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The continuous quantum phase transition between noninteracting, time-reversal symmetric topo-
logical and trivial insulators in three dimensions is described by massless Dirac fermion. We address
the stability of this quantum critical point against short range electronic interactions by using renor-
malization group analysis and mean field theory. For sufficiently weak interactions, we show that
the nature of the direct transition remains unchanged. Beyond a critical strength of interactions
we find that either (i) there is a direct first order transition between two time reversal symmetric
insulators or (ii) the direct transition is eliminated by an intervening time reversal and inversion odd
“axionic” insulator. We also demostrate the existence of an interaction driven first order quantum
phase transition between topological and trivial gapped states in lower dimensions.

PACS numbers: 64.70.Tg, 71.30.+h, 71.10.Fd, 03.65.Vf

Introduction: The spin-orbit coupled, time reversal
symmetric insulators in two and three dimensions be-
long to the Altland-Zirnbauer class AII [1, 2]. Due to
the existence of nontrivial Z2 topological invariants in
both spatial dimensions, a band insulator can be classi-
fied either as a strong topological insulator (TI) or a triv-
ial/normal insulator (NI). The four component massive
Dirac fermion provides an efficient low energy description
of Kramers degenerate conduction and valence bands in
such systems [3–6]. The sign of the Dirac mass provides
the topological distinction between two insulating states.
In a clean, noninteracting system the universality class
of a continuous topological quantum phase transition
(QPT) between them (where the Dirac mass vanishes)
is described by a massless Dirac Hamiltonian. Recently,
there has been considerable interest in understanding the
nature of such topological transition in two dimensional
HgCdTe quantum well [7] and three dimensional materi-
als such as BiTl(S1−δSeδ)2 [8, 9], (Bi1−xInx)2Se3 [10, 11].
Although the phase diagram of noninteracting, disor-
dered systems has been investigated in many analytical
and numerical works [12–18] and the interplay of disor-
der and long range Coulomb interactions has also been
studied perturbatively for both two [14] and three di-
mensions [16], the effects of strong short range electronic
interactions on the phase diagram of clean AII insulators
is not well understood. The investigation of this funda-
mental problem is the central theme of this Letter.

We show that three dimensional massless Dirac
fermion is stable against sufficiently weak, but generic
short range electronic interactions. Consequently, the
universality class of the continuous QPT between the
TI and NI remains unaffected up to a critical strength
of interactions, beyond which the quantum critical point
(QCP) becomes destabilized due to the spontaneous gap
generation for the massless Dirac fermion. There are
two possibilities for the gap: (i) an inversion (P) and
time reversal (T ) preserving scalar mass, which does
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FIG. 1: Zero temperature phase diagram of three dimensional
Dirac fermion for (a) gπ = 0 and (b) gσ = 0, for b = 0.2. All
the parameters are dimensionless (defined in the text). gσ and
gπ are interaction couplings for scalar and pseudoscalar mass
generation, respectively, and m is the band mass for Dirac
fermions. Dirac semimetal is realized on the solid line. The
transition between two insulators is first order (continuous)
across the dotted (solid and dashed) line(s). Three phases TI,
NI and AI meet at a multi-critical point as shown in (b). For
d=3, similar first order transition can occur between strong
and weak topological insulators, and also between weak topo-
logical and normal insulators.

not break any bonafide microscopic symmetry and (ii)
a pseudoscalar mass that spontaneously breaks genuine
discrete P and T symmetries and corresponds to an “ax-
ionic insulator” (AI), which has recently been discussed
in the context of magnetic insulators [19, 20], a Kondo
singlet phase [21], and p + is-superconductor [22]. The
scalar mass generation leads to a direct first order QPT
(without band gap closer) between the TI and NI [see
Fig. 1(a)]. This is a fluctuation driven first order tran-
sition and distinct from the generic first order transition
between two different broken symmetry phases [23, 24].
On the other hand, the nucleation of pseudoscalar mass
separates two T symmetric insulators, while eliminating
a direct transition between them [see Fig. 1(b)], and three
phases (TI, NI and AI) meet at a multi-critical point
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(MCP). In contrast to the TI and NI, which are respec-
tively characterized by the quantized magnetoelectric co-
efficients π and 0, the AI phase supports a nonquantized
magnetoelectric coefficient. Consequently, the AI phase
does not possess gapless surface states, and the massive
fluctuations of the magnetoelectric coefficient cause dy-
namic magnetoelectric effects. We also reach similar con-
clusions regarding the fate of the QPT between the TI
(quantum spin Hall insulator) and NI in two dimensions.
However, the nature of the possible T breaking phases in
two and three dimensions are considerably different. We
also show a similar first order transition between topo-
logical and trivial superconductors in one dimension.

Model : We will mostly be interested in the three di-
mensional materials with P and T symmetries. For con-
creteness, we choose the following tight binding Hamil-
tonian on a cubic lattice [4]

H =
∑
k

Ψ†k [t1

3∑
j=1

Γj sin(kja) + Γ4 M ]Ψk

+t2
∑
k

3∑
j=1

Ψ†k Γ4 [1− cos(kja)] Ψk, (1)

as a minimal model for describing the insulating states
in class AII, where a is the lattice constant. The four
component spinor Ψ>k = (c+,↑,k, c+,↓,k, c−,↑,k, c−,↓,k) is
comprised of the electron annihilation operator cr,s,k for
states with wavevector k, the orbital parity r = ± and
the spin projections s =↑ / ↓. The relevant discrete sym-
metry operations are defined according to P: k → −k
and Ψk → Γ4Ψ−k, and T : k→ −k and Ψk → Γ1Γ3Ψ−k.
We have used only four mutually anticommuting matri-
ces Γj = σj ⊗ τ1 (with j = 1, 2, 3), Γ4 = σ0 ⊗ τ3 in
Eq. (1) to enforce simultaneous P and T symmetries.
The bilinear Ψ†Γ5Ψ, where Γ5 = σ0 ⊗ τ2, maintains two
fold degeneracy of the valence and conduction bands, but
separately breaks P and T . By contrast, fermion bilin-
ears Ψ†ΣabΨ, with Σab = [Γa,Γb]/(2i), either break P
or T , and lift the Kramers degeneracy. Consequently,
Ψ†ΣabΨ and Ψ†Γ5Ψ are absent in H. Here, σµ and τµ
are two sets of Pauli matrices respectively operating on
the spin and the parity indices. The above model de-
scribes both strong (for −2 < M

t2
< 0) and weak (for

−4 < M
t2
< −2) TIs. The strong TI and NI phases re-

spectively correspond to sgn(Mt2) < 0 and sgn(Mt2) > 0
and M = 0 describes the QPT between them. In con-
trast, the transition between weak TI and strong TI (NI)
takes place when M

t2
= −2(−4). For simplicity, we focus

on the strong TI-NI QCP. But, our results are equally
applicable near the weak TI-strong TI or NI QCPs.

Since the minimal gap in the spectrum near the strong
TI-NI QPT occurs at the Γ point k = (0, 0, 0) [25], the
low energy quasiparticles in its vicinity are described by

the following continuum Hamiltonian

H3d =

∫ ′ d3k

(2π)3
Ψ†k

v 3∑
j=1

Γjkj + Γ4(M +Bk2)

Ψk,

(2)
where v = t1a and B = t2a

2. The integral over the mo-
mentum is restricted to an ultra-violet cutoff Λ. The TI
and NI phases respectively correspond to sgn(MB) < 0
and sgn(MB) > 0. At the QCP (M = 0) between these
two insulators the critical excitations are described by
massless Dirac fermions and Bk2 act as a momentum de-
pendent Wilson mass. Only the fixed point Hamiltonian
of massless Dirac fermion (M = B = 0) possesses a global
chiral U(1) symmetry under which Ψ→ ΨeiθΣ45 [26]. At
the microscopic level B 6= 0 and H3d enjoys only a re-
duced Z2 particle-hole symmetry, captured by the anti-
commutation relation {H3d,Γ5} = 0. Additionally, af-
ter an appropriate modification of the spinor, the same
Hamiltonian operator can also describe the topological
QPT (BEC-BCS transition) for superconducting systems
in Altland-Zirnbauer classes AIII and DIII.

For simplicity, we here restrict ourselves to class AII
and consider the effects of repulsive, short-range inter-
actions. For a P, T symmetric system with rotational
symmetry, generic model of short-range interaction

Hint =

∫
d3x

[
λ1

2

(
Ψ†Γ0Ψ

)2
+
λ2

2

(
Ψ†Σ45Ψ

)2
+
λσ
2

(
Ψ†Γ4Ψ

)2
+
λπ
2

(
Ψ†Γ5Ψ

)2 ]
(3)

is described by only four linearly independent couplings
due to the Fierz identity [27]. For λ1 = λ2 = 0 and
M = B = 0, H3d + Hint corresponds to the celebrated
Nambu-Jona-Lasinio (NJL) model for mass generation
through spontaneous U(1) chiral symmetry breaking [28].

RG analysis: Since the dynamic scaling exponent for
massless Dirac fermion is z = 1, the scaling dimensions
of the quartic interactions are [λj ] = (z − d) = (1 − d).
Therefore, any sufficiently weak short range interaction
is an irrelevant perturbation at the massless Dirac QCP
for d > 1, and leaves the universality class of the direct
TI-NI transition unchanged. In the weak coupling limit,
λis only modify the phase boundary in a non-universal
manner. These features and the potential breakdown of
the massless Dirac theory for strong interactions can be
captured through a renormalization group (RG) analysis,
controlled via simultaneous 1/Nf - and ε-expansion about
the lower critical dimension d = 1, where Nf is the flavor
number of four component fermions and ε = d−1. Within
the Wilsonian momentum shell method, we integrate out
the degrees of freedom inside −∞ < ω <∞ and Λe−l <
k < Λ, and subsequently rescale according to x → xel,
τ → τel, Ψ→ e−dl/2Ψ. In Nf →∞ limit, we obtain the
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following flow equations

dm

dl
= m (1 + 2gσ) + 2gσb,

db

dl
= −b, dg1

dl
= −εg1,

dg2

dl
= −εg2,

dgσ
dl

= −εgσ + 2g2
σ,

dgπ
dl

= −εgπ + 2g2
π, (4)

where we have introduced the dimensionless couplings
gi = λiSdNfΛd−1/[v(2π)d], m = M/(vΛ), b = BΛ/v,
and Sd is the surface area of a d-dimensional unit sphere.

For sufficiently weak interactions, Dirac mass m is the
only relevant variable. In this regime, gi(l) ∼ gi,0e

−εl,
b(l) ∼ b0e−l, where gi,0 and b0 are the bare values of the
corresponding couplings and solution of Eq. (4) yields

m(l) +
2

d+ 1
b(l)gσ(l) = el

(
m0 +

2

d+ 1
b0gσ,0

)
. (5)

Therefore, m∗ = m0 + 2 b0
d+1gσ,0 acts as an effective mass

and the TI-NI phase boundary is determined by m∗ = 0.
This agrees well with the phase boundary determined
through minimizing the free energy for weak interactions,
as shown in Fig. 1(a) for d = 3 [29]. The flow equations
also show that g1 and g2 are always irrelevant pertur-
bations, and can be ignored. Thus, we can restrict our-
selves to the NJL model that supports three unstable
fixed points: (i) gcσ = ε/2, gcπ = 0; (ii) gcσ = 0, gcπ = ε/2;
and (iii) gcσ = gcπ = ε/2. The first two are QCPs, re-
spectively describing the generation of scalar and pseu-
doscalar masses for massless Dirac fermion at strong cou-
plings, whereas the third one is a bicritical point. For
d > 1 and at strong coupling (gi > gci ), the appropri-
ate correlation length ξi ∼ Λ−1(gi − gci )−νi provides the
infra-red cutoff for the RG flow, with a correlation length
exponent νi = 1/ε. Therefore, for d = 2 and d = 3 we re-
spectively have non-Gaussian and Gaussian (mean-field)
itinerant QCPs [30]. As b(l) = b0e

−l, we can ignore it in
the RG sense in the weak-coupling regime. However, the
effects of b cannot be neglected for gi > gci s. For eluci-
dating the dramatic effects of b in determining the nature
of the strong coupling phases and the associated transi-
tions, next we adopt the method of large Nf mean-field
theory.

Free energy : We perform the Hubbard-Stratonovich
decoupling of the quartic terms proportional to gσ and
gπ, with bosonic fields Σ and Π, respectively, that cou-
ple to the fermion bilinears as Σ Ψ†Γ4Ψ and Π Ψ†Γ5Ψ.
When the corresponding coupling constants exceed their
critical strengths, these bosonic fields acquire expectation
values, while giving rise to the gap in the spectrum. With
〈Π〉 = 0, 〈Σ〉 6= 0, 〈Σ〉 + M acts as the effective scalar
mass, with TI and NI being the only possible phases. In
contrast, when 〈Π〉 6= 0, P and T are spontaneously bro-
ken, giving rise to the AI phase. Since the free energy
density (F ) has the dimension EL−d ∼ L−(d+1), we de-
fine a dimensionless quantity f = F (2π)d/(NfSdvΛd+1),

which takes the form

f =
σ2

2gσ
+
π2

2gπ
−2

∫ 1

0

dxxd−1
√
x2 + (σ +m+ bx2)2 + π2.

(6)
We have also introduced the following dimensionless vari-
ables σ = Σ/(vΛ), π = Π/(vΛ), x = k/Λ.

Note σ = −m, π = 0 corresponds to the massless
Dirac fermion describing the continuous QPT between
the TI and NI, and remains as the global minimum of f
up to critical strengths of gis. Consequently, the phase
boundary between the TI and NI is determined by

m =
2gσ
3b3

[
(2− b2)

√
1 + b2 − 2

]
, (7)

in d = 3, which is equivalent to m∗ = 0 for small b, up
to the critical strengths of the quartic interactions

g∗σ =
1

2

[
1 + b2 +

√
1 + b2

]
, g∗π =

1

2

[
1 +

√
1 + b2

]
. (8)

Notice that g∗σ > g∗π for an arbitrary value of b. This is
related to the fact {Γ4,Γ5} = 0. Thus a finite b favors
the nucleation of the pseudoscalar mass. In a continuum
model without any momentum dependent mass (b = 0)
the critical couplings g∗σ = g∗π = ε/2 = 1 become identical
to the ones found from the RG analysis of the NJL model.

We numerically minimize the free energy to obtain the
phase diagrams in Figs. 1(a) and 1(b). However, all the
salient features can be understood by expanding f for
small σ + m and π, and retaining only the lowest order
b-linear contributions. The free energy is then given by

f3d ≈
[
m2

2gσ
− 1

2

]
− σ

[
m

gσ
+
b

2

]
+
σ2

2

[
1

gσ
− 1

gcσ

]
+
π2

2[
1

gπ
− 1

gcπ

]
+
b

2
σ(σ2 + π2) +

(σ2 + π2)2

4
log

[
2e−1/4

σ2 + π2

]
,

(9)

for d = 3, after shifting σ → σ −m. When we consider
the nucleation of the scalar mass (for sufficiently strong
gσ), the following subtleties need to be addressed: (i)(
m
gσ

+ b
2

)
acts as the external field for σ and (ii) the

momentum dependent mass ∝ b gives rise to all odd
powers (cubic and higher) of σ in the expression for the
free energy density. Due to the presence of all the odd
powers of σ, the nucleation of the scalar mass proceeds
through a first order QPT between the TI and NI [see
Fig. 1(a)]. By contrast, the pseudoscalar mass genera-
tion (for sufficiently strong gπ) occurs through continu-
ous QPT. Three phases (TI, NI and AI) meet at a MCP
(located at m∗ = 0 and gπ = g∗π in the gσ = 0 plane),
as shown in Fig. 1(b). The MCP displays mean-field ex-
ponents, but the hyperscaling is violated by logarithmic
corrections [due to the π4 log(π2) term in Eq. (9)].

Two-dimensions: Our study can be generalized to ad-
dress the transition between the TI (quantum spin-Hall
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insulator) and NI in two dimensions. In the continuum
limit, these two insulators and the transition between
them can be described by the Bernevig-Hughes-Zhang
model [31]

H2d =

∫ ′ d2k

(2π)2
Ψ†k
[
v (Γ3kx + Γ5ky) + Γ4(M +Bk2)

]
Ψk.

(10)

The TI and NI phases in this model are realized for
sgn(MB) < 0 and sgn(MB) > 0, and the continuous
QPT between them (M = 0) is described by two dimen-
sional massless Dirac fermion. Strong interactions can
give rise to following four Dirac masses: Σ = 〈Ψ†Γ4Ψ〉,
Π1,2 = 〈Ψ†Γ1,2Ψ〉, and Ξ = 〈Ψ†Σ35Ψ〉. As in d = 3, the
nucleation of the scalar mass Σ (for sufficiently strong
gσ) proceeds through a first order QPT, which can be
understood from the following free energy density

f2d =

(
m2

2gσ
− 2

3

)
− σ

(
m

gσ
+

2

3
b

)
+
σ2

2

(
1

gσ
− 1

gcσ

)
+ |σ|3

(
2

3
+ b sgn(σ)

)
+O(b2, σ4), (11)

where gcσ = 1/2. The corresponding phase diagram is
qualitatively similar to Fig. 1(a). In contrast, conden-
sation of T -odd magnetic masses Π1,2 or the anomalous
charge Hall mass Ξ [32] takes place through a continuous
QPT as in Fig. 1(b) (see also Ref. [33]), giving rise to
a MCP in the (m, gπ) plane (with non mean-field expo-
nents [34, 35]). Our proposed first order transition be-
tween TI and NI has recently been observed in numerical
works in both d = 2 [36] and d = 3 [37].

One-dimension: In one dimension, the quartic interac-
tion (gσ) is marginally relevant and destablizes the mass-
less Dirac fixed point for infinitesimal strength [setting
ε = 0 in Eq. (4)] [38]. In the presence of a momentum
dependent mass, the QPT between topological and triv-
ial gapped states can be first order for sufficiently large
number of flavors. This is the reason behind the existence
of a fluctuation driven first order QPT for the N -color
Ashkin-Teller chain when N ≥ 3 [39–41]. The pertinent
continuum model is described by N species of two com-
ponent Majorana/Jordan-Wigner fermions with a k de-
pendent mass in the vicinity of the decoupled Ising QCP,
and microscopic four-spin coupling gives rise to O(N) in-
variant quartic interaction. Such a first order QPT can
be germane for describing the direct QPT between topo-
logical and trivial superconductors in different classes.

Conclusions: Our results can also shed light onto the
finite temperature phase diagram of strongly interacting
Dirac fermion. At finite temperatures and for sufficiently
strong interactions, massless Dirac fermion can undergo
either (i) a first-order classical phase transition and en-
ter into the TI or NI phase, or (ii) a continuous classical
phase transition, giving rise to a T -breaking insulator. In
general, the semiconductors (where most of the TIs have

been identified) are weakly correlated materials. How-
ever sufficiently strong electronic interactions (local and
nonretarded) can be mediated by optical phonons, below
the scale of optical frequency [42–44].

Finally, we comment on the effects of disorder on var-
ious QPTs, discussed for clean systems. Harris criterion
dictates that any continuous QPT is stable against weak
disorder if ν > 2/d [45] and this has been explicitly shown
for the TI-NI QPT at d = 3 [16]. Since ν = 1/2 < 2/3
at the clean MCP in d = 3, the universality class will
be changed by infinitesimal amount of randomness into
a disorder controlled class satisfying ν > 2/3 [46]. At
present it is not well established whether the exact value
of ν for MCP in d = 2 is bigger or less than one (= 2/d),
and we cannot properly assess its stability against weak
disorder. On the other hand, in the thermodynamic
limit, the first order transition (both classical and quan-
tum) will be rounded by disorder into a continuous one
in d = 1, 2, while it can survive in d = 3 for sufficiently
weak randomness [47–53]. The analysis of the universal-
ity class at a putative disorder and interaction controlled
critical point is beyond the scope of the present Letter.
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