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Abstract

We investigate gain in microwave photonic cavities coupled to voltage-biased double quantum dot

systems with an arbitrary strong dot-lead coupling and with a Holstein-like light-matter interaction,

by adapting the diagrammatic Keldysh nonequilibrium Green’s function approach. We compute

out-of-equilibrium properties of the cavity: its transmission, phase response, mean photon number,

power spectrum, and spectral function. We show that by the careful engineering of these hybrid

light-matter systems, one can achieve a significant amplification of the optical signal with the

voltage-biased electronic system serving as a gain medium. We also study the steady state current

across the device, identifying elastic and inelastic tunnelling processes which involve the cavity

mode. Our results show how recent advances in quantum electronics can be exploited to build

hybrid light-matter systems that behave as microwave amplifiers and photon source devices. The

diagrammatic Keldysh approach is primarily discussed for a cavity-coupled double quantum dot

architecture, but it is generalizable to other hybrid light-matter systems.
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I. INTRODUCTION

Recent years have seen a significant progress in probing and controlling hybrid light-

matter systems at the interface of quantum optics and condensed matter physics [1–4]. Few

examples of hybrid quantum systems include cavity-Quantum Electrodynamics (c-QED)

arrays [2, 5–7], cold atoms coupled to light [8–10], optomechanical devices [11, 12] and

cavity-coupled quantum dots [2, 13–21]. The motivation for this paper is a class of recent

experiments where quantum dots have been integrated with superconducting resonators,

accomplishing sufficiently strong charge-cavity coupling of g ∼ 50 − 200 MHz [13, 22–26].

Such quantum-dot circuit QED systems (QD-cQED) offer a rich platform for studying non-

equilibrium open quantum systems at the interface of quantum optics and mesoscopic solid-

state physics. Experiments are versatile, with a highly tunable window of parameters.

Recent breakthroughs in such devices include the observation of photon emission proceeding

via the DC transport of electrons [16], and the realization of microwave lasers (masers)

[27, 28].

Despite ongoing theoretical advances in describing QD-cQED systems [2, 17, 29–31],

there is a compelling need for adapting well-established techniques of non-equilibrium and

condensed matter physics, e.g, the diagrammatic non-equilibrium Green’s function (NEGF)

method, to explore the rich physics of these highly tunable and versatile hybrid light-matter

systems. Existing literature typically treats electron-lead coupling in a perturbative man-

ner (such as the Born-Markov approximation) [17, 32–36], further enforcing the source-drain

voltage to be very high, thereby incorporating only sequential, uni-directional electron trans-

fer across the dots. Using such approaches one potentially misses important features in the

optical and electronic signals, the result of finite bias voltage and strong dot-lead couplings.

Moreover, approximate methods such as the Markovian-secular quantum master equation

or mean field calculations are often uncontrolled and non-transparent. It is therefore of

a great importance to introduce a systematic approach that allows for an arbitrary dot-

lead coupling, (especially since experiments allow tunability from weak to strong dot-lead

coupling), handles finite source-drain bias voltage, and treats light-matter coupling in a

systematic (even if perturbative) manner. The diagrammatic NEGF approach [37–40] is

perfectly suited for this purpose. It allows us to simulate present cutting-edge experimental

realizations of quantum-dot circuit-QED systems, and furthermore foresee new effects.
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Our model includes two electronic levels corresponding to two quantum dots (DQD),

each coupled to a primary microwave photon mode (cavity photons). This primary mode is

coupled to left and right transmission lines, mimicking the openness of the cavity. A source-

drain bias is applied across the DQD system, inducing DC electric current. This system

can serve as a test-bed for understanding the intricate interplay between light (cavity) and

matter (voltage-biased DQD) degrees of freedom, specifically, in a non-equilibrium situation.

For a schematic representation, see Fig. 1.

The paper in organized as follows. In Sec. II we introduce our model. In Sec. III we study

the optical properties of the cavity, namely, the mean photon number, power spectrum and

the spectral function, transmission coefficient, and phase response. We use the Keldysh

NEGF method while relying on the random-phase-approximation (RPA), which is crucial

for respecting symmetry conditions. Numerical simulations demonstrate the potential to

use the system and develop novel quantum devices such as microwave amplifiers, photon

FIG. 1. (Left) Schematics of an implementation of a biased double-quantum-dot circuit-QED

setup: The electronic-mesoscopic system is integrated with a superconducting transmission line

resonator (TLR). The coupling between the microwave photons of the TLR and the electronic

levels of each quantum dot (QD), embedded in the nanowire, is described by a Holstein interaction

of strength (g1, g2). The DQD is driven out of equilibrium by the application of a finite source-

drain bias ∆µ = µL − µR. Tunnelling rates between the dots and the electron leads (ΓL,ΓR) and

in between the dots (t) can be tuned via gate-controlled tunnel-barriers. Typical experimentally

relevant values are given in the Table. (Right) A schematic representation of the model. The

mesoscopic system is effectively housed in the microwave cavity. Cavity photons are coupled to the

input and output ports with decay rates κL(R). The arrows inside the cavity represent tunnelling

processes. Wavy lines indicate the light-matter coupling.
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sources and diodes/rectifiers. In Sec. IV we focus on the electronic part of the model, and

demonstrate the influence of the cavity mode on the electric charge current. We summarize

our work and provide an outlook in Sec. V.

II. MODEL

The double quantum dot setup is placed between two metal leads composed of non-

interacting electrons. Electron transfer between the dots takes place via direct tunnelling.

Each dot is further coupled to a microwave cavity mode, designated as the “primary photon”.

This mode is coupled to two transmission lines, namely input and output ports. The total

Hamiltonian is (we set ~=kB=e=1 throughout the paper),

ĤT = Ĥel + Ĥph + Ĥel−ph, (1)

with

Ĥel = ǫ1ĉ
†
1ĉ1 + ǫ2ĉ

†
2ĉ2 + t(ĉ†1ĉ2 + ĉ†2ĉ1) +

∑

l∈L

ǫlĉ
†
l ĉl

+
∑

r∈R

ǫrĉ
†
rĉr +

∑

l∈L

vl(ĉ
†
l ĉ1+ĉ†1ĉl)+

∑

r∈R

vr(ĉ
†
rĉ2+ĉ†2ĉr), (2)

where ǫ1, ǫ2 are the site energies of the DQD, coupled to the left L and right R metal leads

by real-valued hopping elements vl and vr, respectively. ĉ† and ĉ are fermionic creation

and annihilation operators for the respective dots. Ĥph is the Hamiltonian for the photonic

degrees of freedom. It consists of the primary photon of frequency ω0 and the secondary

photon baths as two long transmission lines (K = L,R) with a symmetric coupling νj to

the j-th mode,

Ĥph = ω0â
†â+

∑

j∈K

ωjKâ
†
jK âjK +

∑

j∈K

νj â
†
jK â + h.c. (3)

Here, â(â†) and âjK(â
†
jK) are bosonic annihilation (creation) operators for the cavity mode

and the two transmission lines.

The interaction between electrons in the junction and the primary optical mode is given

by

Ĥel−ph = [g1n̂1 + g2n̂2](â
† + â), (4)

with n̂α = ĉ†αĉα as the level number operator and gα the coupling strength, α = 1, 2. For

g1 = −g2, Ĥel−ph describes the interaction between the microwave photon and the dipole
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moment of excess electrons in the DQD. Experimentally-relevant parameters are given in

the Table. κ=κL=κR is the decay rate of the cavity mode per port. In the wide-band limit

we define it as κ = 2πρ|ν|2, where ρ is the bath density of states and ν being the average

coupling between the cavity and the bath modes.

Table: Typical Parameter values from experiments (Refs. 16 and 17)

Cavity loss rate κ 0.0082 µeV 2.0 MHz

Light-matter coupling g 0.2050 µeV 50 MHz

Cavity frequency ω0 32.5 µeV 7.86 GHz

Elastic tunneling t 16.4 µeV 4.0 GHz

Drain tunneling rate ΓR 16.56 µeV 4.0 GHz

Source tunneling rate ΓL 16.56 µeV 4.0 GHz

Temperature T 8 mK 0.16 GHz

III. PROPERTIES OF CAVITY-EMITTED MICROWAVE PHOTON

In this section, we compute various experimentally-measurable properties of the cavity,

namely, its average photon occupation, emission (power) spectrum, spectral response func-

tion, as well as the transmission amplitude and phase response of cavity-emitted microwave

photons. It is important to mention that, while performing the phase spectroscopy (trans-

mission amplitude and phase) we relate incoming bosonic modes of the left (L) transmission

lines with the input microwave signal. While outgoing bosonic modes of the right (R) trans-

mission lines construct the output signal [2]. For other types of photonic and electronic

measurements the ports act as a source for dissipation.

A. Average photon number

The mean photon number can be accessed experimentally in QD-cQED devices [24, 28,

41]. We compute the mean photon number 〈n̂c〉 ≡ 〈â†â〉 in the cavity using the Keldysh

NEGF technique. For a methodological introduction over this approach, see Refs. [37–

40, 42]. This method allows us to perform a perturbative expansion (second-order) in the
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electron-photon and cavity-photon bath coupling Hamiltonian, while capturing dot-lead

interaction effects to all orders (non-perturbative). We consider the contour-ordered photon

Green’s function,

D(τ, τ ′) ≡ −i〈Tcâ(τ)â
†(τ ′)〉,

= −i〈TcâI(τ)â
†
I(τ

′)e−i/~
∫
dτ1ĤI

el−ph
(τ1)〉. (5)

It hands over all components required to calculate various optical signals. Here, Tc is the

contour-ordered operator (see Fig. 2) responsible for the rearrangement of operators accord-

ing to their contour time. The earlier (later) contour time places operators to the right

(left). The contour time τ , τ ′ map onto t and t′ in real time [37–39, 42].

In real time, four different components of the Green’s function can be received. The

time-ordered (causal) and anti-time-ordered Green’s functions are

Dt(t, t′) = −i〈T â(t)â†(t′)〉 = −i θ(t− t′)〈â(t)â†(t′)〉 − i θ(t′ − t)〈â†(t′)â(t)〉,

Dt̄(t, t′) = −i〈T̄ â(t)â†(t′)〉 = −i θ(t− t′)〈â†(t′)â(t)〉 − i θ(t′ − t)〈â(t)â†(t′)〉, (6)

where T and T̄ are time and anti time-ordered operators, and θ(t) is the Heaviside step

function. The other two components correspond to the lesser and greater functions

D<(t, t′) = −i〈â†(t′)â(t)〉,

D>(t, t′) = −i〈â(t)â†(t′)〉. (7)

From these Green’s functions, one can construct the retarded and advanced components

Dr(t, t′) = −i θ(t− t′) 〈
[

â(t), â†(t′)
]

〉, (8)

and

Da(t, t′) = i θ(t′ − t) 〈
[

â(t), â†(t′)
]

〉. (9)

FIG. 2. The complex-time contour in Keldysh formalism. τ, τ ′ are complex-time parameters. The

contour path starts at some initial time t0, goes to observation time t, then comes back to time t0.
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These functions satisfy the following relations: Dt = Dr + D< and Dt̄ = D< − Da. The

retarded Green’s function is often related to the response function in linear response theory.

The lesser and greater components, in general, are directly linked to many physical observ-

ables such as the average occupation, emission spectrum, charge density, particle current

etc.

Back to the contour-ordered Green’s functions, in the second line of Eq. (5), operators

are written in the interaction picture with respect to the non-interacting (quadratic) part

of the Hamiltonian Ĥel + Ĥph, for which both electronic and photonic Green’s functions are

known exactly. The perturbative expansion of Eq. (5) generates terms of different orders in

the electron-photon coupling g1, g2. A naive perturbative calculation with diagrams up to a

particular order leads to the violation of different symmetry-preserving physical processes,

such as the conservation of charge and energy currents. In order to restore basic symmetries,

one has to sum over an infinite-subclass of diagrams, taking into account all electron scatter-

ing events which are facilitated by the emission or absorption of a single photon quanta ω0.

This can be achieved by employing the so-called random phase approximation (RPA) [43–

46] where a particular type of ring diagrams are summed over, see Fig. 3. We can represent

this infinite summation in a closed Dyson-like (kinetic) equation for D(τ, τ ′),

D(τ, τ ′) = D0(τ, τ
′)

+

∫

dτ1

∫

dτ2D0(τ, τ1)Fel(τ1, τ2)D(τ2, τ
′). (10)

D0(τ, τ
′) is the Green’s function of the primary photon which also includes the effect of

the secondary photon modes (transmission lines). Fel(τ1, τ2) corresponds to the bubble

diagrams involving the left and right dots’ Green’s function, see Fig. 3. It describes elastic

and inelastic (energy exchange) processes, where electrons in the dots interact with the

cavity mode. We will later identify the bubble diagrams, in other words, the photon self-

energy (connected part), as the density-density correlation function of electrons. In terms

of the contour variables, this Green’s function can be written as

Fel(τ1, τ2) = −i

[

g21G
0
11(τ1, τ2)G

0
11(τ2, τ1) + g22G

0
22(τ1, τ2)G

0
22(τ2, τ1)

+ g1g2

{

G0
12(τ1, τ2)G

0
21(τ2, τ1) +G0

21(τ1, τ2)G
0
12(τ2, τ1)

}

]

,

= −iTr
[

gG0(τ1, τ2) gG
0(τ2, τ1)

]

. (11)
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This function is symmetric under the exchange of the contour time parameters τ1 and

τ2. G0
ij(i, j = 1, 2) are the non-interacting electronic Green’s functions (dressed by the

arbitrarily-strong electron-lead tunnelling Hamiltonian), defined asG0
ij(τ1, τ2)=−i 〈Tcĉi(τ1)ĉ

†
j(τ2)〉.

The average is performed over the current-carrying steady state, determined by the inverse

temperatures βL,R = 1/TL,R and chemical potentials µL,R of the electronic leads. Com-

ponents of the non-interacting electron Green’s functions are given in Appendix A. In the

third line of Eq. (11) we organize Fel(τ1, τ2) in a matrix form, with g and G0 as 2 × 2 ma-

trices with g = diag(g1, g2). Expressions for different components of Fel(τ1, τ2) and various

relations among them such as the Korringa-Shiba relation are explained in Appendix B. If

the DQDs are further coupled to a phononic environment [27], G0(τ1, τ2) in the bubble dia-

grams should be replaced by the interacting G(τ1, τ2), dressed by the phononic interaction

(assuming Wick’s theorem).

In the steady state limit, different real-time components of D(τ, τ ′) can be obtained. The

convolution in time domain results in a multiplicative form in frequency domain. This gives

[g21= −i +

Fel(τ1, τ2)

(b) g22

D(τ, τ ′) D0(τ, τ
′)

= +(a)

Fel(τ1, τ2)

+ g1g2+g1g2 ]

FIG. 3. (a) Dyson equation for the photon Green’s function D(τ, τ ′) in contour time. (b) The

bubble diagram Fel(τ1, τ2) consists of four dressed electronic Green’s functions, represented by dark

solid line (G0
11), dashed line (G0

22), dotted line (G0
12) and grey solid line (G0

21).
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D(ω) =





Dt(ω) D<(ω)

−D>(ω) −Dt̄(ω)



 =
[

D−1
0 (ω)− Fel(ω)

]−1
=





[Dr
0(ω)]

−1−Σ<
ph(ω)−F t

el(ω) −Σ<
ph(ω)−F<

el (ω)

Σ>
ph(ω)+F>

el (ω) [Dr
0(ω)]

−1+Σ>
ph(ω)+F t̄

el(ω)





−1

. (12)

with the Fourier transformation for the Green’s functions defined as, for example, D<(ω) =
∫∞

−∞
dt eiωt D<(t). The primary photon retarded Green’s function is given by

[Dr
0(ω)]

−1 = (ω − ω0)− Σr
ph(ω), (13)

with Σr,a,<,>
ph (ω) as different components of the self-energy, materializing due to the coupling

of the cavity photon to the input and output ports. In the wide-band limit we approximate

Σr
ph(ω) = −iκ (recall that κ = 2πρ|ν|2 is the decay rate of the cavity mode per port). We

also receive Σ<
ph(ω) = −2 i κ nph(ω) and Σ>

ph(ω) = −2 i κ [1 + nph(ω)] where nph(ω) stands

for the Bose-Einstein distribution function, evaluated at temperature Tph.

We now compute various components of the photon Green’s function by inverting the

2 × 2 matrix in Eq. (12). In what follows we focus on the regime where κ ≥ |F r
el(ω)|. We

receive the greater and lesser components,

D</>(ω) =
F

</>
el (ω) + Σ

</>
ph (ω)

[

ω−ω0−F
′

el(ω)
]2
+
[

F
′′

el(ω)−κ
]2 , (14)

as well as the retarded and advanced Green’s functions

Dr(ω) =
[ (

ω−ω0−F
′

el(ω)
)

−i
(

F
′′

el(ω)−κ
)]−1

,

Da(ω) =
[

Dr(ω)
]∗
. (15)

Here, F ′
el(ω) = Re[F r

el(ω)] =
[

F t
el(ω)− F t̄

el(ω)
]

/2 and F ′′
el(ω) = Im[F r

el(ω)] = [F>
el (ω)− F<

el (ω)] /2 i.

In what follows we show that F
′,′′

el plays a central role in enhancing gain in the cavity mode.

For later use we also define the total self-energy Πt,t̄,<,>(ω) which is additive in the electronic

and transmission lines induced self-energies,

Πt,t̄<,>(ω) = Σt,t̄<,>
ph (ω) + F t,t̄<,>

el (ω). (16)

With this at hand, we identify the mean photon number in the steady-state limit as

〈n̂c〉 ≡ i

∫ ∞

−∞

dω

2π
D<(ω)

= i

∫ ∞

−∞

dω

2π

F<
el (ω) + Σ<

ph(ω)
[

ω−ω0−F
′

el(ω)
]2
+
[

F
′′

el(ω)−κ
]2 . (17)
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The integration can be performed to include terms to the second order in the electron-phonon

coupling (order g2i ) and in κ. We employ the residue theorem to perform the integration.

Up to the second order, the poles are located at
(

ω0 + F
′

el(ω0)± i
[

κ−F
′′

el(ω0)
]

)

. Assuming

κ > F
′′

el(ω0) the integration in Eq. (17) then results in

∫ ∞

−∞

dω

2π
D</>(ω) ≈

F
</>
el (ω0) + Σ

</>
ph (ω0)

2
[

κ−F
′′

el(ω0)
] . (18)

The mean photon number is obtained as

〈n̂c〉=
F<
el (ω0) + Σ<

ph(ω0)

2 i
[

F
′′

el(ω0)−κ
] =

Π<(ω0)

Π>(ω0)−Π<(ω0)
, (19)

where we alternatively express it in terms of the total self-energy Π</>(ω0). At equilibrium,

the metallic leads are maintained at the same chemical potential (µL=µR) and at the same

temperature, equal to the temperature of the photonic environment (βL = βR = βph = β).

The detailed balance condition is then satisfied for F
</>
el (ω0) and Σ

</>
ph (ω0), i.e., F

>
el (ω0) =

eβω0F<
el (ω0), see Appendix B. This ensures the onset of the Bose-Einstein distribution for

the cavity photon mode at equilibrium.

From Eq. (19) we can further obtain the mean-square displacement of the cavity mode

as

〈X̂2〉 = 1 + 2〈n̂c〉 =
Π>(ω0)+Π<(ω0)

Π>(ω0)−Π<(ω0)
. (20)

In Fig. 4 we show the average cavity occupation number 〈n̂c〉 as a function of applied

bias, energy detuning and dot-lead coupling. Unless otherwise stated, we define here and

below the detuning ǫ = ǫ1−ǫ2, and enforce ǫ1=−ǫ2=ǫ/2, matter-light coupling g=g1=−g2.

For the spectral functions of the metallic leads we make the wide-band approximation and

fix ΓL =ΓR =Γ. We also set the equilibrium Fermi energy of the metal leads at zero and

change the bias symmetrically with µL= −µR=∆µ/2. The temperature of the two metals

and the transmission lines are chosen to be identical.

In Fig. 4(a) we study the average photon occupation as a function of bias voltage. We

find that 〈n̂c〉 increases in two steps. In the first step, ∆µ > ω0, tunnelling electrons acquire

sufficient energy to interact with the cavity mode and generate photons. The second step

arises due to the additional resonance situation at ∆µ ∼
√
ǫ2 + 4t2 + 2ω0. At this bias

electrons arriving from the left metal at ∆µ/2 deposit energy (ω0) to the cavity mode,

allowing electrons to resonantly cross the junction. In the positive detuning case (ǫ > 0)
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FIG. 4. (Color online) Average photon number 〈n̂c〉 as a function of (a) applied bias voltage ∆µ,

(b) energy detuning ǫ, (c) dot energies ǫ1 and ǫ2, and (d) dot-lead coupling Γ. Setup parameters

are g = 50MHz, κ = 0.005µeV , Γ = 1.656µeV . In panel (a), ǫ = 10µeV , t = 16.4µeV (dashed),

t = 32.8µeV (solid). In panel (b), ∆µ = 50µeV , t = 16.4µeV (dashed), t = 32.8µeV (solid). In

panels (c)-(d), t = 16.4µeV,∆µ = 50µeV . Other parameters are the same as in the Table. Note

that in panels (a)-(b), 〈n̂c〉 shows three order of magnitude enhancement for t = 16.4µeV (dashed)

relative to the t = 32.8µeV case (full).

examined here, 〈n̂c〉 saturates to lower values when the bias is reversed (negative bias), in

comparison to that in the forward (positive) bias direction. This cavity-number asymmetry

with respect to bias reflects the structural asymmetry in the DQD system. With increasing

tunnelling strength t, fast interdot charge transfer results in an effectively weak interaction

between electrons and the cavity mode, therefore showing low values for the average photon

number.

In Fig. 4(b) we plot 〈n̂c〉 as a function of detuning. We observe a significant enhancement

in photon number at a certain value ǫ. For the bare system Hamiltonian, without the

fermionic leads and transmission lines, the resonance condition ω0 =
√
ǫ2 + 4t2 identifies the
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precise detuning ǫ, allowing for electron-photon energy exchange processes. The finite dot-

lead coupling Γ, which is non-perturbative here, strongly influences this resonance condition,

showing broadening and renormalization of peak position with respect to the bare value.

Specifically, within our parameters,
√

ω2
0 − 4t2 < 0, yet the finite dot-lead coupling Γ allows

for a resonance situation to develop. The new resonance solution—with the leads— is

nontrivial, and we do not aim in receiving it analytically [17]. Close to this compound

resonance condition a sharp increase in photon number is observed, potentially creating a

lasing function (not investigated here). For large detuning (here t = 32.8µeV ), the DQD

system does not well couple to the cavity mode, resulting in a vanishing photon occupation

number. To elucidate this behavior further we display 〈n̂c〉 as a function of dot energy levels

ǫ1 and ǫ2 in Fig. 4(c). We observe similar trends, with large photon generation (〈n̂c〉 ∼ 5)

for ǫ1 > ǫ2.

At zero bias, the averaged photon number is determined by the temperature—which is

rather low here—leading to small 〈n̂c〉, see Fig. 4(a). The application of bias voltage there-

fore has a critical-decisive role on 〈n̂c〉. Specifically, finite bias voltage breaks the symmetry

in the averaged photon number with respect to detuning ǫ = ǫ1 − ǫ2. For positive detuning

ǫ > 0 and positive bias (µL > µR), inelastic electron transport through the DQD proceeds

via resonant interdot tunnelling, thereby reducing the energy of electrons via photon gener-

ation. In particular, when the levels are placed within the bias window resonance transport

is highly effective, leading to significant photon emission. In contrast, for negative detun-

ing ǫ < 0 yet at positive bias, inelastic electron transport is rather ineffective: electrons

may cross the junction by the absorption of photons, an unlikely process given the low

thermal photon number, or by the emission of photons, an off-resonant, inefficient, process:

when ǫ < 0 and µL > µR, transmitted electrons have low energy after photon emission,

significantly below ǫ2.

The nonlinear and non-monotonic behavior of 〈n̂c〉 as a function of dot-lead coupling Γ is

demonstrated in Fig. 4(d). At weak coupling and finite detuning, 〈n̂c〉 increases with Γ, as

the photon number in the cavity is amplified by charge transfer through the DQD system.

In contrast, when the dot-leads coupling is strong, the renormalization and broadening of

the dot energy levels allow electrons to tunnel through the DQD on a short timescale, only

briefly interacting with the cavity photons, thus resulting in limited photon generation.

12
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FIG. 5. (Color online) (a) Power spectrum S(ω) as a function of frequency for different dot-lead

coupling. Γ=0.56µeV (dashed), 1.656µeV (solid), 16.56µeV (dashed-dotted). (b) Absolute value

of transmission as a function of dot-lead coupling Γ for a fixed bias. Numerical parameters are

g = 50MHz, κ = 0.005µeV , t = 16.4µeV , ǫ = 10µeV , ∆µ = 500µeV . Other parameters are the

same as in the Table. The two circles represent the values of |t(ω0)| at Γ= 0 (top circle) and at

finite but very small Γ.

B. Power spectrum and spectral function for the cavity mode

Next we look at the power spectrum and the spectral function of the cavity mode. The

power spectrum has recently been measured for a similar setup [28]. In the stationary limit,

we can immediately obtain the emission (power) spectrum in terms of the lesser Green’s

function

S(ω) =

∫ ∞

−∞

dt 〈â†(0)â(t)〉eiωt = iD<(ω)

= i
F<
el (ω) + Σ<

ph(ω)
[

ω−ω0−F
′

el(ω)
]2
+
[

F
′′

el(ω)−κ
]2 . (21)

It is obvious from this definition that 〈n̂c〉 =
∫

dω
2π
S(ω). At the cavity frequency ω0, the

power spectrum is given by

S(ω0) =
2 〈n̂c〉

[

κ−F ′′
el(ω0)

]

[

F ′
el(ω0)

]2
+
[

F ′′
el(ω0)− κ

]2 . (22)
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Similarly, we obtain an expression for the spectral response function of the resonator, defined

as the difference between the retarded and advanced photon Green’s function [47]

Aph(ω) = i [Dr(ω)−Da(ω)]

=
2
[

κ−F
′′

el(ω)
]

[

ω−ω0−F
′

el(ω)
]2

+
[

F
′′

el(ω)−κ
]2 , (23)

with the normalization condition (sum rule)
∫

dω
2π
Aph(ω)=〈[â, â†]〉 = 1. This can be proved

as well from the above equation invoking the residue theorem as explained before. In the

absence of the light-matter interaction, the cavity spectral function Acav(ω) = 2κ
(ω−ω0)2+κ2

trivially satisfies the sum rule. The amplitude of the spectral function at ω0 is related to the

emission spectrum as Aph(ω0) = S(ω0)/〈n̂c〉. In Fig. 5(a) we plot the power spectrum S(ω)

for different dot-lead coupling. It shows a nonmonotonic behavior with respect to tunnelling

strength, with the maximum taking place at an intermediate value for the tunnelling. The

broadening, which is of the order of several MHz (1-3 MHz), results from the interplay

between F ′′
el and κ, the two different sources of dissipation. Fig. 5(b) is discussed in the next

section.

C. Phase spectroscopy: Transmission and Phase

We calculate the transmission amplitude and the phase response of the emitted microwave

photons by following the input-output relations as developed in Refs. 29, 30, and 48. Recall

that for phase spectroscopy measurements (performed via heterodyne detection [16]) the

bosonic modes of the left (L) and the right (R) transmission lines are related to the input

and output microwave signal, respectively [2]. The transmission function t(ω) reads as

[29, 30, 48]

t(ω)=
iκ

(ω − ω0) + iκ− χr
el(ω)

= i κDr(ω), (24)

for κ ≥ Im[χr
el(ω)]. χ

r
el(ω) can be shown to be proportional to the electronic charge suscep-

tibility χr
el(t−t′) =

∑

α,β∈1,2 gα gβ Λ
el
αβ(t− t′) [29, 30]. Here

Λel
αβ(t− t′) = −iθ(t− t′)

〈[

n̂α(t), n̂β(t
′)
]〉

el
(25)

stands for the electron density response function, α, β = 1, 2 are indices for the dots, 〈· · · 〉el
refers to the average over the electronic degrees of freedom in the nonequilibrium steady

14
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FIG. 6. (Color online) Spectroscopy of cavity-emitted photons. (a) Transmission (absolute value)

and (b) phase response as a function of incoming photons frequency ω. Parameters are κ =

0.005µeV , Γ = 1.656µeV , g = 50MHz, ǫ = 10µeV , ∆µ = 0µeV (solid) and ∆µ = 100µeV

(dashed). The red dashed-dotted line was obtained at g=0. Other parameters are same as in the

Table. The sum rule for transmission is
∫

dω
2π t(ω) = κ/2.

state. In our formulation, following Eq. (15) we identify the transmission to be proportional

to the retarded Green’s function Dr(ω) of the cavity photon mode, which in time-domain is

precisely the photon response function given by Eq. (8). Therefore from Eq. (15) we note

that χr
el(ω) stands for the retarded component of the bubble diagram F r

el(ω).

We further write t(ω) = |t(ω)|eiφ(ω) and identify the real and imaginary parts of the

transmission function

Re [t(ω)] = −κ Im [Dr(ω)] = κ
κ−F ′′

el(ω)
[

ω−ω0−Fel
′(ω)

]2
+
[

F ′′
el(ω)−κ

]2 ,

Im [t(ω)] = κRe [Dr(ω)] = κ
ω−ω0−F ′

el(ω)
[

ω−ω0−F
′

el(ω)
]2

+
[

F ′′
el(ω)−κ

]2 , (26)

with the sum rule
∫∞

−∞
dω
2π

t(ω) = κ/2. Specifically, we get
∫∞

−∞
dω
2π

Re[t(ω)] = κ/2 and
∫∞

−∞
dω
2π

Im[t(ω)] = 0. We further note that the real part of the transmission function provides

a direct measure for the spectral function of the cavity photon. The phase of emitted photons

is

tanφ(ω) = −Re [Dr(ω)]

Im [Dr(ω)]
= −ω − ω0 − F ′

el(ω)

F
′′

el(ω)− κ
. (27)

Since we are mainly interested in the absolute value of the transmission function and the
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value of the phase response at the frequency of the cavity mode (ω = ω0), we evaluate

|t(ω0)| =
κ

[

(

F
′

el(ω0)
)2
+
(

F
′′

el(ω0)−κ
)2
]1/2

,

tanφ(ω0) =
F

′

el(ω0)

F
′′

el(ω0)−κ
. (28)

Both real and imaginary parts of Fel(ω) show a nontrivial dependence on bias voltage through

the Keldysh component of the electronic Green’s function Gk
0(ω), see Appendix B.

In Fig. 6 we plot the absolute value of the transmission and the phase response as a

function of the incoming photon frequency ω under different bias voltages ∆µ. When the

cavity is decoupled from the DQD, g = 0 (dashed-dotted line), the transmission reaches

unity at ω = ω0, and the broadening is determined by κ. As well, the phase response is zero

at the resonant frequency, and it approaches ±π/2 in the off-resonant regime. For finite g—

yet at zero bias—charge fluctuations in the dots introduce shift in the transmission peak,

further reducing the maximum amplitude. The frequency shift depends on the real part

of the charge susceptibility F ′
el(ω), whereas the broadening reflects the difference between

F ′′
el(ω) and κ. The phase response is zero when the transmission is at maximum. Most

interestingly, we find that the absolute value of the transmission coefficient can be greatly

enhanced—beyond unity—at finite bias, once F
′′

el > 0. This situation is elaborated below.

Fig. 7 displays one of the central results of our work: The transmitted photon signal

can be significantly enhanced at finite bias voltage, once the electronic system is fine-tuned

to counteract dissipation from the (photonic) transmission lines. We study the behavior of

the transmission coefficient and phase response at the bare cavity resonance frequency as a

function of bias, for different cavity decay rates κ. We find that the transmission, or photon

gain, increases for |∆µ| > ω0, and it saturates at high (positive and negative) biases. This

behavior agrees with our observations for 〈n̂c〉 in Fig. 4(a). However, at a certain finite

voltage (here around 30 µeV ), the transmission jumps above the asymptotic value (panel

a), while the phase response shows a sudden dip. This sudden jump takes place when the

real component F
′

el(ω0) ∼ 0 and the imaginary component F
′′

el(ω0) approaches κ, thereby

canceling the dissipative effect coming from the transmission lines, see panel (c) and (d).

Beyond this optimal value, at higher biases, the transmission or photon gain saturates to a

value greater than one as F
′′

el(ω0) ∼ κ yet F
′

el(ω0) > 0.

We turn to the high bias limit and study in Fig. 8 the role of energy detuning ǫ on
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FIG. 7. (Color online) Controlling transmitted photons by a DC bias voltage across the dots.

(a) Transmission amplitude and (b) phase as a function of bias voltage ∆µ at the bare cavity

frequency ω0. In panels (c)-(d) we display the real and imaginary parts of the bubble electronic

Green’s function Fel(ω0), respectively, illustrating that a jump in transmission (and a dip in phase)

occurs once F
′

el(ω0) ∼ 0 and F
′′

el(ω0) ∼ κ. Parameters are κ = 0.005µeV or 1.21 MHz (solid),

κ = 0.001µeV or 0.24 MHz (dashed), ǫ = 10µeV , Γ = 1.656µeV , g = 50MHz, t = 16.4µeV .

Other parameters are given in the Table.

the transmission and phase response. In particular, we examine the dependence of |t(ω0)|
and φ(ω0) on the electron-photon coupling strength g and on the incoherent tunnelling

rate Γ = ΓL = ΓR. Panels (a) and (c) display the transmission amplitude, showing gain

|t| > 1 (dip, |t| < 1) on the positive (negative) side of detuning ǫ > 0 (ǫ < 0) as a result of

coupled electron photon transport processes: For positive detuning and positive bias, inelas-

tic electron transport through the DQD system proceeds via inter-dot tunnelling, thereby

reducing the energy of electrons via photon emission. In contrast, for negative detuning

electron transport proceeds assisted by photon absorption, reflected by the dip in the trans-

mission coefficient. This gain mechanism can be also corroborated with the amplification of

〈n̂c〉. Finally, note that at zero detuning (ǫ = 0), direct elastic tunnelling dominates over
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FIG. 8. (Color online) Effect of detuning the DQD levels on the cavity signal. (a) and (c) Absolute

value of transmission coefficient |t(ω0)|, and (b) and (d) phase response φ(ω0) of the transmitted

signal, displayed as a function of detuning ǫ at high bias using t=16.4µeV , ω0 = 32.5µeV , cavity

loss rate κ = 0.005µeV , ∆µ = 250µeV . Γ = 16.56µeV in panels (a)-(b), g = 50MHz in panels

(c)-(d). Other parameters are same as in the Table.

photon-induced contributions. For very large detuning, marginal charge flow through the

dots results in an effectively minuscule electron-photon interaction. These two limits lead

to unit transmission amplitude and zero phase response.

The relative strengths of F
′′

el and κ determine the gain and loss values in the transmission

amplitude. Plots of the real and imaginary components of Fel, displayed as a function of ǫ,

are included in Appendix B (Fig. 13). Maximum gain is achieved when F
′′

el = κ and F
′

el ∼ 0.

Since F
′′

el ∝ g2, and typically F
′′

el < κ, increasing g shows a significant enhancement in gain

and similarly loss.

The dependence of |t(ω0)| and φ(ω0) on the system-lead coupling strength is examined in
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FIG. 9. (Color online) Control of cavity response by tuning the DQD site energies. Plot of (a)

absolute value of transmission coefficient |t(ω0)| and (b) phase response φ(ω0) of the transmitted

signal as a function of ǫ1 and ǫ2 at high bias ∆µ = 250µeV . Here Γ = 16.56µeV , g = 50MHz.

Other parameters are the same as in the Table.

Fig. 5(b), showing a nonlinear behavior, and in Figs. 8(c) and (d). The transmission is high in

the sequential tunnelling regime (intermediate dot-lead coupling), whereas for large coupling

renormalization and broadening of peaks lead to reduced gain. The reason is that the

dwelling time of electrons in the dots (∼ 1/Γ) is long at weak coupling, realizing an effectively

significant electron-photon interaction. Indeed, Fig. 13 in Appendix B demonstrates that

small Γ returns large values for F
′,′′

el , thus a significant enhancement in |t(ω0)| as a whole.

Upon increasing the coupling strength Γ, the dots energies become broadened, thus electrons

can flow across the device without interacting with the cavity mode. This scenario shows

small gain and loss. At very weak coupling, F
′′

el(ω0) ≪ κ, the electronic medium introduces

only dissipation, responsible for the drop in transmission, see Fig. 5(b)

Plots of |t| and φ, at the bare cavity frequency, as a function of ǫ1 and ǫ2, reveal that

degenerate quantum dots do not influence the cavity, with |t(ω0)| = 1 and φ(ω0) = 0, see

Fig. 9. In contrast, at positive (negative) detuning, gain (loss) is observed.

In Fig. 10 we study the effect of a finite bias voltage, with energy detuning lying within

the voltage bias window, on the transmission coefficient and phase response. Comparing

finite-intermediate voltage results to Fig. 8, where high bias was employed, we note here

an additional dip at ǫ ∼ ∆µ, reflecting photon-assisted charge transfer processes from the

right dot to the left dot. Correspondingly, a jump in phase is detected at the same value of
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detuning.

Several theoretical studies had recently investigated similar models—albeit in the Coulomb

blockade regime—using quantum master equation (QME) approaches in Lindblad form (per-

turbative in Γ). Our calculations differ in several aspects from these QME methods: We

work in the picture of non-interacting electrons, we incorporate the dot-metal coupling to

all orders, the bias voltage can be scanned from zero to high values, so far, our calcula-

tions do not incorporate the contribution of phonons. Nevertheless, general features for the

optical quantities, such as the behavior of 〈n〉 vs. Γ, ǫ and peak and dip structure in the

transmission, remain the same under both tools [17, 33, 49]. Future work will be devoted to

a quantitative comparison of our NEGF results with QME techniques, and to the extension

of the formalism to include the effect of phonons [17, 27].

To summarize this section, at equilibrium (µL = µR and βL = βR = βph), the photonic

mode is in fact coupled to a single equilibrium bath, which acts as a dissipative medium.

This leads to null gain, |t(ω)| < 1. Only once we drive the fermionic environment (leads

and dots) out of equilibrium, does it act as a gain medium, as demonstrated in Fig. 7. At

finite bias voltage, ∆µ > ω0, an optimal value for gain can be reached when F
′′

el(ω0) ∼ κ

and F
′

el(ω0) ∼ 0, see Fig. 7(a). In contrast, in the asymptotic limit, ∆µ ≫ ω0, the gain

saturates to a lower value (yet still greater than one), since F
′′

el(ω0) ∼ κ but F
′

el(ω0) 6= 0.

Finally, as demonstrated in Figs. 8-10, photon gain can be significantly enhanced via the

careful tuning of the setup parameters, ǫ, t, Γ and g.

D. Special limits, scaling and universality

We discuss here scaling relations for measures related to the cavity, in different parameter

regimes. We begin by considering the high bias and zero temperature limit. We further

assume that the dot-lead coupling is strong, larger than detuning, Γ > ǫ. This situation is

experimentally relevant and thereby potentially testable. We use Eq. (B1) along with the

expressions for the non-interacting electronic Green’s functions (see Appendix A). In this

limit we find that

F<
el (ω0) = −i

4g2t2ω0

π Γ̃4

(∆µ

ω0
− 1

)

,

F>
el (ω0) = F<

el (−ω0), (29)
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FIG. 10. (Color online) Signatures of finite voltage bias on (a) |t(ω0)| and (b) φ(ω0), studied as a

function of ǫ. Here, ∆µ = 200µeV , Γ = 16.56µeV , g=50MHz. Other parameters are the same as

in Fig. 8.

with Γ̃ = Γ/2. Further assuming that κ ≪ |F</>
el |, |F>

el − F<
el |, the average photon number

in Eq. (19) reduces to

〈n̂c〉 =
1

2

(∆µ

ω0
−1

)

, (30)

with an effective temperature Teff = ∆µ/2. It is remarkable to note that this linear scaling,

〈n̂c〉 ∝ ∆µ, is universal to the Holstein-like class of models [50–53]. In the opposite limit

κ ≫ |F</>
el |, |F>

el − F<
el | (though keeping Γ > ǫ), the electronic part effectively decouples

from the cavity. As a result, the cavity equilibrates with the secondary photon bath (ports),

〈n̂c〉 = nph(ω0), and the transmission amplitude goes to unity. Another interesting limit is

the large detuning ǫ ≫ Γ and high bias case, where we obtain

F<
el (ω0) = −i

64g2t2Γ2ω0

π ǫ6

(∆µ

ω0

− 1
)

,

F>
el (ω0) = F<

el (−ω0). (31)

In this case, |F</>
el (ω0)| ∝ 1/ǫ6, the electronic current is negligible, and electron-photon

coupling is effectively small. Again we find that when κ ≪ |F</>
el |, |F>

el − F<
el |, 〈n̂c〉 =

1
2

(

∆µ
ω0

−1
)

, while in the opposite limit the cavity occupation number is thermal.

IV. ELECTRONIC PROPERTIES: STEADY STATE CHARGE CURRENT

We study the electronic properties of the DQD system, focusing on the steady state charge

current at the left contact. It is given by the powerful Meir-Wingreen formula [42, 54], valid
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for an arbitrary large light-matter interaction and dot-lead coupling

IL = e

∫ ∞

−∞

dω

2π
Tr

[

G>(ω)Σ<
L(ω)−G<(ω)Σ>

L(ω)
]

. (32)

Here, G</>(ω) are the lesser and greater components of the electronic Green’s function,

fully dressed by the leads and the electron-photon interaction. As before, we obtain these

components by relying on the Dyson equation, performing second order perturbation ex-

pansion in the electron-photon interaction [55, 56]. We write

G(τ, τ ′) = G0(τ, τ
′)

+

∫

dτ1

∫

dτ2G0(τ, τ1)Σel−ph(τ1, τ2)G(τ2, τ
′), (33)

with Σel−ph(τ1, τ2) as the nonlinear electronic self-energy arising due to the photonic degrees

of freedom. Calculating it up to O(g2) we receive the Hartree (H) and Fock (F) terms [57, 58]

(see Fig. 11),

[

ΣH
el−ph

]

jk
(τ1, τ2) = −i δ(τ1, τ2) δjk gj

∫

dτ3Tr
[

gG0(τ3, τ3)
]

D0(τ1, τ3),
[

ΣF
el−ph

]

jk
(τ1, τ2) = i gj gk D0(τ1, τ2)

[

G0

]

jk
(τ1, τ2), (34)

with Σel−ph(τ1, τ2) = ΣH
el−ph(τ1, τ2) + ΣF

el−ph(τ1, τ2). Following the Keldysh equation,

we gather the lesser and greater components in the frequency domain as G</>(ω) =

Gr(ω)Σ
</>
tot (ω)Ga(ω), with the total self-energy as the sum of left and right-lead self-

energies, as well as the nonlinear (electron-photon) component, Σ
</>
tot (ω) = Σ

</>
L (ω) +

Σ
</>
R (ω) + Σ

</>
el−ph(ω). Substituting these expressions into the Meir-Wingreen formula we

H

Σel−ph =
+

F

FIG. 11. Hartree (H) and Fock (F ) diagrams for electrons in contour time. For expressions see

Eq. (34)

.
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FIG. 12. (Color online) (a), (c) Charge current IL = I0el + Inon as a function of detuning ǫ. The

nonlinear contribution to the current Inon = I
(2)
el + I

(2)
inel is shown separately in panels (b) and (d).

Parameters are κ = 0.005µeV , g = 150MHz, Γ = 1.656µeV , ∆µ = 60µeV , with t = 16.4µeV in

panels (a) and (b), t = 14.6µeV in panels (c)-(d).

organize the charge current formula, written as a sum of elastic and inelastic contributions

i.e., IL = Iel + Iinel, with

Iel = e

∫ ∞

−∞

dω

2π
Tr

[

Gr(ω)ΓL(ω)G
a(ω)ΓR(ω)

]

[

fL(ω)− fR(ω)
]

, (35)

and

Iinel = e

∫ ∞

−∞

dω

2π
Tr

[

Gr(ω)Σ>
el−ph(ω)G

a(ω)Σ<
L(ω)−Gr(ω)Σ<

el−ph(ω)G
a(ω)Σ>

L(ω)
]

. (36)

Note that in the above equations the retarded and advanced components of the Green’s func-

tions Gr,a are renormalized by the electron-photon interaction. We expand these functions

following the Dyson equation, Gr,a(ω) = G
r,a
0 (ω) +G

r,a
0 (ω)Σr,a

el−ph(ω)G
r,a(ω), and organize
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the lowest order expression for the charge current in terms of the non-interacting G0. The

elastic components of the current becomes Iel = I
(0)
el + I

(2)
el , with

I
(0)
el = e

∫ ∞

−∞

dω

2π
Tr

[

Gr
0(ω)ΓL(ω)G

a
0(ω)ΓR(ω)

]

[

fL(ω)− fR(ω)
]

, (37)

and

I
(2)
el = e

∫ ∞

−∞

dω

2π

(

Tr
[

Gr
0(ω)Σ

r
el−ph(ω)G

r
0(ω)ΓL(ω)G

a
0(ω)ΓR(ω)

]

+ h.c.
)

[

fL(ω)− fR(ω)
]

.

(38)

The inelastic component is given by

I
(2)
inel = e

∫ ∞

−∞

dω

2π
Tr

[

Gr
0(ω)Σ

>
el−ph(ω)G

a
0(ω)Σ

<
L(ω)−Gr

0(ω)Σ
<
el−ph(ω)G

a
0(ω)Σ

>
L(ω)

]

. (39)

The calculation of the charge current can be further improved via the implementation of a

self-consistent (electron-photon) procedure for computing the electronic Green’s functions

[57–59]. As demonstrated in these studies, perturbation theory as employed here well re-

produces qualitative features in the charge current, sufficient for the present analysis. In

Fig. 12 we display the coherent contribution to the current [Eq. (37)] and the total charge

current, as well as the photon induced (nonlinear) contribution, see panels (b) and (d). To

compute the self-energy and the current, energy integration was performed within the range

−100µeV to 100µeV , with steps 10−4µeV . Convergence with respect to the energy cutoff

was also examined.

We examine the current as a function of ǫ for different values of inter-dot tunnelling t

and find that the coherent tunnelling component (solid line) dominates the total current in

all cases. This coherent current is symmetric in ǫ, with the maximum magnitude showing

up at ǫ = 0, when electrons resonantly transfer through the energy-degenerate DQD setup.

Turning on light-matter coupling induces an asymmetry in the current, with the nonlinear

contribution showing clear signatures of photon-assisted transport, for both positive and

negative detuning. The enhancement of the current correlates with the photon gain condi-

tion, as it appears around similar values of detuning. This further confirms that photons are

generated in the cavity as a result of inelastic electron transfer processes between dots. Note

that the photon-induced contribution to the charge current can be extracted experimentally

by measuring the total current under light-matter coupling, and then the current in the

absence of coupling to the resonator.
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V. CONCLUSION

To summarize, by using the Keldysh diagrammatic NEGF approach we had investigated

the photonic (microwave) and the electronic properties of a non-equilibrium double quantum

dot setup coupled to a microwave resonator. The NEGF technique is well suited to describe

this hybrid quantum system, given the parameter regime in which relevant experiments

are performed: The method is valid for any value of the voltage bias, temperature, and

electron-lead coupling. While it accounts for the interaction between electrons and the

electromagnetic field only in a perturbative manner, g < ω0, this restriction is appropriate

for systems examined in experiments (see Table).

By looking at different observables, we had demonstrated that the DQD electronic system

can serve as a gain medium for the cavity photons when a source-drain bias was applied

across the dots. This effect, key for realizing photon-source quantum devices, was elucidated

by studying (analytically and numerically) the behavior of the mean photon number, power

spectrum and the spectral function of microwave photons, as well as the transmission func-

tion and the phase response. Specifically, we had interrogated the behavior of the photon

number by sweeping the bias voltage, dot-lead hybridization and detuning (bare energy dif-

ference between quantum dots), demonstrating a significant enhancement of 〈n̂c〉 upon its

coupling to the voltage-biased DQD system.

The response of the cavity to signals has been investigated through its transmission coef-

ficient and phase. We showed that the transmission could be greatly enhanced by tuning the

dots’ site-energies and the inter-dot tunneling energy, to satisfy a resonance condition with

the frequency of the cavity. A highly nontrivial observation has been that the transmission

coefficient reaches a maximum at a certain finite bias (Fig. 7), once the imaginary part

of the (electronic) charge susceptibility cancels out damping effects due to the (photonic)

transmission lines, F
′′

el = κ and F
′

el ∼ 0. Even beyond this strict limit, photon emission

is enhanced as long as F
′′

el ∼ κ. Thus, the electronic system can be manipulated to mini-

mize dissipation effects in the cavity, to improve its coherent properties. Our method and

conclusions are therefore a major step forward towards Quantum Hamiltonian and Bath

Engineering of hybrid quantum systems in general, and QD-cQED systems in particular.

These findings are principal for the realization of microwave amplifiers and masers, and more

generally, quantum devices based on electron-induced photon gain and emission [60].

25



Besides properties of the cavity, we examined the behavior of the charge current across

the DQD system as a function of level detuning. Using the Meir-Wingreen formula to the

lowest order in g, O(g2), we identified photon-induced contributions to the current at both

positive and negative detuning.

We emphasize that, for simplicity, in our treatment here we had assumed non-interacting

electrons, by ignoring Coulombic repulsion energy between the dots’ electrons. Once in-

cluded, this interaction would further affect gain/loss in the cavity, yet general features are

expected to survive. For example, the transmission coefficient should maintain its form [Eq.

(24)] when electron-electron (e-e) interactions are accounted for; the electronic charge sus-

ceptibility F r
el will be modified, to shift features and adjust the amplitude of transmission.

Our approach—valid for any value of Γ— should be contrasted with other common de-

scriptions: In the Coulomb blockade regime (small Γ and an infinitely strong e-e repulsion)

the DQD can be conveniently described in the charge-state basis, eliminating the double

occupancy (one electron on each dot) state from the basis [16, 17]. It would be further

interesting to incorporate, within our NEGF formalism, the presence of nanowire and bulk

phonons [61], influential in some quantum dot setups [17]. The existence of phonons can

contain further interesting physics, for e.g, enhanced gain in signal [27], nonlinear functions

such as diodes and transistors [62].

In future work we will apply the diagrammatic approach and study more compound

systems, for e.g., understanding the masing behavior that has been recently observed in a

double double-quantum dot system [28]. On a more general front, we plan to extend the

present formalism to spin systems coupled to light degrees of freedom [63, 64], further driven

out of equilibrium by a source-drain voltage realized in experiments on hybrid quantum

systems [28, 65, 66].
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APPENDIX A: ELECTRON GREEN’S FUNCTIONS

In this Appendix we give expressions for different components of the non-interacting

electronic Green’s functions (dressed by the leads) in frequency domain. We write

G
r,a
0 (ω) =

[

ωI−HS −Σ
r,a
el (ω)

]−1
,

G
</>
0 (ω) = Gr

0(ω)Σ
</>
el (ω)Ga

0(ω), (A1)

where HS the Hamiltonian of the central DQD system

HS =





ǫ1 t

t ǫ2



 (A2)

and Σ
r,a,</>
el (ω) are different components of the total self-energy which is additive in the

metallic leads L and R, i.e., Σ
r,a,</>
el (ω) = Σ

r,a,</>
L (ω) + Σ

r,a,</>
R (ω). Here Σ

r,a
L (ω) =

diag(∓ iΓL

2
, 0), Σ<

L(ω) = diag
(

ifL(ω)ΓL, 0
)

, Σ>
L(ω) = diag

(

− i[1−fL(ω)]ΓL, 0
)

, fL,R(ω) =

[eβL,R(ω−µL,R) + 1]−1. In writing the components Σr,a
L (ω) we ignore the real part, responsible

for the renormalization of the DQD’s energies. Similar expressions hold for the right lead

self-energy, with ΓL → ΓR and fL(ω) → fR(ω).
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FIG. 13. (Color online) Real (F
′

el) and imaginary (F
′′

el) components of the photon self-energy at the

cavity mode frequency ω0 as a function of detuning. Parameters are t=16.4µeV , ω0 = 32.5µeV ,

cavity loss rate κ = 0.01µeV (2.42MHz), ∆µ = 250µeV . (a) Γ = 16.56µeV , (b) g = 50MHz.

Other parameters are the same as in Table.

APPENDIX B: EXPRESSIONS FOR BUBBLE DIAGRAMS

In this Appendix, we include expressions for the bubble diagrams. From Eq. (11) we

receive the four different components

F t
el(ω) = −i

∫ ∞

−∞

dω′

2π
Tr

[

gGt
0(ω+) gG

t
0(ω−)

]

,

F t̄
el(ω) = −i

∫ ∞

−∞

dω′

2π
Tr

[

gGt̄
0(ω+) gG

t̄
0(ω−)

]

,

F<
el (ω) = −i

∫ ∞

−∞

dω′

2π
Tr

[

gG<
0 (ω+) gG

>
0 (ω−)

]

,

F>
el (ω) = −i

∫ ∞

−∞

dω′

2π
Tr

[

gG>
0 (ω+) gG

<
0 (ω−)

]

,

(B1)
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where ω± = ω′± ω
2
. Note that F<

el (−ω) = F>
el (ω). The sum and difference of the various com-

ponents can be simplified following the above expressions, and using the causality condition

for retarded and advanced Green’s functions, in other words,
∫∞

−∞
dω′G

r,a
0 (ω+)G

r,a
0 (ω−) = 0

which gives

F t
el(ω) + F t̄

el(ω) = F<
el (ω) + F>

el (ω),

F t
el(ω)− F t̄

el(ω) = 2F
′

el(ω),

F>
el (ω)− F<

el (ω) = 2 i F
′′

el(ω), (B2)

where

F
′

el(ω) = −i

∫ ∞

−∞

dω′

8π

{

Tr
[

gGk
0(ω+) g

(

Gr
0(ω−)+Ga

0(ω−)
)

]

+Tr
[

gGk
0(ω−) g

(

Gr
0(ω+)+Ga

0(ω+)
)

]}

,

F
′′

el(ω) =

∫ ∞

−∞

dω′

8π

{

Tr
[

gGk
0(ω+) g

(

Gr
0(ω−)−Ga

0(ω−)
)

]

− Tr
[

gGk
0(ω−) g

(

Gr
0(ω+)−Ga

0(ω+)
)

]}

.

(B3)

Recall that F
′

el(ω) = Re[F r
el(ω)], F

′′

el(ω) = Im[F r
el(ω)], g = diag(g1, g2) and Gk

0 = G<
0 +

G>
0 , the Keldysh component. The nontrivial bias dependence in the real and imaginary

parts of F r
el enters through the Gk

0 component. The F
′

el(F
′′

el) terms depend on the reactive

(absorptive) part of the electronic Green’s function. Note that, at equilibrium, detailed

balance condition for the Green’s functions, given as G>
0 (ω) = −eβ(ω−µ)G<

0 (ω), immediately

implies F>
el (ω) = eβωF<

el (ω). In Fig. 13 we display F
′

el(ω0) and F
′′

el(ω0) as a function of

detuning for various g and Γ. Increasing g and reducing Γ leads to a significant electron-

photon interaction, thereby leading to large values for the elements of Fel(ω0).

KORRINGA-SHIBA RELATION

Gain in the transmission is determined by the real and imaginary components of F r
el(ω).

Therefore, understanding the relation between these components is important. Here we give

compact expressions for F
′,′′

el (ω) at the lowest order of ω ≪ Γ, ǫ1, ǫ2 for zero bias (µL =

µR = µ). In the simpler setup of the Anderson impurity model, it has been shown that

in this limit the F
′

el(ω) and F
′′

el(ω) components are not independent, but rather related via

the Korringa-Shiba relation [30, 67, 68]. An experimental test of this relation based on a

microwave cavity setup has also been proposed in Ref. [69]. Below we discuss this relation
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for our DQD setup. From Eq. (B3) in the zero temperature limit we obtain

F
′

el(ω→0,∆µ=0) = i

∫ µ

−∞

dω′

2π
Tr

[

gGr
0(ω

′) gGr
0(ω

′)− gGa
0(ω

′) gGa
0(ω

′)
]

,

F
′′

el(ω→0,∆µ=0) = −ω

∫ µ

−∞

dω′

2π
Tr

[

gAel(ω
′) g

∂Ael(ω
′)

∂ω′

]

= − ω

4π
Tr

[

gAel(µ) gAel(µ)
]

.

(B4)

Here Ael(ω) = i
[

Gr
0(ω)−Ga

0(ω)
]

is the spectral function for the DQD system. In the wide

band limit, Γ(ω) = Γ, using the relation

∂Gr,a
0 (ω)

∂ω
=−G

r,a
0 (ω)Gr,a

0 (ω), (B5)

one can further simplify the real and imaginary components of Fel(ω). As an example, for

g1=g2=g, g is proportional to an identity matrix. The above expressions then reduce to

F
′

el(ω→0,∆µ=0) = − g2

2π
Tr

[

Ael(µ)
]

,

F
′′

el(ω→0,∆µ=0) = −g2 ω

4π
Tr

[

A2
el(µ)

]

. (B6)

Note that the differential conductance dI/d(∆µ) is often noted to be proportional to the

spectral function. This indicates that F
′

el and dI/d(∆µ) may show similar features, as

confirmed in a recent experiment [14].

Another interesting case involves a single site coupled to the photon mode i.e., g1 =

g, g2 = 0, or vice versa. We then recover the standard Korringa-Shiba relation

F
′′

el(ω→0,∆µ=0) = −ω π

g2
[

F
′

el(ω→0,∆µ=0)
]2
. (B7)
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[35] S. André, V. Brosco, M. Marthaler, A. Shnirman, and G. Schön, Physica Scripta T137,

014016 (2009).

[36] C. Karlewski, A. Heimes, and G. Schon, Phys. Rev. B 93, 045314 (2016).

[37] M. D. Ventra, Electrical Transport in Nanoscale Systems (Cambridge University Press, 2008).

[38] J. Rammer, Quantum Field Theory of Non-Equilibrium States (Cambridge University Press,

2007).

[39] J.-S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Front. Physics 9, 673 (2014).

[40] U. Harbola and S. Mukamel, Phys. Rep. 465, 191 (2008).

[41] C. Eichler, D. Bozyigit, and A. Wallraff, Phys. Rev. A 86, 032106 (2012).

[42] H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors

(Springer, 1996).

[43] A. Altland and B. D. Simons, Condensed Matter Field Theory (Cambridge University Press,

2010).

[44] Y. Utsumi, D. S. Golubev, and G. Schön, Phys. Rev. Lett. 96, 086803 (2006).

[45] B. K. Agarwalla, J.-H. Jiang, and D. Segal, Phys. Rev. B 92, 245418 (2015).

[46] A. Cottet, C. Mora, and T. Kontos, Phys. Rev. B 83, 121311 (2011).

[47] E. G. D. Torre, S. Diehl, M. D. Lukin, S. Sachdev, and P. Strack, Phys. Rev. A 87, 023831

(2013).

[48] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, Rev. Mod.

32



Phys. 82, 1155 (2010).

[49] J. Jin, M. Marthaler, P.-Q. Jin, D. Golubev, and G. Schön, New J. Phys. 15, 025044 (2013).

[50] D. Mozyrsky and I. Martin, Phys. Rev. Lett. 89, 018301 (2002).

[51] Y. Utsumi, O. Entin-Wohlman, A. Ueda, and A. Aharony, Phys. Rev. B 87, 115407 (2013).

[52] J. Jin, M. Marthaler, and G. Schön, Phys. Rev. B 91, 085421 (2015).

[53] B. K. Agarwalla and D. Segal, J. Chem. Phys. 144, 074102 (2016).

[54] Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).

[55] U. Harbola, J. Maddox, and S. Mukamel, Phys. Rev. B 73, 205404 (2006).
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