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We introduce a variational unitary matrix product operator (VUMPO) based variational method that approx-
imately finds all the eigenstates of fully many-body localized (fMBL) one-dimensional Hamiltonians. The
computational cost of the variational optimization scales linearly with system size for a fixed depth of the UTN
ansatz. We demonstrate the usefulness of our approach by considering the Heisenberg chain in a strongly disor-
dered magnetic field for which we compare the approximation to exact diagonalization results.

Introduction: The phenomenon of many-body localization
(MBL) generalizes Anderson localization [1] (AL) to inter-
acting systems [2–4]. The pioneering work by Basko, Aleiner
and Altshuler [4] showed that the Anderson localized phase
is perturbatively stable to small interactions. Quantum many-
body systems in the MBL phase have the characterizing prop-
erty that they do not thermalize [5] and allow to stabilize quan-
tum and topological order which would otherwise melt [6–8].
Following a global quantum quench, MBL phases a show a
logarithmic growth of entanglement as a function of time [9–
12].

In the Anderson problem the many-body Fock/Slater states
constructed from the single particle states have two impor-
tant features. First, they exhibit an economical description—
L single particle states for a system of size L are sufficient
to construct all 2L many-body states. Second, all many-body
states exhibit an area law [13–16] for the entanglement en-
tropy stemming from the localized nature of the constituent
single particle states. Naturally, attention has focused on what
happens to these two properties in the MBL regime. It was
noted early on [17] that many-body eigenstates in the MBL
regime would have only local entanglement and thus obey the
area law. Subsequently numerical studies examined the be-
havior of the entanglement entropy in detail and demonstrated
the area law as well as deviations due to rare regions and states
[7, 18, 19]. In another set of papers [20–23] the phenomenol-
ogy of MBL systems was traced to an emergent set of L com-
muting local integrals of motion (often called “l-bits”) which
are believed to exist in fMBL systems—i.e. systems in which
all many-body eigenstates are localized.

These two developments invite a natural closure in which
the full set of 2L many-body eigenstates are explicitly con-
structed from O(L) local ingredients, at least approximately.
The well known connection of the area law to matrix-product
state (MPS) / tensor network representations of many-body
states [24–26] suggests that the latter are the correct language
in which to carry out this program. The program has two
components: showing that such a compact representation ex-
ists and providing a recipe for finding it without recourse to
a knowledge of the exact eigenstates, potentially rendering a
much larger range of system sizes computationally tractable.

In an important development, two groups have addressed
the existence problem. Building on earlier work [27], Pekker

and Clark (PC) [28] have shown that the unitary operators
that exactly diagonalize fMBL systems can be represented
by matrix products operators (MPOs) [25, 29] of bond di-
mensions that appear to grow very slowly with system size
[30] —in contrast to delocalized systems where the dimen-
sion grows exponentially with system size. The slow growth
that they do observe is presumably due to rare many-body
resonances/Griffiths effects; in its absence, the MPOs would
yield the sought after O(L) local description of the full spec-
trum. Parallel work [31] argued for the congruent result that
the presence of local integrals of motion implies the existence
of a single “spectral tensor network” that efficiently represents
the entire spectrum of energy eigenstates in the fMBL phase.
These developments however have not led to an algorithm for
finding a compact representation directly without having to
diagonalize the full system at a cost that scales exponentially
with system size.

In this paper we propose an approach to directly and effi-
ciently find an approximate compact representation of the di-
agonalizing unitary by using a variational unitary matrix prod-
uct operator (VUMPO) ansatz. To this end, we construct a
cost function whose minimum yields the exact unitary and,
hence, the entire set of 2L exact eigenstates of a system of L
qubits. We show that for a fixed “depth” of the approximate
Ũ , optimizing the cost-function in d = 1 can be performed at
a computational cost that is only linear in system size which,
in theory, allows us to access system sizes far beyond those
possible by ED.
Tensor network notation: For one dimensional systems,
an MPS representation of a quantum state living in a basis
spanned by L qubits takes the form

|ψ〉 =
∑
{σ}

∑
0≤γi<D

B[1]σ1
γ1 B[2]σ2

γ1γ2 · · ·B
[L]σL
γL−1

|σ1 · · ·σL〉, (1)

whereas an MPO representation of an operator in the same
Hilbert space takes the form

O =
∑

0≤γi<D
{σ},{τ}

A[1]σ1,τ1
γ1 · · ·A[L]σL,τL

γL−1
|σ1 · · ·σL〉〈τ1 · · · τL|,

(2)
where σi, τi ∈ {↑, ↓} and we use a compact notation in which
σ = σ1, σ2, · · · , σL denotes the 2L states (analogous for
τ ). Figure 1 shows a pictorial representation of these objects.
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FIG. 1. (a) Schematic representation of an MPS representation of a
state |ψ〉. (b) Variational ansatz for the unitary U that encodes all
eigenstates of a fully many-body localized Hamiltonian. The local

unitaries u[m]

[n] are parametrized as u[m]

[n] = e
iS

[m]
[n] with real symmet-

ric matrices S[m]

[n] , n = 1 . . . L − 1 and m = 1 . . . Nlayer. (c) Two
dimensional generalization of the unitary network.

The MPSs/MPOs are represented by rank three/four tensors
B[i]/A[i] on each site i (except the first and last tensors which
are rank two/three); the external leg(s) σi, τi refer to the phys-
ical spin indices whereas the γi are the internal virtual indices
that are contracted. Each B[i]σi/A[i]σiτi is a D2 dimensional
matrix whereD is the bond-dimension of the matrix. For two-
dimensional systems, the concept of MPS can be extended to
projected entangled pair states (PEPS) [32, 33] where the ma-
trices on each site are generalized to higher rank tensors.

Method: We now introduce the VUMPO ansatz and an al-
gorithm to numerically optimize it. Let us assume a one-
dimensional system and that H is an fMBL Hamiltonian de-
fined on an L-site chain of spin 1/2 operators. It is our goal to
find a unitary approximation Ũ of the unitary that diagonalizes
the Hamiltonian such that the 2L eigenstates of H are given
by |ψτ 〉 ≈

∑
{σ} Ũ

σ
τ |σ〉. In the parlance of Refs. [20, 21],

the physical basis operators σi are the “p-bits” wheras the τi
are the local “l-bits”. Each eigenstate is labeled by the occu-
pation of l-bits τ = {↑↑↓ · · · ↑}, and is obtained by acting
with the MPO representation of U on the product state |τ 〉.
In this language of MPOs, it is clear how the 2L MB eigen-
states are constructed from the L matrices A[i]τi ; further, if
the bond-dimension of the matrices scales as O(1) with the
system size, the eigenstates are only locally entangled in the
p-bit basis and a description of the full eigenbasis in terms of
O(L) local ingredients is possible.

FIG. 2. Comparison of the exact energy levels (blue lines) with the
ones found by the variational optimization (red lines) forW = 8 and
L = 8 as a function of the number of layers of two-site gates. The
right panel shows a zoom of some energy levels at the bottom and in
the center of the spectrum.

The approximation Ũ is found by numerically minimizing
the cost functional

f({A[n]}) =
∑
{τ}

〈ψτ |H2|ψτ 〉 − 〈ψτ |H|ψτ 〉2 ≥ 0, (3)

with 〈ψτ |ψτ ′〉 = δτ ,τ ′ . The cost function is the vari-
ance of the energy summed over all approximate MB eigen-
states. Naively, one might expect the time to evaluate the
cost function Eq. (3) to scale exponentially with the sys-
tem size L as the sum is performed over 2L MB eigen-
states. However, remarkably, the computation can be per-
formed in a time scaling linearly with system size [29]!
For example, the term

∑
{τ}〈ψτ |H|ψτ 〉2 can be evaluated

by “doubling” the degrees of freedom and defining a state
|φ〉 =

∑
{τ} |ψτ 〉|ψτ 〉|τ 〉. With this notation we find that∑

{τ}〈ψτ |H|ψτ 〉2 = 〈φ|H ⊗ H ⊗ 1|φ〉. This expectation
value can be efficiently evaluated using the MPO formalism
and the most expensive part of the evaluation scales, for a
given Hamiltonian in MPO form, as ∝ LD5 (see supplemen-
tal materials for details). One can now iteratively minimize f
by locally optimizing each A[n] using, for example, the con-
jugate gradient algorithm. In general, an MPO compression
of a unitary operator will not strictly respect unitarity. To get
a valid positive-definite cost function in these cases, we need
to add a Lagrange multiplier to enforce unitarity. In practice,
this leads to unstable optimizations.

The key to a stable optimization protocol turns on restrict-
ing our algorithm to the manifold of strictly unitary MPOs
of a given bond-dimension. To achieve this, we parameterize
the VUMPO as a finite depth circuit of two-site unitaries as
shown in Fig. 1(b). This Ansatz incorporates two important
properties: (i) The VUMPO is unitary for all parameters and
(ii) it is local for any finite Nlayer. We use a single unitary to
obtain all eigenstates, but readers will note the obvious con-
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nection to the quantum computational notion [34]. Finally, we
note that we can rewrite the unitary network as a strictly uni-
tary MPO with bond dimension D ≤ 22Nlayer , where Nlayer

is the number of layers of two-site gates [35]. However, this
step is not necessary and we can evaluate the cost function by
directly contracting the unitaries circuit which, in fact, gives
a considerable speed up for the systems we consider here. In
fact, using the locality of the unitary circuit, the cost function
can be evaluated locally and thus it is, in principle, possible
to generalize the approach to higher dimensions, e.g., to the
two-dimensional square lattice as shown in Fig. 1(c).

The algorithm to find the VUMPO is then similar in spirit
to the density matrix renormalization group (DMRG) method
[36], except instead of finding the lowest energy state, we min-
imize the cost function Eq. (3) by sweeping through the local
unitaries:
(i) Initialize the local unitaries u[m]

[n] = e
iS

[m]

[n] by choosing

random symmetric matrices S[m]
[n] , where n = 1, 2, · · ·L and

m = 1, 2, · · ·Nlayer.
(ii) Locally minimize the cost function by varying the ele-
ments of a given S

[m]
[n] by using, e.g., a conjugate gradient

method.
(iii) Update the network and repeat the previous step for the
next unitary.
(iv) Continue the sweeping procedure by minimizing the local
unitaries successively until convergence. A full sweep across
all the unitaries has to scale as O(L).
We find that the number of steps needed for convergence ap-
pears to be approximately independent of L. This gives an
overall scaling of the algorithm as O(LD5) ∼ O(LeNlayer).
Once the algorithm has converged, the VUMPO can be used
to obtain all the eigenstates of the system, and to efficiently
compute observables using the MPS formalism.
Results: We consider the Heisenberg model with random z-
directed magnetic fields:

H = J
∑
n

~Sn · ~Sn+1 −
∑
n

hnS
z
n. (4)

where ~Sn are spin 1/2 operators and the fields hn are drawn
randomly from the interval [−W,W ] and we set J = 1. This
model has been studied extensively in the context of MBL and
several numerical studies strongly suggest thatH is fMBL for
W & 3.5 [17, 19].

Energy Spectrum: We begin by comparing the energies
obtained using the VUMPO approach with the exact spectrum
(full diagonalization). The converged results for W = 8 and
L = 8 with different numbers of layers Nlayer are shown in
Fig. 2. For Nlayer = 0, the VUMPO is the identity (i.e, no
variational parameters) and the resulting approximate eigen-
states are simple product states of the form |σ1〉|σ2〉 . . . |σL〉
with σn =↑, ↓. The overall bandwidth in this case agrees rel-
atively well with the exact results because W is the domi-
nant energy scale in the problem. However, as shown in the
zoomed in plots, the deviation of individual energy levels is
relatively large compared to the mean-level spacing because

FIG. 3. Mean variance of the energy as a function of system size
for different number of layers for W = 8. Inset: Mean variance as
function of W for a fixed L = 8.

FIG. 4. Comparison of the exact spectral function A(ω) (black dots)
with those obtained using different approximations (see text for de-
tails) for L = 10 and W = 8. Spectra are shown using a Lorentzian
broadening with an imaginary part of ε = 0.1. Inset: Same data with
W = 16.

the product states completely neglect local quantum fluctu-
ations which are present in the exact eigenstates. Increasing
Nlayer strongly improves the agreement between the exact and
approximate energy levels as the network successively adds
entanglement over longer distances.

Next we turn to the mean variance of the energy, which
is simply the disorder averaged cost function Eq. (3) divided
by 2L. Figure 3 shows this quantity disorder averaged over
50 realizations as a function of system size for different fixed
Nlayer. We observe a linear increase of the mean variance
with system size, and find that the slope decreases as Nlayer

is increased. This tells us that for a given Nlayer our approxi-
mate eigenstates involve a constant error per unit length which
decreases as Nlayer is increased. When reducing the disorder
strength W below the MBL transition, the MPO approxima-
tion, which is based on the locality of the eigenstates, breaks
down (see inset of Fig. 3)

Spectral Functions: To examine the quality of our approx-
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imated eigenstates, we use the VUMPO ansatz to obtain the
infinite-temperature spectral function

A(ω) =
1

2L

∑
{τ1},{τ2}

|〈τ1|SzL/2|τ2〉|
2δ(ω−Eτ1+Eτ2). (5)

Spectral functions can again be efficiently evaluated using
matrix-product techniques and it is also possible to effi-
ciently target different energy densities by considering finite-
temperature spectral functions [29, 37]. Figure 4 compares
A(ω) obtained using the VUMPO approach for L = 10 with
different disorder strengths andNlayer = 0, 1, 2 with the exact
results. The large peak at ω = 0 reflects the strongly localized
nature of the eigenstates, i.e., the eigenstates of H are close
to being eigenstates of local Sz operators. It is interesting to
compare the peaks at ω > 0 which are due to local fluctua-
tions in the eigenstates. Clearly, Nlayer = 0 does not show
any features because the VUMPO is diagonal in Sz . When
additional layers of unitaries are taken into account, the peak
structure of A(ω) is well approximated. The agreement in
both the frequencies and the intensities rapidly improve with
increasing Nlayer, and the results match almost perfectly for
W = 16.

Comments on accuracy: We have presented some evi-
dence above for the accuracy of the VUMPO obtained by
our method. It remains to establish more precise theorems
on what values of Nlayer it would take to calculate various
physical quantities to a specified accuracy. In a step in that
direction, PC have looked at the bond dimension D needed
to ensure that the smallest singular value in the Schmidt de-
composition across any cut in U is less than some fixed ε.
They found a slow growth of the Dmin needed to achieve a
desired ε with L. In the absence of rare resonances or Grif-
fiths regions, Dmin would presumably saturate at a fixedO(1)
value for a fixed error density independent of system size im-
plying that we would need only O(1) layers to represent the
entire spectrum to the desired accuracy. As it is, with the reso-
nances/Griffiths regions present, Dmin is expected to grow as
poly(L) whence Nlayer will grow logarithmically. Let us re-
turn to our spectral function computation above but this time
we first obtain the exact 2L × 2L dimensional unitary that di-
agonalizesH and then compress it to an MPO of a given bond
dimension D (following the prescription outlined in [28]). As
seen in Fig. 4 (labeled ED MPO), when compressing UPC to
D = 16 (which can exactly represent our Nlayer = 2 results),
the spectral functions A(ω) are reproduced in a comparable
accuracy as in our VUMPO approach.

Summary and discussion: We have introduced an algo-
rithm to find a variational unitary MPO that approximately
diagonalizes fully many-body localized Hamiltonians. Our
method finds an approximation to all 2L eigenstates of the
Hamiltonian in a time that remarkably scales only linearly
with system size! We have benchmarked the method by com-
paring the results to exact diagonalization for small systems
and studied the scaling of the mean variance as a function of
system size. For a Heisenberg model in a strongly disordered

field we find good qualitative and quantitative agreement of
the obtained energies and spectral functions for a fixed Nlayer

and, importantly, rapid improvement with increasing Nlayer.
With this work we have provided a proof of principle that we
can efficiently (i.e, polynomially in system size) perform a
variational calculation that provides a complete diagonaliza-
tion of fMBL systems. As the VUMPO encodes the entire
set of eigenstates for fMBL Hamiltonians, many relevant ob-
servables such as spectral functions and conductivities can be
evaluated efficiently at zero and finite temperatures.

A few comments are in order. First, it is intuitively clear
that our VUMPOs should capture most of the structure of the
eigenfunctions, or equivalently l-bits, out to a fixed “light-
cone” radius, set by Nlayer. In terms of the dynamics this
should allow accurate inclusion of local excitations on the
same length scale and via the recently discussed connec-
tion between the energy and size of many-body resonances
[38] down to a related frequency scale. Indeed, this fea-
ture can be effectively used to study different “slices” of
the response function as more layers are added. For exam-
ple, Figure 4 shows that the exact solution in the case of
W = 8 shows certain features at lower frequencies which
are absent in the variational solution. Second, for a given
VUMPO, one can construct[39] a family of parent Hamilto-
nians H = U†HdiagU with the same eigenstates by picking
different energy distributions for diagonal Hamiltonians in the
“l-bit” basis, Hdiag.

We can visualize many possible avenues for improving our
method. Using standard methods [42], a projection onto sec-
tors with fixed magnetization is easily implemented. It is pos-
sible to choose the same number of two-qubit gates in a dif-
ferent architecture [40, 41] to get a softer cutoff on the entan-
glement. More ambitiously we could optimize over both the
architecture of the unitary network, and the particular gates
used. Of course the most desired improvement would be to
run at Nlayer � 2 which is currently stymied by the exponen-
tial scaling of the cost function. As the diagrams to be con-
tracted now start resembling 2D tensor-network graphs, algo-
rithms from this field could presumably be used to improve
the scaling of contraction times.

We thank Bryan Clark for useful comments on the
manuscript. This work was supported in part by NSF Grant
Nos. 1311781, PHY11-25915, and the John Templeton Foun-
dation (VK and SLS) and the Alexander von Humboldt Foun-
dation and the German Science Foundation (DFG) via the
Gottfried Wilhelm Leibniz Prize Programme at MPI-PKS
(SLS).
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