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We investigate the magneto-optical properties of excitons bound to single stacking faults in high-
purity GaAs. We find that the two-dimensional stacking fault potential binds an exciton composed
of an electron and a heavy-hole, and confirm a vanishing in-plane hole g-factor, consistent with
the atomic-scale symmetry of the system. The unprecedented homogeneity of the stacking-fault
potential leads to ultra-narrow photoluminescence emission lines (with full-width at half maximum
. 80 µeV) and reveals a large magnetic non-reciprocity effect that originates from the magneto-
Stark effect for mobile excitons. These measurements unambiguously determine the direction and
magnitude of the giant electric dipole moment (& e · 10 nm) of the stacking-fault exciton, making
stacking faults a promising new platform to study interacting excitonic gases.

Introduction. The stacking fault (SF), a planar, atomi-
cally thin defect, is one of the most common extended de-
fects in zinc-blende, wurtzite, and diamond semiconductors.
A fundamental understanding of the SF potential is im-
portant for determining how the defect affects semiconduc-
tor device performance [1, 2], engineering heterostructures
based on crystal phase [3–5], and providing a new two-
dimensional (2D) platform for fundamental physics [6, 7].
Here we report on excitons bound to large-area, single SFs in
high-purity GaAs, a unique system where SFs are easily iso-
lated with far-field optical techniques. The atomic smooth-
ness of the potential and extreme perfection of the surround-
ing semiconductor result in ultra-high optical homogeneity
(. 80 µeV). This enables optical resolution of the SF ex-
citon fine-structure and thus direct measurement of the gi-
ant built-in dipole moment (& e · 10 nm) via the magneto-
Stark effect. These results indicate that the extremely-
homogeneous SF potential may be promising for studies of
many-body excitonic physics, including coherent phenom-
ena [8–10], spin currents [11], superfluidity [12], long-range
order [13–17], and large optical nonlinearities [18–20].
Stacking fault photoluminescence. Figure 1(a) shows a

spectrally resolved confocal scan of SF structures in a GaAs
epilayer, excited with an above band-gap laser (1.65 eV,
1.5 K) [21]. The image is colored red, green or blue accord-
ing to three characteristic emission bands shown in Fig. 1e.
The narrow-band PL at 1.493 and 1.496 eV originates from
excitons, electron-hole pairs, bound to the 2D SF poten-
tial [22, 23]. The sample consists of a 10 µm GaAs layer
on 100 nm AlAs on a 5 nm/5 nm AlAs/GaAs (10×) super-
lattice grown directly on a semi-insulating (100) GaAs sub-
strate. Stacking fault structures nucleate near the substrate-
epilayer interface during epitaxial growth [21].
The physical origin of the potential can be understood

from the atomic structure of the SF defect: the lattice-plane
ordering in the [111] direction of zinc-blende is modified
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by subtracting a layer (intrinsic SF, see Fig. 1c) or adding
a layer (extrinsic SF). The intrinsic SF can be viewed as
a monolayer of wurtzite (ABAB stacking) surrounded by
zinc-blende (ABCABC stacking) [3, 24]. Due to the band
offset [25–27] and spontaneous polarization at the stacking
fault [28], electrons and/or holes are attracted to the SF
plane. While useful for physical motivation, this bulk phase
change model must be taken with caution when applied to
atomically thin SFs, which can deviate from simple the-
ory [29]. Here, however, we find that single SFs in bulk
GaAs bind excitons, confirming that the potential is attrac-
tive for at least one carrier.

In the confocal scan in Fig. 1(a), most of the SF defects
appear as single triangles, which we identify as a pair of
nearby SFs [30, 31]. Because the binding energy of exci-
tons to a pair of SFs depends on the distance between the
SFs [32], the PL emission energy from excitons bound to
these structures has a high variability of 10 meV between
structures. Strikingly, this inhomogeneity disappears when
four SFs grow in an inverted pyramid structure consisting
of four well-isolated {111} SF planes [Fig. 1(b)], which we
refer to as up, down, left and right [33]. The full width at
half-maximum (FWHM) of the SF PL line in our sample is
(77±19) µeV at zero magnetic field [21], somewhat narrower
than excitonic lines associated with stacking faults in pre-
vious work [22, 34]. In comparison, the narrowest reported
linewidth for a GaAs/AlGaAs quantum well is 130 µeV [35],
while PL linewidths from analogous zinc-blende/wurtzite
quantum discs in nanowires range from 0.6−10 meV [27, 36–
38]. This unprecedented homogeneity allows us to resolve
the SF-bound exciton fine structure

Nature of hole in SF exciton. Experimentally, we deter-
mine that the SF exciton is composed of an electron and a
heavy-hole using polarization resolved PL, consistent with
the atomic-scale symmetry of the system [21]. For linearly
polarized light incident from above (along the [001] axis),
the largest overlap between the light polarization and the
in-SF-plane heavy-hole dipole occurs when exciting and col-
lecting along the H direction for the down SF [Fig. 1(d)], in
agreement with our experimental data [Fig. 1(f)]. On the
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a high quality 2D potential, in-plane exciton momentum is
transferred to the photon during recombination, as depicted
in Fig. 3(a). This conservation of momentum implies

Kx =
ωn

c
sin θ′′, (2)

where θ′′ is the angle between the SF normal and the emit-
ted photon momentum inside the semiconductor, Fig. 3(a),
ω is the photon frequency, n is the refractive index and c the
speed of light. Thus, the collected SF PL arises only from
excitons with a specific center of mass momentum [42]. The
last term in Eq. (1) provides, for a fixed Kx (Eq. 2), an odd
in By contribution to the overall PL energy shift, giving
rise to a magnetic non-reciprocity effect. It is worth noting
that the up and down SFs are related by a mirror reflec-
tion in the (110) plane and such a reflection is accompanied
by By → −By, resulting in the opposite behavior of up and
down PL spectra observed in Fig. 2(a).
Magneto-Stark effect. The physical origin of the non-

reciprocal PL is the magneto-Stark effect, the interaction
of a moving exciton’s electric dipole moment with a mag-
netic field [43, 44]. The effect can be understood with a
relativistic argument: motion with velocity v = (~Kx/M)x̂
through a magnetic field B = Byŷ gives rise to an electric
field Eeff = ~KxBy/(Mc)ẑ in the moving frame of refer-
ence, where M is the exciton mass in translational motion
and c the speed of light. Since for the SF, ẑ ∝ [111] and
−ẑ directions are not equivalent, the SF-bound exciton has
a non-zero dipole moment p = edheẑ, where e = |e| is the
elementary charge, and dhe is the average separation be-
tween the hole and electron along the z-axis. The Stark
effect Hs = −p ·Eeff in the exciton’s reference frame thus
becomes the magneto-Stark effect:

HS = −
e~

Mc
dheKxBy, (3)

in agreement with Eq. (1) with β′ = −e~dhe/(Mc), see
Ref. [21, 41] for formal derivation.
Physically, the dipole moment of a SF bound exciton is a

consequence of symmetry breaking and spontaneous polar-
ization similar to that in zinc-blende/wurtzite heterostruc-
tures [23, 45]. The hole in the exciton is presumably lo-
calized in the SF plane while the electron is weakly bound
via the Coulomb interaction. The spontaneous polarization
shifts the electron cloud to one side of the SF, resulting in
a giant excitonic dipole moment.
Equations (1)-(3) predict that the asymmetric energy

shift of exciton PL is linearly related to the in-plane
wavevector K. Since the angle of light collection deter-
mines the exciton momentum [Eq. (2)], we test the ap-
plicability of the model by recording spectra of the up

and down SFs as a function of the collection angle θ
and magnetic field By [Fig. 3(b)]. The collection angle
is related to the emission angle from the up/down SF by
sin θ = n sin θ′ = ±n sin(θ′′ − θSF), where θSF is the angle
the SF normal ẑ||[111] makes with [001] [Fig. 3(c)].
In this experiment, we modified the collection angle by

mounting the sample at different angles. Since the sample
was removed from the cryostat to change the angle, different

SF pyramids were used at different angles. This does not
introduce artifacts because of the extreme similarity of dif-
ferent SFs, which have a standard deviation of line-center
energies of only 57 µeV, less than the linewidth. Spectra
were acquired with By ranging from −6.5 T to 6.5 T on the
up and down SFs. We fit the spectra to one or a sum of two
Voigt function(s) depending on whether the electron Zee-
man splitting is resolved. The singlet or doublet line center
is denoted Eup/down(By). The part of the exciton energy
odd with magnetic field is found by computing

∆Eup/down(By) = Eup/down(By)− Eup/down(−By) (4)

It follows from Eq. (3) that the asymmetric shift is

∆Eup/down(By) = ∓2n~ω
edhe
Mc

sin(θSF ± θ′)By. (5)

Thus the proportionality constant of ∆Eup/down vs. By

provides a measurement of the SF exciton’s built-in dipole
moment. The experimental values and first-order theory for
∆E are shown in Fig. 3(f)-(g). Further, the ratio

r(θ) =
|∆Eup| − |∆Edown|

1
2
(|∆Eup|+ |∆Edown|)

(6)

depends (to first order in By) only on the experimental ge-
ometry and the index of refraction: r(θ) vanishes for collec-
tion angle θ = 0 and increases as a function of θ [Fig. 3(h)].
We obtain good agreement between r(θ) calculated exper-
imentally from the B = 0 slope of ∆E without any fit pa-
rameters [Fig. 3(h)].

Further, by fitting ∆Eup/down(By) with a By-linear func-
tion, we can estimate the dipole moment of the exciton
p = edhe = e · (10+20

−1 ) nm. The main uncertainties result
from the accuracy of the By-linear fit and the value of the in-
(111)-plane heavy-hole mass, which depends on the details
of the SF potential [21]. The exciton mass can be roughly es-
timated as 0.17mo, the sum of the bulk-GaAs in-(111)-plane
heavy-hole mass and the isotropic electron mass, where mo

is the free electron mass. In addition, we note the magneto-
Stark induced splitting saturates at high fields [Fig. 3(f,g)],
possibly due to a decreased exciton dipole moment from
the magnetic-field-induced shrinking of the exciton wave-
function. Future work will investigate exciton confinement
potentials consistent with the observed dipole moment, dia-
magnetic shift and saturation of the magneto-Stark effect.
A microscopic understanding of the confinement potential
may enable predictions for the binding potential and exci-
tonic dipole moment for SFs in other semiconductors.

Conclusion. We have shown that SFs in GaAs are an al-
most perfect 2D potential which binds heavy-hole excitons.
These excitons freely propagate in the SF plane, a conclu-
sion confirmed via the magneto-Stark effect. Further, an
asymmetry of the SF potential induces a giant dipole mo-
ment of the SF-bound exciton. Such excitons could be useful
for studying the many-body physics of interacting dipoles.
In conventional excitonic systems, typical electron-hole sep-
arations are on the order of several nm [6, 46], whereas the
SF-bound exciton has a gigantic electron-hole separation
of 10 nm and the possibility to modify this value with an
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