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 Atomistic calculations of the electronic stopping power in liquid water for protons and α-particles from first 
principles are demonstrated without relying on linear response theory. The computational approach is based 
on non-equilibrium simulation of the electronic response using real-time time-dependent density functional 
theory. By quantifying the velocity-dependence of the steady-state charge of the projectile proton and α-
particle from non-equilibrium electron densities, we examine the extent to which linear response theory is 
applicable. We further assess the influence of the exchange-correlation approximation in real-time time-
dependent density functional theory on the stopping power with range-separated and regular hybrid 
functionals with exact exchange. 
 

Accurate electronic stopping power in liquid water for 
protons and other light ions such as α-particles is of great 
importance because energy dissipation from the ions is at the heart 
of various medical and technological applications, including proton 
beam cancer therapy[8]. As a highly energetic ion travels through 
and interacts with matter, its kinetic energy is transferred into the 
target material’s electronic and nuclear subsystems. This energy 
loss of the projectile particle can arise from elastic collisions with 
nuclei (nuclear stopping) and inelastic scattering events (electronic 
stopping). When the particle’s kinetic energy is sufficiently large, 
the majority contribution to the energy transfer is due to the 
electronic stopping wherein the projectile particle induces massive 
electronic excitations in the target material. The rate of energy 
transfer from the ion to electrons in the material is generally 
measured per unit distance travelled by the projectile particle and 
is referred to as electronic stopping power. This velocity-
dependent quantity is of central importance to many applications. 
For instance, proton beam cancer therapy takes advantage of the 
stopping power curve, which possesses a strong peak at a specific 
velocity and thus can deliver a significant amount of energy to a 
small area of cancer cells. Being the primary component of tissue, 
liquid water’s electronic stopping power curve is of great 
importance in this context. At the same time, only limited 
experimental measurements exist near the stopping power 
maximum, and various different theoretical models are currently 
used with empirical parameters. As discussed by Emfietzoglou and 
co-workers in their recent work[4], further experimental and 
theoretical studies in the energy range below the proton kinetic 
energy of 1 MeV (v= 6.27 a.u) are needed to elucidate differences 
among the existing analytical models based on different 
approximations. In this work, we present the electronic stopping 
power in liquid water for protons and α-particles from non-
equilibrium dynamical simulations based on first-principles 
quantum mechanical theory. 

Ever since the phenomenon of electronic stopping was 
conceived in the early 20th century[12-15], many have worked on 
calculating electronic stopping power[16-18]. Within the 
framework of linear response theory (consequently, the projectile 
ion is assumed to have a fixed charge Z), the stopping power can 
be expressed in a mathematically closed form as 

 
 Sሺvሻ ൌ ସ஠Zమܞమ Lሺvሻ, (1) 

 
where v is the projectile ion velocity, and L(v) is a velocity-
dependent quantity called the stopping logarithm. Bethe derived an 

analytical expression for the stopping logarithm using perturbation 
theory in the 1930s[12], arriving at the expression 
 

ሻݒሺܮ  ൌ ௘݈ܰ݊ ቀଶ௩మூ ቁ, (2) 
 
where Ne is the electron number density. I is the so-called mean 
excitation energy of the target, and it can be calculated using 
electronic structure calculations or from experimental 
measurements of the target material’s optical properties. Bethe’s 
theory often serves as a starting point of many other models that 
are employed today with empirical and higher-order Z corrections. 
A majority of work in the community relies on this formulation 
with different approximations and corrections for obtaining the 
electronic stopping power in liquid water[21]. Lindhard 
alternatively expressed the stopping logarithm[22]  
 

ሻݒሺܮ  ൌ ଵଶగమ ׬ ߱௤௩଴ ݀߱ ׬ ௗ௤௤ ݉ܫ ቀ ଵఌሺ௤,ఠሻቁஶ଴ , (3) 
 
where ε is the macroscopic dielectric function of frequency ω and 
wavelength q. This formulation is widely used with the dielectric 
function model by Lindhard [23] for homogeneous electron gas 
[24,25]. For liquid water, Emfietzoglou and co-workers have made 
important progress by developing accurate dielectric function 
models by extending the experimentally measured optical limit 
(i.e. q=0) to finite momentum in the last decade[4,26]. 

Real-time time-dependent density functional theory (RT-
TDDFT)[27] has advanced rapidly for studying the non-
equilibrium response of quantum systems in the last several years, 
and a few groups have started to explore the use of RT-TDDFT for 
obtaining electronic stopping power by directly simulating the 
electronic response to the projectile ion. Artacho and co-workers 
successfully demonstrated this approach initially for obtaining the 
electronic stopping power in low velocity regime (below the 
maximum) [28,29], and it also appeared promising for obtaining 
stopping power curves even for higher ion velocities[30]. By 
developing a highly-scalable implementation of the RT-TDDFT 
method using a plane-wave basis[31,32], we demonstrated that 
electronic stopping can be accurately modeled over a wide range of 
velocities including the stopping power maximum for a 
representative metallic system of aluminum[33] for which many 
experimental measurements exist. For liquid water, however, a 



limited number of experimental measurements are available for 
protons despite its medical and technological importance, and 
those data exist only for very high velocities away from the 
stopping power maximum. Thus, the analytical models remain 
unconfirmed in the velocity range around the anticipated stopping 
power peak. In the case of α-particles, two existing experiments 
show distinctly different behavior near the stopping power 
maximum. While the two widely used empirical SRIM[2] and 
PSTAR[1] models agree quite closely, analytical models based on 
model dielectric functions vary substantially among themselves 
[4].  

Using our recently developed, highly-scalable RT-TDDFT 
method in QB@LL code[34], non-equilibrium simulations are 
performed to obtain the dynamical electronic response of liquid 
water to an energetic ion (proton and α-particle). The details of the 
RT-TDDFT implementation are discussed in Ref. [31] and Ref. 
[32], and the non-equilibrium simulation approach for calculating 
the electronic stopping power is presented in Ref. [33].  We 
calculate the electronic stopping power (energy transfer rate) via 

 
 Sሺvሻ ൌ ௗாሾఘሺ௥;௧ሻሿௗ௫ۃ  ௩, (4)ۄ

 
where E is time-dependent electronic energy[33] and x is the 
projectile ion position. The energy derivative is obtained for 
individual paths using a baseline fitting approach[35], and the 
classical ensemble average is taken over projectile paths with a 
constant projectile ion velocity. In the present case of liquid water, 
at least 10 projectile paths were used for each projectile ion 
velocity. A first-principles molecular dynamics (FPMD) 
simulation was performed first to obtain a representative structure 
of liquid water at room temperature, using 162 water molecules 
(1,296 electrons) in a cubic simulation cell (16.229 Å) with 
periodic boundary conditions, following Ref. [36]. The positions of 
water molecules were taken from a snapshot of an equilibrated 
trajectory of a 20-picoseconds FPMD simulation. For the RT-

TDDFT simulations, a small time step of 0.2 attoseconds was used 
to ensure strict convergence. The PBE XC functional was used 
within adiabatic approximation[37,38]. A plane-wave cuttoff of 50 
Ryd at gamma point only in Brillouin zone integration was 
sufficient due to the large simulation cell with 162 water 
molecules. Hamann-Schluter-Chiang-Vanderbilt norm-conserving 
pseudo-potentials were used[39], and 1s electrons of oxygen atoms 
are treated as core electrons within the pseudopotential. Previous 
work has shown that core electrons contributes < 5% to the 
stopping power below v=6.27 a.u and essentially none near the 
stopping power maximum at v=1.98 a.u.[40].  

Fig. 1 shows the electronic stopping power from our RT-
TDDFT simulation, in comparison to the two widely used 
empirical SRIM and PSTAR models, in addition to available 
experimental measurements for high proton velocities. The error 
bars for our RT-TDDFT result represent standard deviations based 
on the distribution of projectile ion paths, and the dependence of 
the stopping power on the proton path was found to be more 
significant near the stopping power maximum. SRIM and PSTAR 
agree quite well near the stopping power maximum with vproton = 
1.7 a.u. and 1.8 a.u. respectively, and our first-principles 
simulation predicts the location of the maximum at 1.9 a.u. At the 
same time, our simulations yield a lower stopping power value 
with respect to these models, and our results underestimate the 
experimental values at higher velocities. We also compared our 
first-principles result to theoretical models that are based on Bethe 
theory (Eq. (2)) and the dielectric function formalism (Eq. (3)) in 
Fig. 2. These analytical models generally show a much steeper 
curve at lower velocities than the empirical SRIM and PSTAR 
models. Bethe theory shows a qualitatively incorrect behavior 
below the stopping power maximum due to the logarithmic term 
(See Eq. (2)). The dielectric function formulation generally 
contains the energy loss function ݉ܫሺെିߝଵሺݍ, ߱ሻሻ , and the 
experimental measurement of the optical limit (q=0) can be 
extended into a finite momentum q≠0. Recent work by 
Emfietzoglou and co-workers has investigated the dependence on 

           
FIG. 1. Electronic stopping power curves for a proton in liquid water.  Two
widely-used empirical models, PSTAR[1] (black) and SRIM[2] (green),
are shown for comparison.  Experimental data based on work by Sz09[6]
and Sz10[11] are shown as blue squares and purple diamonds, respectively.
Our real-time TDDFT results are shown as the red line, and the error bars
represent standard deviations for the path distribution. 

  
FIG. 2. Analytical models of electronic stopping power and our real-time
TDDFT results for a proton in liquid water. Analytical model using various
model dielectric functions by Garcia-Molina[3] (cyan), Penn (blue),
Ritchie (purple), Ashley (orange), and Emfietzoglou (green) are shown for
comparison [4]. Bethe theory (black) is also shown with the mean
excitation energy of I=75 eV as recommended by the International
Commission on Radiation Units and Measurement[7]. Our real-time
TDDFT results are shown as the red line, and the error bars represent
standard deviations for the path distribution. 



different model dielectric functions[4]. Notably, Ritchie et al. 
proposed a model based on the random phase approximation, 
exhibiting a quadratic dependence on q[41]. Ashley and Penn 
utilized a plasmon-pole approximation for their momentum 
dispersion schemes to extend the optical limit[42,43]. 
Alternatively, Emfietzoglou proposed an extended Drude-type 
model by introducing an empirical correction function for the q 
dependence[26]. The model by Garcia-Molina, et al. relies on the 
dielectric function due to Mermin, for the momentum 
dependence[3]. In addition to specifying the dielectric function, 
these analytical models are augmented by higher order corrections 
in Z and/or by employing an effective charge state model for the 
proton charge such as that of Brandt and Kitagawa[44,45] and of 
Schiwietz and Grande[5], which is more widely used for liquid 
water[3]. As can be seen in Fig. 2, the stopping power maximum 
varies significantly among these different analytical models while 
the locations of the maximum all fall in 1.7 ~ 2.1 a.u. Our first-
principles simulation result predicts a more gradual decay of the 
stopping power from the maximum to lower velocities than these 
models as in SRIM and PSTAR empirical models.  

Linear response theory predicts the quadratic dependence 
of the electronic stopping power (i.e. energy transfer rate) on the 
projectile ion charge as discussed in the introduction, and thus the 
use of α-particles instead of protons is also of great interest for 
various medical/technological applications such as for cancer 
therapies[8]. The electronic stopping power for α-particles is 
shown in Figure 3, and SRIM and ASTAR[1] empirical models 
agree rather closely near the maximum, and our first-principles 
RT-TDDFT result predicts the location of the expected maximum 
in good agreement. However, the stopping power value itself is 
much higher than these empirical models. For α-particles, there 
exist two different sets of experimental measurements near the 
maximum, and their behaviors differ quite significantly. The 
velocity-dependent trend of our first-principles results follows 
more closely of experimental measurement by Haque et al. (Hq85, 
Ref. [19]) rather than the one measured by Palmer et al. (Pl75, Ref. 
[10]) although there remains much room for improvement in 

obtaining better accuracy from first-principles theory as discussed 
later.  

Most widely-used analytical models involve augmenting 
a linear response theory description with empirical higher order 
corrections and/or by employing an effective charge model for the 
projectile ion charge, making the approach more empirical and 
susceptible to the problem of adjusting many interdependent 
parameters [46,47]. Within linear response theory, one starts by 
considering a particle with a fixed charge interacting with a matter. 
A result of this theoretical treatment is the quadratic dependence of 
the stopping power on the projectile ion charge as seen in both 
Bethe theory and Lindhard formula. We now ask to what extent 
linear response theory can describe the electronic stopping power 
without higher order corrections. Specifically, we explore if its 
description can be improved if the velocity-dependent charge state 
of the projectile ion from our non-equilibrium simulations is used 
instead of assuming a fully-ionized projectile ion. To answer this 
question, we calculate the mean steady-state charge of the 
projectile ion in liquid water by employing a Voronoi partitioning 
scheme[48] in which the cell of a given atom is defined as the 
region of space closer to the given atom than to any other atoms. In 
crystalline materials, the Voronoi cell is equivalent to the Wigner-
Seitz cell. This approach provides an ideal partitioning scheme for 
the projectile ion in this context because this geometric criterion 
does not depend on the non-equilibrium density and the definition 
of each cell is therefore independent of the projectile ion velocity. 
To calculate the charge of the projectile ion from its Voronoi cell, 
the equilibrium electron density is first subtracted from the 
velocity-dependent, non-equilibrium electron density so that the 
electron density of liquid water does not contribute to the projectile 
ion charge. Fig. 4 shows the calculated mean-steady state charge of 
the projectile ion as a function of the velocity from our non-
equilibrium RT-TDDFT simulations. The charge on the projectile 
ion increases as the ion velocity increases as expected, and both 
protons and α-particles can be considered as bare ions by v=~8 
a.u.. At very low velocities, neither protons nor α-particles are a 
completely neutral species as described in typical effective charge 

  
 
FIG. 3. Stopping power curves for a α-particle in liquid water. Two widely-
used empirical models, SRIM[2] (green line) and ASTAR[1] (black line)
are shown for comparison to our real-time TDDFT results (red line).
Experimental data for stopping power curves Ak80a (magenta circles, Ref.
[9]), Pl78 (blue diamond, Ref. [6,10,11]), Hq85 (yellow squares, Ref. [19]),
and Tw81 (purple triangles, Ref. [20]) are shown.  

 
FIG. 4. Mean steady-state charge (ݍത) for a proton (left) and an α-particle
(right) in liquid water as a function of the projectile ion velocity. Error bars
represent the standard deviations of the distribution of the instantaneous
charge state, which is calculated using the Voronoi partitioning in the
simulation (see text). The empirical model for projectile charge-state by
Schiwietz and Grande is shown in the dashed line[5]. 



models[44,45]. Fig. 5 shows the comparison of the stopping power 
ratio, (Sα/Sproton)1/2, to the mean steady-state ion charge ratio, 
qα/qproton, as a function of the velocity. At the velocity of ~8 a.u., 
the stopping power ratio reaches the value of 2 for α-
particle/proton as one would expect from assuming fully-ionized 
charges in linear response theory (i.e. (Sα/Sproton)1/2=Zα/Zproton). By 
simulating the non-equilibrium electronic dynamics explicitly, the 
RT-TDDFT approach captures the non-linearity in the response as, 
at lower projectile velocities, first-order perturbation theory begins 
to fail. Interestingly, (Sα/Sproton)1/2 follows rather closely to the ratio 
qα/qproton even for low ion velocities below the stopping power 
maximum down to ~1 a.u.. Thus, linear response behavior is found 
to be followed rather closely for the present case of liquid water 
when the mean steady-state charge state is used instead of 
assuming fully-ionized charges over a rather wide range of 
velocities or in other words contributions from higher-order Z-
terms are dominated by changes to the mean steady-state charge of 
the projectiles.  

Finally, we remark on the approximated exchange-
correlation (XC) potential used in the RT-TDDFT simulations[49]. 

First, we adapted the adiabatic approximation such that XC 
potential depends on the instantaneous electron density, neglecting 
any potential memory effects[38]. By calculating the linear part of 
the stopping power in the low ion velocity limit for a homogeneous 
electron gas (i.e. friction coefficient) using time-dependent current 
DFT formulation, Nazarov and co-workers have shown that the 
adiabatic approximation results in a negligibly small error when 
the projectile ions are of low-Z elements like protons and α-
particles [50]. Second, the semi-local approximation like GGA-
PBE[37] used here for the XC potential might introduce errors, 
especially since dynamical charge transfer between the ion and 
target could be important for some projectile ion velocities. 
Employing the hybrid functional PBE0[51] and range-corrected 
hybrid XC functional LC-BLYP[52], we examined differences 
with the PBE result at vproton= 0.89, 1.90, and 6.27 a.u.. In our 
recent work, LC-BLYP functional was found to perform quite 
satisfactorily in describing a long-range charge transfer in 
comparison to reptation quantum Monte Carlo and coupled cluster 
calculations[53]. For examining the XC dependence of the 
electronic stopping power, we used a Gaussian basis set instead of 
a plane-wave basis due to the prohibitively large computational 
cost of using plane-wave basis for these hybrid functionals in the 
present context. The range-corrected hybrid GGA (LC-BLYP) was 
implemented in CP2K code[54] using libxc library[55] for our RT-
TDDFT calculation. TZV2P Gaussian basis set was used with 
Goedecker-Teter-Hutter pseudopotentials for core electrons[56]. 
The exact exchange in PBE0 and LC-BLYP functionals was 
computed using the auxiliary density matrix method with cFIT3 
auxiliary basis set[57]. Crank-Nicholson method was used to 
propagate the Kohn-Sham wavefunctions with a timestep of 0.24 
attoseconds. In some parts of the simulations, the time step had to 
be reduced to 0.06 attoseconds to perform a stable numerical 
integration. For velocities that are less than, equal to, and greater 
than the peak velocity, the choice of XC functional makes very 
little difference in the calculated instantaneous charge state of the 
projectile proton in liquid water as seen in Figure 6. Table 1 shows 
percentage deviation in calculated stopping power with respect to 
the PBE result for a single representative proton trajectory. All 
deviations are within 10%, and the LC-BLYP approximation 
showed the largest change of +8.4% at vproton= 1.90 a.u., the 
stopping power maximum. These appreciable variations indicate 
that XC approximation needs to be improved in our RT-TDDFT 
simulations for obtaining quantitatively accurate determination of 
electronic stopping power from first-principles theory.  

TABLE I. Percentage difference in the calculated electronic stopping
power in liquid water for proton using two hybrid exchange-correlation
approximations (PBE0 and LC-BLYP) with respect to GGA approximation
(PBE). 
 

 
PBE0 LC-BLYP 

v = 0.89 a.u. -5.7% -2.4% 
v = 1.9 a.u. -1.0% 8.4% 

v = 6.27 a.u. 1.9% 3.1%	

  

 
FIG. 6.  Normalized Gaussian distributions for the probability of observing
a projectile proton with an instantaneous charge state, ݍ , in liquid water.
Proton velocities of v = 0.89 a.u. (left), v = 1.9 a.u. (center), and v = 6.27 a.u.
(right) were simulated using three different exchange-correlation functionals:
PBE (black), PBE0 (blue) and LC-BLYP (red). 
 

              
FIG. 5. Velocity-dependent ratios between protons and α-particles for
calculated stopping power and projectile ion charge state in liquid water.
The ratio of the calculated electronic stopping power curves is shown as
green diamonds.  The ratio of the effective charge on each projectile is
plotted as purple diamonds. The dashed line represents the stopping power
ratio of 2, which is expected from linear response theory when assuming
fully ionized charges.  



In conclusion, we determined electronic stopping power 
in liquid water for protons and α-particles from first-principles 
theory using RT-TDDFT simulations, without empirical 
parameters or relying on linear response theory. The calculated 
stopping power curves were compared to both SRIM and 
P(A)STAR empirical models as well as to analytical theories based 
on model dielectric functions. Our parameter-free calculation of 
the stopping power curve supports a good level of reliability of the 
empirical models for liquid water, and it also shows that the 
analytical models predict a stopping power curve that decreases 
too rapidly from its maximum in the low ion velocity regime. At 
the same time, our first-principles RT-TDDFT results appear to 
somewhat underestimate the experimental measurements for large 
velocities, and further studies are needed on the role of the 
exchange-correlation approximation. Lastly, we found that the 
stopping power ratio, (Sα/Sproton)1/2, deviates significantly from the 
expected value of 2 from linear response theory in the ion velocity 
regime below ~3 a.u.. However, down to the velocity of ~1 a.u., 
this can be largely rectified for the present case of liquid water if 
the mean steady-state charge from our RT-TDDFT non-
equilibrium simulations is used instead of assuming fully-ionized 
charges for the projectile ions. Given significant uncertainty in 
fitting analytical models with higher-order corrections [46,47], this 
result provides a rigorous physical bound that should be employed 
in developing empirical models for the effective charge state.  
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