|ω|
1
2
−ε
( µ

|ω|

)2ε/3
∫
dky
2π

(C25)

where αε=0
VC ≈ 0.0230903.

Appendix D: Particle current-momentum susceptibility

Following the arguments in Sec. III E, we expect that the particle current-momentum suscepti-

bility is non-zero, at least in d = 2. It is given by

χJN ,P = lim
q→0
〈JNx Px〉(q0 = 0, q), (D1)

where JNx is the x-component of the particle current. The correlation function for q 6= 0 reads

〈JNx Px〉1Loop(q0 = 0, q) = −eNN
∫
dd+1k

(2π)d+1

(
kx +

qx
2

)
tr
(
γ0G0(k + q)γ0G0(k)

)
= eNN

∫
dd+1k

(2π)d+1

(
kx +

qx
2

)tr
{
γ0[Γ ·K + γxδk+q]γ0[Γ ·K + γxδk]

}
(K2 + δ2

k+q)(K
2 + δ2

k)
.

(D2)
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The trace over the gamma matrices yields

= 2eNN

∫
dd+1k

(2π)d+1

(
kx +

qx
2

) 2K2
0 −K2 − δkδk+q

(K2 + δ2
k+q)(K

2 + δ2
k)
. (D3)

It is advantageous to split the physical from the auxiliary frequency directions,

K = K0e0 + K ′, (D4)

in terms of which we obtain

= 2eNN

∫ 1

0

dx

∫
dd+1k

(2π)d+1

(
kx +

qx
2

) K2
0 −K ′2 − δkδk+q

(K2
0 + K ′2 + xδ2

k + (1− x)δ2
k+q)

2
(D5)

after introducing Feynman parameters. Shifting kx → kx −
√
d− 1k2

y, introducing G = qx +√
d− 1(2kyqy + q2

y) and completing squares in the denominator yields

= 2eNN

∫ 1

0

dx

∫
dd+1k

(2π)d+1

(
kx −

√
d− 1k2

y + qx
2

)(
K2

0 −K ′2 − kx(kx +G)
)[

K2
0 + K ′2 + (kx + (1− x)G)2 + x(1− x)G2

]2 . (D6)

After shifting kx → kx − (1− x)G, all terms in the numerator which are odd in kx vanish and we

obtain

= 2eNN

∫ 1

0

dx

∫
dd+1k

(2π)d+1

{
(1− 2x)G

k2
x

[K2
0 + K ′2 + k2

x + x(1− x)G2]2

−
[√
d− 1k2

y −
qx
2

+ (1− x)G
] K2

0 −K ′2 − k2
x + x(1− x)G2

[K2
0 + K ′2 + k2

x + x(1− x)G2]2

}
.

(D7)

It is obvious that the contribution in the first line vanishes when performing the x-integration.

Rescaling integration variables as k0 →
√
x(1− x)k0, kx →

√
x(1− x)kx and K ′ →

√
x(1− x)K ′,

the term in the second line reads

= −2eNN

∫
dky
(2π)

∫
dk0

(2π)

∫
dkx
(2π)

∫
d

1
2
−εK ′

(2π)
1
2
−ε

K2
0 −K ′2 − k2

x +G2

[K2
0 + K ′2 + k2

x +G2]2

×
∫ 1

0

dx
√
x(1− x)

d−2[√
d− 1k2

y −
qx
2

+ (1− x)G
] (D8)

The remaining integrals yield∫ 1

0

dx
√
x(1− x)

d−2[√
d− 1k2

y −
qx
2

+ (1− x)G
]

=
Γ(1 + d

2
)Γ(d

2
)

Γ(1 + d)
G+

Γ(d
2
)2

Γ(d)

(√
d− 1k2

y −
qx
2

)
(D9)∫

dk0

(2π)

∫
dkx
(2π)

∫
d

1
2
−εK ′

(2π)
1
2
−ε

K2
0 −K ′2 − k2

x +G2

[k2
0 + K ′2 + k2

x +G2]2
=

∫
dkx
(2π)

∫
d

1
2
−εK ′

(2π)
1
2
−ε

G2

2
√
G2 + k2

x + K ′23

=
1

2π

∫
d

1
2
−εK ′

(2π)
1
2
−ε

G2

G2 + K ′2 = − |G|d−2

2d−1π
d
2
−1 sin(πd

2
)Γ(d−2

2
)
.

(D10)
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We thus obtain

〈JNx Px〉1Loop(q0 = 0, q) = eNN

√
d− 1Γ(d

2
)2

π
d
2
−1 sin(πd

2
)Γ(d−2

2
)Γ(d)

∫
dky
(2π)

(
kyqy +

q2
y

2
+ k2

y

)
×
∣∣∣qx

2
+
√
d− 1

(
kyqy +

q2
y

2

)∣∣∣d−2

(D11)

for the particle current-momentum correlation function. Note that on one-loop level the limits

d→ 2 and q → 0 do not commute. For d ≥ 2, we obtain

lim
d→2

lim
q→0
〈JNx Px〉1Loop(0, 0, qy) = 0 (D12)

lim
q→0

lim
d→2
〈JNx Px〉1Loop(0, 0, qy) = −eNN

π

∫
dky
(2π)

k2
y. (D13)

The result in the last line also follows from a calculation in d = 2.

Appendix E: One-loop conductivity at finite temperature

In this section, we compute the one-loop result for the conductivity in the limit ω � T for

d = 5/2− ε. It is given by

σ1Loop
xx (iΩm) = − 1

Ωm

〈JxJx〉1Loop(iΩm)

=
2e2

AN

βΩm

∫
d2k

(2π)2

∫
d

1
2
−εK ′

(2π)
1
2
−ε

∑
n

δ2
k −K ′2 − ωn(ωn + Ωm)

(ω2
n + K ′2 + δ2

k)
(
(ωn + Ωm)2 + K ′2 + δ2

k

) , (E1)

where Ωm is a bosonic Matsubara frequency that has to be analytically continued to real frequen-

cies, iΩm → ω + iη, after evaluation of the sum over fermionic Matsubara frequencies ωn.

Before summing over fermionic Matsubara frequencies, we cast this equation in a form that

makes it explicit that Ωmσ
1Loop
xx (iΩm) vanishes for Ωm = 0, following Ref. 35,

=
e2
AN

βΩm

∑
ωn

∫
d2k

(2π)2

∫
d

1
2
−εK ′

(2π)
1
2
−ε

{ Ω2
m + 4k2

x(
ω2
n + K ′2 + k2

x

)[
(ωn + Ωm)2 + K ′2 + k2

x

] − 2

ω2
n + K ′2 + k2

x

}
=
e2
AN

βΩm

∑
ωn

∫
d2k

(2π)2

∫
d

1
2
−εK ′

(2π)
1
2
−ε

1

ω2
n + K ′2 + k2

x

{ Ω2
m + 4k2

x

(ωn + Ωm)2 + K ′2 + k2
x

− 4k2
x

ω2
n + K ′2 + k2

x

}
.

(E2)

Summing over the fermionic Matsubara frequencies yields

=
e2
AN

Ωm

∫
d2k

(2π)2

∫
d

1
2
−εK ′

(2π)
1
2
−ε

{ Ω2
m + 4k2

x

∆k(Ω2
m + 4∆2

k)

[
nF (−∆k)− nF (∆k)

]
− k2

x

∆3
k

[
nF (−∆k)− nF (∆k) + ∆k

(
n′F (∆k) + n′F (−∆k)

)]}
,

(E3)
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where ∆k =
√
k2
x + K ′2. Analytical continuation using iΩm → ω + iδ with δ = 0+ yields

σ1Loop
xx (ω, T ) =

ie2
AN

ω + iδ

∫
d2k

(2π)2

∫
d

1
2
−εK ′

(2π)
1
2
−ε

{ (−iω + δ)2 + 4k2
x

∆k

[
(−iω + δ)2 + 4∆2

k

][nF (−∆k)− nF (∆k)
]

− k2
x

∆3
k

[
nF (−∆k)− nF (∆k) + ∆k

(
n′F (∆k) + n′F (−∆k)

)]}
.

(E4)

We are interested primarily in the limit ω � T in order to obtain the coefficient of δ(ω). In this

case, we can set ω + iδ = 0 in the curly bracket, which yields

= − ie2
AN

ω + iδ

∫
d2k

(2π)2

∫
d

1
2
−εK ′

(2π)
1
2
−ε

k2
x

∆2
k

[
n′F (∆k) + n′F (−∆k)

]
. (E5)

Taking the real part, we obtain

Reσ1Loop
xx (ω � T ) = −πδ(ω)e2

AN

∫
d2k

(2π)2

∫
d

1
2
−εK ′

(2π)
1
2
−ε

k2
x

∆2
k

[
n′F (∆k) + n′F (−∆k)

]
= 2πe2

ANδ(ω)T 1/2−ε
∫
dky
(2π)

π3/4−ε/2(1− 21/2+ε)Γ(3
2
− ε)ζ(1

2
− ε)

(2π)3/2−εΓ(7
4
− ε

2
)

.

(E6)

For d = 2 (ε = 1/2), this result reduces to

Reσ1Loop
xx (ω) = e2

ANδ(ω)

∫
dky
(2π)

, (E7)

which coincides with the result that follows from Eq. (3.5).
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