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We analyze the properties of a non-Abelian spin-1 chiral spin liquid state proposed by Greiter and
Thomale [PRL 102, 207203 (2009)] using Monte Carlo. In this state the bosonic ν = 1 Moore-Read
Pfaffian wave function is used to describe a gas of bosonic spin flips on a square lattice with one
flux quantum per plaquette. For toroidal geometries there is a three-dimensional space of these
states corresponding to the topological degeneracy of the bosonic Moore-Read state on the torus.
We show that spin correlations for different states in this space become indistinguishable for large
system size. We also calculate the Renyi entanglement entropy for different system partitions to
extract the topological entanglement entropy and provide evidence that the topological order of the
lattice spin-liquid state is the same as that of the continuum Moore-Read state from which it is
constructed.

Introduction.—Fractional quantum Hall states are pro-
totypical examples of topologically ordered states of mat-
ter [1]—states which are not characterized by local order
parameters, but rather by ground state degeneracies on
topologically non-trivial surfaces and fractionalized ex-
citations. These excitations are predicted to be anyons,
in most case obeying (fractional) Abelian statistics, as
in the original Laughlin state, but also, possibly, non-
Abelian statistics, as in the Moore-Read Pfaffian state
[2]. Recent work on the non-Abelian case has been driven
not only by its intrinsic interest but also by the possibility
that the resulting non-Abelian anyons could be used for
topological quantum computation [3, 4]. This has moti-
vated the search for possible realizations of states with
non-Abelian topological order beyond fractional quan-
tum Hall states, with one promising class of such states
being the quantum spin liquids.

The notion of quantum spin liquids, possible ground
states of frustrated quantum antiferromagnets with no
conventional long-range magnetic order, can be traced
back to the original triangular lattice RVB state pro-
posed by Anderson [5]. Examples of theoretically es-
tablished Abelian spin liquids which are total spin sin-
glets and have been shown to be ground states of explicit
local Hamiltonians include an SU(2)-invariant Z2 quan-
tum spin liquid on the kagome lattice [6–10], and the
Abelian chiral spin liquid (CSL) introduced by Kalmeyer
and Laughlin [11, 12] for which Hamiltonians have been
constructed in [13–15].

The Abelian CSL state is a spin-1/2 spin-liquid that
can be constructed using a continuum Laughlin wave
function for bosons to describe the amplitudes for spin-
flips on a lattice. In this Letter we investigate proper-
ties of a possible spin-1 CSL state proposed by Greiter
and Thomale [16] that is similarly based on the con-
tinuum Moore-Read wave function [2] known to have
non-Abelian topological order with Ising anyon excita-
tions. Model Hamiltonians for which this state becomes
a ground state in the thermodynamic limit have been

constructed [15, 17]. However, to firmly establish that
the state itself is, indeed, a spin liquid with non-Abelian
topological order it is necessary to show that i) it has
exponentially decaying spin correlations, ii) it has the
expected topological degeneracy, and iii) the restriction
of bosons to the lattice does not destroy the non-Abelian
topological order of the continuum state. Entanglement
properties on the cylinder studied in [17] have suggested
that both the Abelian and non-Abelian CSL states har-
bor the same topological order as their continuum par-
ents. Here, we study the non-Abelian CSL for both pla-
nar and toroidal geometries (the latter being necessary to
study topological degeneracy and related modular prop-
erties) and provide compelling evidence that it is indeed
a quantum spin liquid with exponentially decaying spin
correlations and the same modular S-matrix (and hence
the same non-Abelian topological order) as the contin-
uum Moore-Read state.

Non-Abelian CSL state on planar geometry/torus.—
We begin by reviewing the spin-1 non-Abelian CSL state
for planar geometry proposed by Greiter and Thomale
[16]. This state is constructed using the bosonic Moore-
Read state [2] with filling fraction ν = 1 for which the
droplet wave function in the symmetric gauge is,

Ψ[zi] = Pf
( 1

zj − zk

)

N
∏

i<j

(zi − zj)

N
∏

i

e−|zi|
2/4. (1)

We work in units with magnetic length equal to 1 for
which the square lattice formed by points with complex
coordinates z = ηnm =

√
2π(n + im) where n and m

are integers has one flux quantum per plaquette. If the
bosons are restricted to this lattice, given the analytic
structure of (1) each site can only have boson occupancies
0, 1, and 2, and, because the filling factor is ν = 1, there
will be an average of one boson per site.
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The spin-1 CSL state constructed using (1) is [16],

|Ψ〉 =
∑

z1,...,zN

Ψ[zi]

N
∏

i

G(zi)S̃
+
z1 . . . S̃

+
zN | − 1〉N , (2)

where the zi’s are summed over all lattice points ηnm.
Here G(ηnm) = (−1)(n+1)(m+1) is a gauge phase, and
the operators S̃+

z are renormalized spin-flip operators,

S̃+
α =

1

2
(Sz

α + 1)S+
α , (3)

acting on the state | − 1〉N = ⊗N
α=1|1,−1〉α in which a

spin−1 in the Sz = −1 state (i.e. 0 boson occupancy)
sits on each site. Both the gauge phase and spin-flip
operators are chosen so that |Ψ〉 becomes a singlet in the
thermodynamic limit [16, 18]. A similar state was studied
in [17] that, in the large system limit, becomes identical
to that proposed in [16] for the planar geometry.
When this construction is generalized to the torus the

CSL states are again of the form (2), but there is now
a three-dimensional space of states corresponding to the
three-fold topologically degeneracy of the bosonic Moore-
Read states on the torus. For a rectangular Lx × Ly

system in the Landau gauge this space is spanned by the
states [19, 20]

Ψα[zi] = Pf

(

ϑα+1((zi − zj)/Lx|τ)
ϑ1((zi − zj)/Lx|τ)

)

(4)

×
N
∏

i<j

ϑ1((zi − zj)/Lx|τ)F (α)
cm (Z)

N
∏

i=1

e−y2

i /2,

where

ϑδ(z|τ) = (−1)δ̃
∞
∑

n=−∞

e[iπτ(n+a)2+2πi(n+a)(z+b)] , (5)

are the four Jacobi theta functions where the parameters
(a, b) take the values (1/2, 1/2), (1/2, 0), (0, 0), (0, 1/2),
for δ = 1, 2, 3, 4, respectively, and δ̃ = 1 only for δ = 1,
otherwise δ̃ = 0. The parameter τ is determined by the
ratio of the system lengths τ = iLy/Lx. As above, the
lattice of points z = ηnm =

√
2π(n + im) has one flux

quantum per plaquette, and, again, when bosons are con-
fined to this lattice the allowed occupancies are 0, 1, and
2. Finally, for even by even lattices the center-of-mass

term F
(α)
cm (Z), where Z =

∑N
i=1 zi, is taken to be

F (α)
cm (Z) = ϑα+1(Z/Lx| τ), (6)

to ensure the wave function is periodic for each boson on
the lattice with period Lx (Ly) in the x (y) direction.
The torus CSL states are again constructed using (2)

but with Ψ replaced by one of the three Ψα states de-
fined above and with a new gauge factor G(zi) with
G(ηn,m) = (−1)(n+m) which takes into account the
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FIG. 1: (Color online) Spin correlation functions 〈S0 ·S0+nx 〉
and 〈Sz

0S
z
0+nx

〉 versus nx (lattice spacings in x direction) for
droplet CSL states with N = 100 and 180 bosons (0 is the
droplet center). The left inset shows a logarithmic plot of
|〈S0 · S0+nx 〉| with linear fit yielding a correlation length of
ξ = 1.35 ± 0.14. The right inset shows the spin correlation
functions 〈Si ·Si+nx 〉 and 〈Sz

i S
z
i+nx

〉 for the three states |Ψα〉
on a toroidal lattice of size 16 × 16. The spin correlations in
these states are indistinguishable within errors.

change from symmetric to Landau gauge. On the torus,
the resulting CSL states |Ψα〉 are exact singlets, even
for finite systems [18]. This procedure generalizes the
Abelian CSL construction on the torus due to Laughlin
[21]. These torus Abelian states were studied by Monte
Carlo similar to that used here in [22]. A general pre-
scription for constructing torus CSL states based on con-
formal field theory, which includes the non-Abelian case
relevant here, was given in [23].

We have carried out Monte Carlo calculations for both
the droplet and torus CSL states. In all cases the Pfaffian
becomes singular when two bosons occupy the same site.
However, the wave function remains finite, because the
corresponding Jastrow factor “cancels” the divergence of
the Pfaffian. In our simulations we treat this singular
case by replacing the relevant Jastrow factor and Pfaf-
fian element with 1 for any doubly occupied site, thus
correctly reproducing the limiting value of their product.

Correlations.—Figure 1 shows spin correlation func-
tions 〈S0 · Snx

〉 and 〈Sz
0S

z
nx
〉 for the droplet CSL where

0 is the droplet center and nx = x/
√
2π is the num-

ber of lattice spacings along the x direction. Results are
shown for N = 100 and 180 bosons and it is evident
that the correlations for the different system sizes agree.
Note that 〈Sz

0S
z
nx
〉 ≃ 1

3 〈S0 · Snx
〉 consistent with the ap-

proximate singlet nature of the droplet CSL. We find
the absolute value of the spin correlation functions fol-
low a simple exponential law, |〈S0 · Snx

〉| ∝ e−nx/ξ, even
at short distance, consistent with the expectation that
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FIG. 2: (Color online) Normalized overlaps |〈Ψ1(2)|Ψ2(3)〉| and
|〈Ψ1|Ψ3〉| for square-shaped systems versus number of lattice
sites N = 4, 16, 36, 64, 100, 144. The inset shows logarithmic
plots of |〈Ψ1(2)|Ψ2(3)〉| and |〈Ψ1|Ψ3〉| versus N with linear fits
showing |〈Ψ1(2)|Ψ2(3)〉| becomes exponentially smaller with a
decay factor of ζ = 0.05±0.01, while |〈Ψ1|Ψ3〉| decreases with
ζ = 0.095 ± 0.001.

the spin-1 CSL can be viewed as a gapped spin liquid.
From our numerics we obtain a spin correlation length of
ξ = 1.35± 0.14 lattice spacings (see Fig. 1 left inset).

Figure 1 also shows spin correlation functions for all
three CSL states |Ψα〉 on the torus for a 16× 16 lattice.
Our results confirm that for a large enough system these
correlation functions coincide for all three states within
errors (see Fig. 1 right inset), and also agree with the
droplet correlations. We note that this is not the case for
small system sizes. For example, for the simple case of a
2× 2 torus all correlation functions can be obtained an-
alytically for all three states with clearly distinguishable
results (see Supplemental Material (SM)).

One difference between the droplet and torus CSL
states, noted above, is that the droplet only becomes an
exact singlet in the thermodynamic limit. We can see this
explicitly by noting that for a singlet state the onsite cor-
relations must satisfy 〈Sz

i S
z
i 〉 = 1

2 〈S
+
i S−

i 〉 = 1
2 〈S

−
i S+

i 〉 =
1
3 〈S2

i 〉 = 2
3 . For the case of a CSL droplet with 4 bosons

we find that, at the droplet center, 〈Sz
0S

z
0 〉 ≈ 0.72 and

1
2 〈S

+(−)
0 S

−(+)
0 〉 ≈ 0.86(0.42). However, for droplets of 20

bosons or more, all three correlations have nearly con-
verged to the singlet value of 2

3 . In contrast, for the torus
our numerics confirm that, even for small system sizes,

the expectation values 〈Sz
i S

z
i 〉 and 1

2 〈S
+(−)
i S

−(+)
i 〉 are

precisely 2
3 on all sites. The fact that the value of these

onsite correlation functions provide a nontrivial test of
the singlet nature of the spin−1 CSL can be contrasted
with the spin−1/2 case for which 〈Sz

i S
z
i 〉 is always equal

to 1
4 .

Orthogonality.—To establish that the three torus CSL
states |Ψα〉 [henceforth assumed normalized] span a

FIG. 3: (Color online) (a) Example regions A,B,C, and D,
used in the Levin-Wen construction to isolate the TEE. (b)
12×6-torus with dashed lines indicating an example region for
which the Renyi entropy S2 is calculated when partitioning
the toroidal system into two cylinders.

three-dimensional space we have calculated their over-
lap matrix for several square-shaped lattices of sizes
2× 2, . . . , 12× 12. In all cases we find the overlap matrix
has full rank. Moreover, the off-diagonal matrix elements
go to zero exponentially as e−ζN where N is the number
of lattice sites, with ζ = 0.05 ± 0.01(0.095 ± 0.001) for
|〈Ψ1|Ψ3〉| (|〈Ψ1|Ψ2〉| and |〈Ψ2|Ψ3〉|), as shown in Fig. 2.
Thus, the three states become orthogonal in the thermo-
dynamic limit. More details are given in the SM.

The transformation properties of theta functions under
modular transformations imply that, for square-shaped
systems, Rπ/2|Ψ1,3〉 = |Ψ3,1〉 and Rπ/2|Ψ2〉 = |Ψ2〉,
where Rπ/2 generates a π/2-rotation in the plane. We
therefore expect |〈Ψ1|Ψ2〉| = |〈Ψ2|Ψ3〉| for any square-
shaped system as the numerical results in Fig. 2 confirm.
These symmetry properties are also apparent in the 2×2
spin correlation functions given in Table I in the SM.

Entanglement entropy.—The three states |Ψα〉 become
orthogonal and possess indistinguishable spin correla-
tions in the thermodynamic limit. This three-fold topo-
logical degeneracy is consistent with the natural hypoth-
esis that the spin-1 CSL state, like the bosonic Moore-
Read state on which it is based, is described by SU(2)2
Chern-Simons theory [24, 25]. To provide further evi-
dence that this is the case we turn to the entanglement
entropy.

The Renyi entropy of order n associated with a par-
titioning of the system into a region A and its com-
pliment B is defined as Sn = − 1

n−1 ln Tr(ρnA) , where
ρA = TrB|Ψ〉〈Ψ| is the reduced density matrix of region
A. Ground states of gapped local Hamiltonians exhibit
a boundary law scaling which can generically be writ-
ten in two dimensions for simply-connected regions A as
Sn(ρA) = αnLA − γ + · · · . The leading term is propor-
tional to LA, the boundary length of region A, while the
second term, −γ, is the topological entanglement entropy
(TEE), characteristic of topological phases [26, 27].

In a topologically ordered state the TEE is determined
by the total quantum dimension D, γ = lnD, where
D is defined through the quantum dimension di of the
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FIG. 4: (Color online) S2 versus the length of the cylindrical
region A for square-shaped systems for the three CSL states
|Ψα〉. On a 6 × 6 lattice, two wave functions, |Ψ1,2〉, have
identical S2 within error bars. For an 8× 8 lattice, S2 is the
same for all three ground states within error bars.

quasiparticles of the underlying topological field theory:
D =

√

∑

i d
2
i . For the spin-1 CSL, based on the contin-

uum bosonic Moore-Read state, we expect the SU(2)2
quantum dimensions of 1, 1,

√
2 for which D = 2 and

γ = ln 2.

We proceed by calculating the n = 2 Renyi entropy
using the replica method [28]. Details are given in the
SM. One way to isolate the TEE is to employ the Levin-
Wen [26] construction (see Fig. 3(a)), where the area-
dependent part cancels from a superposition of four en-
tropies: −2γ = (SABCD − SADC) − (SABC − SAC).
To combat large error bars, we employed the reweight-
ing scheme of [29] (see SM). We first choose a rela-
tively small system of size 6 × 6 and Levin-Wen re-
gions A,B,C and D as shown in Fig. 3a), resulting in
γ = 1.16 ± 0.08(1.14 ± 0.08, 1.04 ± 0.07) for the states
|Ψ1(2,3)〉. The value is above the theoretically expected
ln 2 ≈ 0.69 but upon increasing the system size to 8× 8,
with regions A(C) of size 1 × 6 and B(D) of size 3 × 2,
we find γ = 0.91 ± 0.32 for |Ψ1〉, consistent with γ ap-
proaching ln 2 in the thermodynamic limit. This is also
consistent with the result for γ obtained numerically in
[17] using a bi-cylindrical cut of a CSL state on the cylin-
der with open boundary conditions.

To identify the modular S-matrix associated with the
topological field theory describing the CSL state we fol-
low [30] and let |Ξi〉 denote the ŷ direction Wilson loop
eigenstates associated with quasiparticle of quantum di-
mension di for i = 1, 2, 3. The overlap matrix Vij =
〈Ξi|Rπ/2|Ξj〉 between the (normalized) bases {|Ξi〉} and
{Rπ/2|Ξj〉} (the x̂ direction Wilson loop states) is then

related to the modular S matrix by V = D†SD, where D
is a diagonal matrix of phases Djj = eiΦj corresponding

to the phase freedom of choosing |Ξj〉. It follows that the
eigenvalues Rπ/2 are the same as those of the modular S
matrix.
As noted above, for square-shaped systems,

Rπ/2|Ψ1,3〉 = |Ψ3,1〉 and Rπ/2|Ψ2〉 = |Ψ2〉. This,
together with the fact that the |Ψα〉 states become
orthogonal for large systems, implies the eigenvalues of
Rπ/2 are {1, 1,−1}. The S-matrix for SU(2)2 Chern-
Simons theory has the same set of eigenvalues and is the
only such rank 3 S-matrix [31]. Thus, if the spin-1 CSL
is described by a topological field theory it must have
quasiparticles with quantum dimensions d1,2 = 1, and
d3 =

√
2.

To connect this observation to our numerics, we note
that for such a topologically ordered state the TEE
becomes state-dependent when S2 is calculated on the
torus over a (non-simply connected) cylindrical region of
length nx such as that shown in Fig. 4(b) [25, 30], with
S2 = −γ′ + α2LA, where

γ′ = 2γ + ln

(

∑

j

p2j/d
2
j

)

. (7)

Here, pj = |cj |2 where |Ψα〉 =
∑

j cj |Ξj〉. We have nu-
merically calculated S2 for all three torus CSL states on
square-shaped lattices up to size 8 × 8. The results are
shown in Fig. 4. We observe first that S2 saturates as nx

increases (for nx < 1
2Lx/(

√
2π)), consistent with these

states being possible ground states of a gapped Hamilto-
nian. Further we find that for large enough systems S2 is
the same for all three states |Ψα〉, and thus γ′ is as well.
The observation that γ′ is state independent for the

|Ψα〉 states, together with the requirement that the eigen-
vectors with eigenvalue -1 of the known S-matrix for
SU(2)2 [25, 31, 32] (for the the phase choice Φj = 0
for j = 1, 2, 3), (|Ξ1〉 − |Ξ2〉)/2 − |Ξ3〉/

√
2, and of Rπ/2,

(|Ψ1〉 − |Ψ3〉)/
√
2, must be the same (up to a phase),

constrains us to make the identification,

|Ψ2,a〉 =
1√
2
(|Ξ1〉 ± |Ξ2〉), |Ψb〉 = |Ξ3〉 , (8)

where (|Ψa〉, |Ψb〉) = (|Ψ1〉, |Ψ3〉) or (|Ψ3〉, |Ψ1〉). For
both choices it is readily seen that if quasiparticles with
d1,2 = 1 are associated with |Ξ1,2〉 and the non-Abelian
excitation with d3 =

√
2 is associated with |Ξ3〉, (7) does

indeed yield γ′ = ln 2 for all three states |Ψα〉. Our nu-
merical observation that γ′ is the same for the states |Ψα〉
is thus consistent with these states being identified as a
basis for the three-dimensional topological Hilbert space
of an SU(2)2 Chern-Simons theory on the torus.
Conclusion.—In this work, we investigated several

properties of a spin−1 CSL on the square lattice. Spin
correlations were found to decay exponentially, and, for
the torus, become indistinguishable for the states |Ψα〉
for large systems. We further found these states become
orthogonal in the thermodynamic limit.
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A Levin-Wen construction was used to determine the
TEE of the CSL with results consistent with − ln 2 in
the thermodynamic limit. In addition, based purely on
symmetry, we argued that the modular S-matrix of the
CSL (if it exists) must be the same as that for the bosonic
Moore-Read state. These observations, together with the
observation that for large enough systems the cylindrical
entropies for the states |Ψα〉 are all the same, are con-
sistent with the spin−1 CSL exhibiting the non-Abelian
topological order of SU(2)2 Chern-Simons theory.
Our MC codes are partially based upon the ALPS

libraries[33, 34]. The simulations were run on the SHAR-
CNET clusters. JW is supported by the National
High Magnetic Field Laboratory under NSF Cooperative
Agreement No. DMR-0654118 and the State of Florida.
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