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We calculate the anomalous Hall conductivity σxy of the surface states in cubic topological Kondo
insulators. We consider a generic model for the surface states with three Dirac cones on the (001)
surface. The Fermi velocity, the Fermi momentum and the Zeeman energy in different Dirac pockets
may be unequal. The microscopic impurity potential mediates mixed intra and interband extrinsic
scattering processes. Our calculation of σxy is based on the Kubo-Streda diagrammatic approach. It
includes diffractive skew scattering contributions originating from the rare two-impurity complexes.
Remarkably, these contributions yield anomalous Hall conductivity that is independent of impurity
concentration, and thus is of the same order as other known extrinsic side jump and skew scattering
terms. We discuss various special cases of our results and the experimental relevance of our study
in the context of the recent hysteretic magnetotransport data in SmB6 samples.

PACS numbers: 72.10.Fk, 72.25.-b, 73.23.-b, 75.20.Hr

Topological Kondo insulators. Topological insula-
tors [1–3] remain a vibrant field of research in present
day condensed matter physics. The main thrusts for this
extraordinary scientific interest include the vast potential
technological applications in the fields of nanoelectronics
and quantum computation as well as the fascinating inno-
vative realization of fundamental concepts from quantum
field theory and differential geometry.

Among the various realizations of topological phases
of matter, topological Kondo insulators (TKIs) [4, 5],
take a special place. Their topologically protected metal-
lic surface states emerge as a result of the hybridiza-
tion between weakly correlated conduction electrons and
strongly correlated states. In particular, theories [6–9]
describing states on the (001) surface suggest a low en-
ergy Hamiltonian with three Dirac bands located at Γ,
X and Y points of the surface Brillouin zone (BZ). Main
experimentally distinguishing characteristics of the TKIs
are the saturation of resistivity at very low tempera-
tures, pronounced temperature dependence of the mag-
netic susceptibility across a wide range of temperatures
and a fairly narrow insulating gap [10, 11]. Intriguing
recent experimental evidence for the TKI physics was
reported in SmB6 samples revealing the predicted sur-
face dominated transport directly [12], by thickness in-
dependent resistivity measurements [13], and 2D (sur-
face) weak antilocalization data [14]. Furthermore, char-
acteristics of Dirac electrons were revealed using ARPES
[15–17] and torque magnetometry [18]. In addition, hys-
teretic magneto-transport measurements have been re-
ported by several groups [19, 20]. This effect can be at-
tributed to ferromagnetic domains formed on the surface
by unscreened samarium magnetic moments or samarium
sesquioxide (Sm2O3) impurities.

It has been also proposed that the surface states in
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FIG. 1: Diagrammatic representation and real space trajec-
tories for extrinsic contributions to σxy. Quantum complexes
responsible for the AHE are shown by an ellipse with focuses
in points R1 and R2. In the non-crossing approximation,
both skew-scattering (a) and sidejump (b) contributions rely
on coherent interband scattering between opposite branches of
the Dirac spectrum. The corresponding virtual states as well
as off-shell excitations entering crossed X and Ψ diagrams,
(c) and (d) respectively, are marked by a yellow arrow in ex-
emplary positions of the diagrams. Due to the uncertainty
principle, the typical extension of a quantum complex is thus
of the order of Fermi wavelength |R1 −R2| ∼ λF .

SmB6 may be of conventional type [21, 22], i.e. they
have quadratic dispersion modified by the presence of
strong spin-orbit coupling. Note, that in this scenario,
the conduction states will remain decoupled from the
Sm moments on the surface via the Kondo breakdown
mechanism, so that ferromagnetic ordering of the samar-
ium f -moments would still be possible. This controversy
- Dirac vs. conventional surface states - motivates us
to study the magneto-transport properties of the surface
states on the background of induced non-zero magnetiza-
tion. Specifically, in this paper we calculate the anoma-
lous Hall conductivity for a cubic topological Kondo in-
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sulator with three Dirac surface bands. Our results for
the anomalous Hall conductivity allow us to elucidate ex-
perimentally distinguishable characteristics of the Dirac
electrons and should help to resolve the controversy dis-
cussed above.

Anomalous Hall effect. Electron transport in ferro-
magnets has a long history going back to E. Hall’s 1881
discovery of the anomalous Hall effect (AHE) [23], i.e. of
a transverse conductivity σxy generated by the magne-
tization (Zeeman coupling) rather than by orbital cou-
pling to a magnetic field. To account for this effect, two
equally appropriate techniques are commonly employed.
First, in the semiclassical approach [24] different terms
in σxy stem from distinct physical mechanisms of intrin-
sic [25], skew scattering [26] and side jump [27] contri-
butions. Second, σxy can be directly calculated using
Kubo-Streda diagrammatic response theory [28]. Semi-
classics appear to be more intuitive, while the diagram-
matic treatment is more systematic. Notably, an ad-
ditional skew scattering mechanism was discovered only
very recently with the help of diagrams [29–31]. Physi-
cally, it originates from diffractive skew scattering off two
impurities residing about one Fermi wavelength λF from
each other. Diagrammatically, these processes can be
understood by considering crossed impurity lines in the
conductivity bubble [see Fig. 1 (c,d)], and can be equiva-
lently treated in the semiclassical approach provided that
crossed impurity lines are included into the full scatter-
ing amplitude. At first glance, this observation seems to
be in sharp contrast with conventional wisdom of the im-
purity diagrammatic technique [32] that dictates that a
single cross of impurity lines implies a rare disorder con-
figuration and thus smallness in the parameter λF /l� 1,
where l is the elastic mean free path. However, it should
be stressed that even previously discussed [24–27, 29, 33]
contributions of weak impurities to the AHE rely on rare
impurity configurations (see Fig. 1). Therefore, both
crossed and non-crossed diagrams are of the same or-
der and suppressed by λF /l as compared to the diagonal
conductance. Diagrams with more than a single cross
are even smaller [34]. These qualitative arguments are
fully supported by the microscopic computation which
we present in the remainder of the paper.

To make the diffractive analogy transparent we present
in Fig. 1 examplary electron trajectories in real space.
The probability pAB = |

∑
iAi|2 =

∑
ij AiA

∗
j of reach-

ing a point rB from rA is the square of the sum of
the amplitudes for all paths i, j. In Fig. 1, Ai and A∗j
are represented by different colors and opposite orien-
tation of arrows. In the non-crossing approximation,

p
(nc)
AB =

∑
i |Ai|2, and all interference terms are omitted.

The crossed X-diagrams contribute pXAB =
∑′

i6=j AiA
∗
j ,

where the sum includes pairs of non-equal trajectories
equivalent to Fig. 1 (c). An analogous expression holds
for pΨ

AB . The interference pattern becomes apparent
in the plots of spatially-resolved scattering probabilities
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FIG. 2: Diffractive skew scattering: Spatially-resolved scat-
tering probabilities pXAB and pΨ

AB for intraband scattering.

pX,Ψ
AB off two-impurity complexes, see Fig. 2. The lat-

ter exhibit pronounced Fraunhofer oscillatory interfer-
ence patterns. The novel extrinsic contributions [Fig. 1
(c,d)] constitute inherent parts of the skew scattering
and should necessarily be included to properly compute
the transverse conductivity. These terms can be distin-
guished from previously studied processes [Fig. 1 (a,b)]
by means of their diffractive nature.

Model and Assumptions. We employ the diagram-
matic approach to calculate the anomalous Hall response
on the surface of 3D TKIs with cubic symmetry taking
into account all the diagrams to the leading order in im-
purity concentration. For this purpose, consider the fol-
lowing low energy Hamiltonian

H0 =
∑
K

[vKσ · p +mKσz + EK ] ΠK . (1)

Throughout the paper, matrices in the space of Dirac
pockets (DPs) are denoted by an underscore and have
indices K,K ′ ∈ {Γ, X, Y }. The symbol ΠK denotes a
projector on Kth DP. Rotational C4 symmetry imposes
vX = vY ≡ v, mX = mY ≡ m. We count energies from
the Dirac point of the X pocket, EX = EY ≡ 0, and mo-
menta in X (Y ) pocket relative to QX(Y ) = (π/a)êX(Y )

(a is the lattice spacing). For simplicity we omit the
anisotropy of X and Y pockets and set ~ = 1 in the
intermediate formulas (we restore Planck’s constants in
the final expressions for σxy). The Hamiltonian in Eq. (1)
contains just two essential ingredients for the finite AHE,
namely spin-orbit coupling and time reversal symmetry
breaking, which is implicit in the mass term of the Dirac
fermions.

Our model also contains uniformly distributed scalar
impurities with isotropic potential u(|r |) which is short-
ranged on the scale of the smallest Fermi wavelength
minK(p−1

F,K) with vKpF,K =
√
ε2K −m2

K where εK =
ε − EK and ε is the Fermi energy. Our calculation is
controlled in the parameter nimp/nmin � 1 with nimp

and nmin = minK(nK) being the impurity concentration
and the carrier density of the least populated pocket re-
spectively. We assume weak impurities and treat them
in the leading Born approximation.

Technically, the anomalous Hall response involves vir-
tual states (off-shell contributions) residing within the
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radius ∆p = 3 maxK(pF,K) around Γ, X, Y and M
points of the BZ. As a consequence, the minimal three-
band model Eq. (1) is applicable only for sufficiently
small Fermi momenta maxK(pF,K) � π/a. Further-
more, the contribution to σxy originating from the states
in the vicinity of the M point is negligible provided√

2mM∆ � minK(pF,K), where mM (∆) is the effec-
tive mass (excitation gap of closest states) at the M
point [35].

Results. We now turn our attention to the Hall re-
sponse. Here we present our main results and dele-
gate the details on the calculations to the Supplemen-
tary Materials. When the Fermi energy lies in the gap,
|εK | < |mK |, the contribution of the Kth DP to the
Hall response stems from the intrinsic mechanism, so
called anomalous velocity contribution to AHE, as orig-
inally introduced by Karplus and Luttinger [25]. Its
topological origin was realized much later [38], and can
be equivalently understood in terms of the Berry curva-
ture that acts as an effective magnetic field for electron
wave-packet motion in parameter space of momenta. In-
deed, the Hall conductivity can be presented as σxy|K =
−(e2v2

K/2πh)
∫

Ωxy(k)d2k, where the Berry curvature
for a single gapped Dirac cone is given explicitly by
Ωxy(k) = mK/2(m2

K + v2
Kk

2)3/2 so that upon momen-
tum integration we find σxy|K = −(sgn(mK)/2)(e2/h).
The half-integer quantization is a consequence of fermion
number fractionalization [35–37].

In contrast, outside the gap the σxy is not quantized.
We switch to a matrix representation in DP space and
find

σxy = 2
e2

h
vF

[
b+ a[x+ ψ]a

]
FTvT . (2)

In this expression, the bare velocity vertex is v =
(vΓ, v, v) and the trace over spin space was already per-
formed. The various contributions have the following ori-
gin [cf. Fig. 1]: F is the noncrossed vertex correction, in
which at each stringer a of the ladder only contributions
which are on-shell were kept; b is also part of the ladder in
diagram, but involves contributions away from the Fermi
surface; finally x [ψ] originates from the central part of
diagram (c) [diagram (d)]. All the elements of Eq. (2) are
derived explicitly in Ref. [35] in terms of the microscopic
parameters of the model. The anomalous Hall response,
Eqs. (2), constitutes the main result of our work. Un-
like previous calculations of the AHE in multiband sys-
tems [39, 40], we included diagrams with crossed impu-
rity lines as they equally contribute to the leading order
approximation. The common physical origin of crossed
diagrams manifests itself in the complementary contribu-
tions from the off-diagonal terms in xKK′ and ψ

KK′ .
Discussion. We now analyze our general result for the

anomalous Hall response, Eqs. (2), in various simplifying
cases. We consider both particular limits of the impu-
rity potential u(r), and special values of the parameters

entering the clean Hamiltonian (1).
(i) Smooth disorder potential. We first consider the

case when u(r) is smooth on the scale of the lattice con-
stant a. Interband scattering is negligible and we obtain

σxy = σ(0)
xy (|εΓ|/mΓ) + 2σ(0)

xy (|ε|/m). (3)

The anomalous Hall conductivity of a single Dirac cone
is [30]

σ(0)
xy

(
|ε|
m

)
= − e

2

2h

[
16|ε|m3θ(ε2 −m2)

(ε2 + 3m2)2
+ θ(m2 − ε2)

]
.

(4)
It should be noted that in this case there is no contribu-

tion from the Ψ skew scattering diagrams [see Fig. 1 (d)]
as they vanish. This pecularity is accidental and specific
to the single Dirac cone limit. It can be traced back to the
destructive interference of scattering from two-impurity
complexes as evidenced from the plot of the probability
pΨ
AB in Fig. 2. The result for smooth disorder potential

is plotted in Fig. 3 using dotted curves.
(ii) Fermi momentum in the gap. In what follows we

restore the possibility of nonzero interpocket scattering.
When ε2 < m2, i.e. when the Fermi energy is in the gap
of X and Y pockets, the problem essentially simplifies
to a single Dirac cone and Eq. (3) holds again (using

2σ
(0)
xy (|ε|/m) = −e2/h).
Further, when ε2Γ < m2

Γ (Fermi energy in the gap of
the Γ pocket) the problem simplifies to two equal Dirac
cones. Surprisingly, the resulting Hall conductivity is

again given by Eq. (3) (using σ
(0)
xy (|εΓ|/mΓ) = −e2/2h)

and is independent on the range of u(r).
(iii) Equal DPs. We next consider the situation when

the three DPs are equal, i.e. EΓ = 0, vΓ = v and mΓ =
m. The general expression for the Hall conductance is
presented in Ref. [35]. We note that for smooth disorder
potential, the effect of intraband scattering enters only
to second order (ε2 > m2)

σxy = σ(0)
xy

(
|ε|
m

)[
3 +

(
ε2

m2
− 1

)
W 2

ΓX + 2WΓXWXY

W 2

]
.

(5)
Here, W = nimp|ũ(0)|2, WΓX = nimp|ũ(π/a)|2, and
WXY = nimp|ũ(

√
2π/a)|2, where ũ(q) is the Fourier

transform of u(r). While the single band Hall conduc-
tivity, Eq. (4), decays as |ε|−3, for finite WΓX we find a
term which decays only as |ε|−1. Thus interband scatter-
ing strongly enhances anomalous Hall conductivity. This
effect persists to the case of arbitrary interband scatter-
ing. The Hall conductance (5) continuously approaches
the gap value σxy = −3sgn(m)e2/2h.

(iv) Point like scatterers. When the impurity potential
is short ranged on the scale of a, the matrix WK,K′ =

nimp|u(0)|2 for all K,K ′. The experimental analysis of
the weak-antilocalization effect [41] in SmB6 samples [14,
20] suggests that this limit is most important for present
day experiments.
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FIG. 3: Comparison of the AHE in the cases of a smooth
disorder potential (dotted) and point like scatterers (solid).
We assumed mΓ = m and additionally imposed vΓ = v in
the case of short ranged impurities. For the blue curves, we
set εΓ = ε while the red curves are obtained for εΓ = ε− 7m.
Main panel: plot of σxy as a function of ε/m assuming m > 0.
Inset: the same quantity for εΓ = ε as a function of the inverse
parameter.

The explicit formula of σxy(ε/m, εΓ/m) for the case
vΓ = v, and mΓ = m has been relegated to Ref. [35]. If
εΓ = ε this result further simplifies to

σxy = −e
2

h

8|ε|m
(
ε2 + 8m2

)
3 (ε2 + 3m2)

2 . (6)

A graphical comparison between the cases of smooth dis-
order and point like impurities is shown in Fig. 3. It
should be noted, that in the limit of short range scatters
our result for the Hall conductance ceases to be a con-
tinuous function: it displays discontinuities at εK = mK .
A similar behavior was recently found in the Bychkov-
Rashba model [31]. This is an artifact of an approxi-
mation that exploits the basic assumption nimp � nmin.
As a consequence, our result is not applicable in the en-
ergy window where |εK −mK | is smaller than the elastic
scattering rate. A more elaborate calculation should re-
veal smoothening of the discontinuities in the immediate
vicinity of the band edges.

Conclusion and outlook. Experimental and theoret-
ical studies of the Hall effect in f -orbital materials re-
main a very active area of research for several decades
[52]. In the heavy fermion metallic state, the f -electrons
in the bulk are a primary source of the skew-scattering
contribution to the anomalous Hall effect. In contrast,
we here considered an ideal topological Kondo insula-
tor, in which bulk states do not contribute to transport.
With the advent of SmB6 as a prominent candidate for
a strongly correlated topological insulator, it was imme-
diately realized that at sufficiently low temperatures the
Hall conductivity should be surface dominated. In fact,
Kim et al. [13] have demonstrated thickness-independent
surface Hall effect below T ≈ 5 K, which suggests that
our results can be tested experimentally.

Inasmuch experiments on TKIs are concerned, our
most important conclusion is that the magnetization and
gate voltage dependence of the AHE can be used to
gain information about the microscopic nature of surface
states and impurities. Indeed, the analysis of various lim-
iting cases of the three-band Dirac model reveals that the
large energy asymptote of the anomalous Hall response
scales as (m/|ε|)3 in the case of smooth impurity poten-
tial while σxy ∼ m/|ε| for short range scatterers. This
behavior persists in the generic result. In contrast, in the
Bychkov-Rashba model [31], σxy ∝ m/ε2.

As mentioned in the introduction, present day experi-
mental samples are believed to host a multitude of large
ferromagnetic domains. In our theory, smooth fluctua-
tions of the magnetization can be taken into account by
averaging the final result. Even after this procedure, the
asymptotics allow to distinguish smooth and sharp im-
purity potentials in the described manner. Up to now
magnetotransport experiments on TKIs concentrated a
hysteretic behavior in the longitudinal conductance. Sys-
tematic investigation of the transverse conductance is
still needed.

In conclusion, we presented a theory for the anomalous
Hall response on the surface of a cubic topological Kondo
insulator with three Dirac valleys allowing for unequal
Fermi and Zeeman energies as well as unequal Fermi ve-
locities. Specifically, we analyzed the semiclassical AHE
and uncovered the importance of diffractive skew scat-
tering in the context of topological Kondo insulators. In
a parallel vein, our results have further rich consequences
for anomalous transport phenomena in other multiband
material systems such as Weyl semimetals [42] and chiral
p-wave superconductors [43–45]. Quantum effects, such
as interaction and localization corrections to the conduc-
tivity tensor, the quantum AHE [46–48] and the surface
state quantum Hall effect [37, 49–51] on TKIs remain
a theoretical and experimental challenge for the future.
One important issue of the possible effects of magnetic
scattering on anomalous Hall conductivity in SmB6 we
leave for a separate publication. Lastly, as a byproduct of
this analysis, we found that a system of two equal Dirac
cones (as it occurs in graphene) displays an AHE which
is universal and independent of details of the scattering
potential.
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