

CHORUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Polarization and valley switching in monolayer group-IV monochalcogenides

Paul Z. Hanakata, Alexandra Carvalho, David K. Campbell, and Harold S. Park Phys. Rev. B **94**, 035304 — Published 25 July 2016 DOI: [10.1103/PhysRevB.94.035304](http://dx.doi.org/10.1103/PhysRevB.94.035304)

2

¹ Polarization and Valley Switching in Monolayer Group-IV Monochalcogenides

Paul Z. Hanakata,¹ Alexandra Carvalho,² David K. Campbell,^{1,*} and Harold S. Park^{3,[†](#page-7-1)}

¹ Department of Physics, Boston University, Boston, MA 02215

² Centre for Advanced 2D Materials and Graphene Research Centre,

⁵ National University of Singapore, 6 Science Drive 2, 117546, Singapore

 3 Department of Mechanical Engineering, Boston University, Boston, $\overline{M}\overline{A}$ 02215

⁷ (Dated: June 29, 2016)

 Group-IV monochalcogenides are a family of two-dimensional puckered materials with an or- thorhombic structure that is comprised of polar layers. In this article, we use first principles calcu- lations to show the multistability of monolayer SnS and GeSe, two prototype materials where the direction of the puckering can be switched by application of tensile stress or electric field. Further- more, the two inequivalent valleys in momentum space, which dictated by the puckering orientation, can be excited selectively using linearly polarized light, and this provides additional tool to identify the polarization direction. Our findings suggest that SnS and GeSe monolayers may have observable ferroelectricity and multistability, with potential applications in information storage.

¹⁶ PACS numbers: 85.50 Gk, 64.70 Nd, 71.20 Mg

¹⁷ The discovery of 2D materials that can be isolated into $\frac{54}{4}$ ¹⁸ single layers through exfoliation and exhibit novel prop-¹⁹ erties has established new paradigms for ultrathin devices $_{20}$ based on atomically sharp interfaces [\[1,](#page-7-2) [2\]](#page-7-3). In particu- $_{57}$ ²¹ lar, transition metal dichalcogenides (TMDs) have been ²² studied extensively and have shown potential for many ²³ technological applications ranging from photovoltaics to ²⁴ valleytronic devices $[3-9]$ $[3-9]$. The family of monolayer 2D $_{61}$ 25 materials has recently grown to include other 2D semi- $_{62}$ ²⁶ conductors, such as phosphorene and related materials. ⁶³

 $_{27}$ However, one of the features thus far lacking for ap- 64 $_{28}$ plications both in 2D electronics and in valleytronics is 65 ²⁹ non-volatile memory. Ferromagnetism, an essential ele-³⁰ ment in spintronic memories, is believed to be achievable ⁶⁷ 31 in graphene and other 2D materials but so far remains ⁶⁸ $_{32}$ difficult to realize and control [\[10\]](#page-7-6). Ferroelectric memo- 69 33 ries, in which the information is stored in the orientation 70 34 of the electric dipole rather than in the magnetization 71 ³⁵ are a possible option. Single-layer graphene (SLG) ferro-³⁶ electric field-effect transistors (FFET) with symmetrical 37 bit writing have been demonstrated [\[11\]](#page-7-7), but the proto- 74 $_{38}$ types rely on bulk or thin film ferroelectric substrates [\[11\]](#page-7-7) 75 ³⁹ or ferroelectric polymers [\[12\]](#page-7-8), rather than on crystalline ⁴⁰ atomically thin ferroelectric materials. An altogether dif- $_{41}$ ferent approach to information storage relies on phase $_{76}$ ⁴² change materials, where the bit value corresponds to a 43 distinct structural phase of the material. Researchers $\frac{1}{r}$ ⁴⁴ have recently optimized the phase switching energy by ⁴⁵ using superlattice structures where the movement of the 46 atoms is confined to only one dimension [\[13\]](#page-7-9).

⁴⁷ In this article, we analyze the stability of group-IV $_{81}$ 48 monochalcogenide MX (M =Ge or Sn, and X=S or Se) 82 monolayers, paying particular interest to their potential as memory functional materials. As prototypes, we use SnS and GeSe. In ambient conditions, bulk SnS and GeSe crystallize in the orthorhombic structure of the $Pnma$ 86 space group. At 878 K, SnS goes through a secondorder displacive phase transition into the β -SnS phase with Cmcm symmetry $[14, 15]$ $[14, 15]$, which is also a layered ⁵⁶ phase that can be viewed as a distorted rocksalt structure. For bulk GeSe, such a phase transition has not been observed. Instead, at 924 K bulk GeSe transforms into the rocksalt phase $(Fm\bar{3}m)$. This phase can also be stabilized using external pressure $[16]$.

Similar to phosphorene $[17, 18]$ $[17, 18]$, $Pnma$ SnS and GeSe can be exfoliated $[19, 20]$ $[19, 20]$. In monolayer form, they feature multiple valleys, large spin-orbit splitting $[21]$ and ⁶⁴ a piezoelectric coefficient that surpasses that of the TMDs [\[22,](#page-7-18) [23\]](#page-7-19). Having an in-plane polar axis makes SnS and GeSe monolayers capable of a mechanical response to an applied electric field.

Here, we use density functional theory (DFT) calculations to characterize the multistability of SnS and GeSe, exploring ways in which the phase transitions and domain switch can be triggered externally. We start by demonstrating how the reversible phase transition can be induced by uniaxial stress or electric field. Then, we show how the phase and lattice orientation states can be detected using the valley properties.

METHODS

The calculations were based on density functional the-⁷⁸ ory (DFT) implemented in the Quantum ESPRESSO package [\[24\]](#page-7-20). The generalized gradient approximation ⁸⁰ (GGA) of Perdew-Burke-Ernzerhof (PBE) was used for the exchange and correlation functional, and Troullier-Martins type pseudopotentials [\[25\]](#page-7-21). The Kohn-Sham orbitals were expanded in a plane-wave basis with a cutoff energy of 70 Ry, and for the charge density a cutoff of 280 Ry was used. A k-point grid sampling grid was generated using the Monkhorst-Pack scheme with $10\times10\times1$ points [\[26\]](#page-7-22), and a finer regular grid of $80\times80\times1$ was used

FIG. 1. Schematic configuration-coordinate diagram for $Cmcm$ -ML and $Pnma$ -ML phases, in SnS and GeSe.

 for transition probability calculations. The equilibrium structures were found by using a conjugate-gradient opti- mization algorithm, and the energy landscape is mapped by relaxing the structure under constraints for each of the in-plane lattice parameters, while all the other structural parameters are allowed to relax.

⁹⁴ We used the modern theory of polarization [\[27\]](#page-7-23) to cal-⁹⁵ culate the spontaneous polarization given by

$$
\vec{\mathcal{P}} = \frac{1}{\Omega} \sum_{\tau} q_{\tau}^{\text{ion}} \mathbf{R}_{\tau} - \frac{2ie}{(2\pi)^3} \sum_{n}^{\text{occ}} \int_{BZ} d^3 \mathbf{k} e^{-i\vec{k} \cdot \mathbf{R}} \left\langle u_{n\mathbf{k}} \middle| \frac{\partial u_{n\mathbf{k}}}{\partial \mathbf{k}} \right\rangle
$$
\n(1)

⁹⁶ where q_{τ} is the ionic charge plus the core electrons, \mathbf{R}_{τ} 97 is the position of ions, Ω is the unit cell volume, e is the 98 elementary charge, n is the valence band index, \bf{k} is the 99 wave vector, and $u_{n\mathbf{k}}$ is the electronic wave function. The ¹⁰⁰ first term is the contribution from ions and core electrons, ¹⁰¹ and the second term is the electronic contribution defined ¹⁰² as adiabatic flow of current which can be calculated from ¹⁰³ the Berry connection [\[27\]](#page-7-23).The response of the material ¹⁰⁴ to a homogenous static external electric field is calcu-¹⁰⁵ lated based on methods developed by Refs. [\[28,](#page-7-24) [29\]](#page-7-25) im-106 plemented in the QUANTUM ESPRESSO package [\[24\]](#page-7-20). ¹²⁶

107 RESULTS

¹⁰⁸ Multistability of SnS and GeSe in the monolayer 109 **phase**

,

¹¹⁰ We start by exploring the energy landscape of mono-¹¹¹ layer SnS and GeSe. We consider the monolayer form of ¹¹² the two structures that are known for bulk SnS ie., a cen- $_{113}$ trosymmetric structure (*Cmcm*), and the *Pnma* struc-136 ¹¹⁴ ture resembling black phosphorus, and which is the only ¹¹⁵ known layered structure of bulk GeSe. We will designate ¹¹⁶ the respective monolayer phases by appending 'ML' to ¹¹⁷ the respective bulk space group. $_{118}$ The atomic positions in the *Pnma-ML* phase are₁₄₁ $_{119}$ $\pm (M:0.25\pm \delta, 0.25, 0.05; X:0.25, 0.25, -0.05)$ in fractional $_{142}$ 120 coordinates, where $M=(Sn, Ge)$ and $X=(S, Se), \delta = 0.06$ 143 121 and 0.08 for SnS and GeSe, respectively. The $Cmcm$ -144 122 ML phase is obtained by taking $\delta = 0$. As a result, 145 123 the Cmcm-ML has two perpendicular mirror symmetry 146 $_{124}$ planes, as well as inversion symmetry, while $Pnma-MLu₄₇$

¹²⁵ has no inversion symmetry. In our DFT simulations we

FIG. 2. Stress-strain curves of monolayer (a) SnS and (b) GeSe for tensile strain along the \hat{x} (black circle) and \hat{y} (red square) directions. (I) indicates the $Pnma-ML$ structure reconfiguration such that the puckering (armchair) direction \ddot{d}_{puck} becomes \hat{y} instead of \hat{x} . (II) indicates the transformation into an hexagonal phase. In the insets of (a) and (b), the strain in the \hat{y} direction was shifted to highlight the rotation of the Pnma-ML structure by $\pi/2$, swapping the armchair and zigzag directions. (c) and (d) top and side view of SnS structure with $\ddot{d}_{\text{pack}} = \hat{x}$. The larger grey atom is Sn and the smaller yellow atom is S. (e) The respective Brillouin zone and the high symmetry points.

used $\delta = 0.01$ as a tolerance to distinguish the *Pnma*-ML $_{127}$ phase from the *Cmcm*-ML phase [\[30\]](#page-7-26).

 $_{128}$ The *Pnma*-ML and the *Cmcm*-ML phases can both ¹²⁹ be seen as distortions of a rocksalt bilayer that can be ¹³⁰ transformed into each other by a displacement of some 131 of the atoms along \hat{x} (see Fig. 2 for \hat{x} and \hat{y} directions). 132 The Cmcm-ML and Pnma-ML phases of SnS and GeSe monolayer have also been reported in Ref. $[31]$. By symmetry, there are four distinct $P nma-ML$ configurations (equivalent by $\pi/2$ rotations of the puckering direction). For SnS, Cmcm-ML is a local minima of the energy surface. For GeSe, the Cmcm-ML structure is not an energy minimum but a saddle point. The activation energy for reorientation of the $Pnma-ML$ puckering direction ¹⁴⁰ is very small (88 meV for SnS and 43 meV for GeSe). We note that GGA has been successful in predicting the 14 small enthalpy differences (tens of meV) between different phases of ferroelectric materials, because systematic errors cancel out when comparing systems with very similar structures $[32]$. The broken inversion symmetry and total energy with a typical double-well potential of SnS and GeSe are the first two indications that these materials may possess ferroelectricity.

FIG. 3. Structural visualization of clamped SnS monolayer under uniform electric field at points of transition. Puckering and electric dipole orientation (red arrow) can switch from positive \hat{x} (b) to either negative \hat{x} (a) or positive \hat{y} (c) de-197 pending on the directions of applied electric field.

¹⁴⁹ Application of uniaxial stress

150 The phase transition of SnS to $Cmcm$ -ML, or equiva- $_{151}$ lently the reorientation of the *Pnma*-ML structure, can₂₀₄ $_{152}$ be induced by in-plane uniaxial tensile stress (Fig. [2\)](#page-2-0). 153 We use an effective thickness to estimate the values of 206 ¹⁵⁴ stress, as outlined in Ref. [\[23\]](#page-7-19).

155 For uniaxial stress along \hat{y} , the SnS structure begins₂₀₈ 156 to resemble Cmcm-ML as the shorter lattice parameter b_{209} ¹⁵⁷ is stretched. For $\epsilon_y > 0.08$, uniaxial stress results in the₂₁₀ 158 rotation of the Pnma-ML structure by $\pi/2$. The puck-₂₁₁ ¹⁵⁹ ering \ddot{d}_{pack} thus rotates from \hat{x} to \hat{y} [Fig. [2\(](#page-2-0)a), transition₂₁₂ ¹⁶⁰ I]. Similar qualitative behavior is observed in GeSe (see $Fig. 2(b)$ $Fig. 2(b)$ $Fig. 2(b)$. Both SnS and GeSe transit to Cmcm phase, 214 $_{162}$ but they spontaneously revert back to $Pnma$ once the₂₁₅ ¹⁶³ tensile stress is removed [\[33\]](#page-7-29).

 Γ ¹⁶⁴ The application of uniaxial stress along \hat{x} reveals an-217 165 other phase transition at $\epsilon_x = 0.72$ and 0.78 for SnS and 218 ¹⁶⁶ GeSe, respectively. The structure is a hexagonal phase $_{167}$ resembling blue phosphorene (see Ref. [\[34\]](#page-7-30)). The hexago-220 ¹⁶⁸ nal structure and its band structure are plotted in Fig. [4.](#page-4-0)

¹⁶⁹ Application of electric field

 Application of an electric field is an alternative way to 171 trigger the transition between different minima on the²²⁵ energy surface of SnS or GeSe. Since the $Pnma-ML$ structure is piezoelectric, the application of an electric field along the polar (\hat{x}) direction in a mechanically freezzon- sample induces strain as well [\[23\]](#page-7-19). However, here we will 23 consider, for simplicity, the application of an electric field ¹⁷⁷ to a mechanically clamped sample.

 $T₁₇₈$ The spontaneous polarization in the $Pnma-ML$ phase, 231 which was measured with respect to the centrosymmetric structure by taking as the effective volume the equivalent volume occupied by a layer of the bulk unit cell, is 0.6 and 1.7 C/m^2 for SnS and GeSe, respectively, which is comparable to that of 3D ferroelectrics [\[35\]](#page-7-31).

 In this case, application of an electric field with polar- ity opposed to the bond dipole results in bonds breaking and creates new bonds with inversion of the polarization along \hat{x} , rather than in a rotation of the structure. As 188 shown in Fig. [3](#page-3-0) (a) the ionic configuration changes (i.e., ¹⁸⁹ \hat{d}_{pack} switches from \hat{x} to $-\hat{x}$, and it is apparent from Eq. [1](#page-2-1) that the electric dipole orientation can be switched, which we have found to be the case based on our DFT calculations.

¹⁹³ The coercive field for this puckering transformation is 194 0.18 \times 10⁷ V/cm for SnS and 0.51 \times 10⁷ V/cm for GeSe. Moreover, we found that applying an electric field in \hat{y} at ¹⁹⁶ 0.29×10⁷ V/cm $(0.80\times10^7 \text{ V/cm})$ could also convert the \ddot{d}_{pack} from \hat{x} to \hat{y} for SnS (GeSe). The coercive field cal-¹⁹⁸ culated by this method corresponds to the electric field at ¹⁹⁹ which the unfavorable phase becomes unstable and can ²⁰⁰ be seen as an upper bound for the coercive field of a real ²⁰¹ multi-domain material. This is usually smaller provided ²⁰² that the domain walls are mobile at that temperature and, according to a recent work $[36]$, the domain wall energy is small for this class of materials. Thus, the electrical fields necessary for ferroelectric switching are clearly achievable in current 2D experiments $[37]$. The struc-²⁰⁷ tures of SnS monolayer under electric fields at which the puckering orientation switches are plotted in Fig. [3.](#page-3-0)

Since the two materials possess a spontaneous, reversible polarization and bistability, they classify as ferroelectrics. The configuration-coordinate diagram of GeSe is typical of a ferroelectric with second-order phase transition at $T = 0$ (consistent with the change in symmetry). The energy curve for SnS has a minimum rather than a saddle point at $Cmcm$ -ML, and therefore resem-²¹⁶ bles a ferroelectric with first order phase transition, with the peculiarity that the $Cmcm$ -ML structure is stable for all $T > 0$. Recently, based on Car-Parrinello molec-²¹⁹ ular dynamics simulations, Mehboudi et al. showed that monolayer monochalcogenides undergo an order-disorder phase transition $[31]$. Hence, since SnS and GeSe have 222 four degenerate $Pnma-ML$ phases, we expect that the ²²³ average total polarization goes to zero as temperature 224 approaches $T_{\rm m}$.

Band structure

The phase transitions are accompanied by changes of the band structure and can, therefore, be detected optically. Representative SnS and GeSe band structures under uniaxial stress are shown in Fig. 4 and Fig. 5 , re-²³⁰ spectively. We note that even though the band gap is underestimated due to our usage of DFT as the calculation method $[21]$, the dispersion of the bands is accurately reproduced. Unstrained SnS is an indirect-gap semiconductor with its valence band maximum located near the Xpoint (along the Γ-X line) and the conduction band min-²³⁶ imum near the Y-point (along the Γ-Y line). There are,

FIG. 4. Representative band structures of SnS monolayers (a) unstrained, (b) to (d) under tensile uniaxial stress along the \hat{x} for axial strains of $\epsilon_x = 0.22$ to $\epsilon_x = 0.75$, and (e) to (g) under tensile uniaxial stress along \hat{y} for axial strains of $\epsilon_y = 0.02$ to $\epsilon_y = 0.27$. The dotted lines locate the valence band maxima. The corresponding side and top view of structural visualizations are below the band structure plots. It is apparent that the band structure (b) $\epsilon_x = 0.22$ (or an uniaxial stress of $\sigma_{xx} \sim 1.4\text{GPa}$) is equivalent to the band structure (g) $\epsilon_y = 0.27$ (or an uniaxial stress of $\sigma_{yy} \sim 1.4\text{GPa}$) if the \hat{x} and \hat{y} are inverted (rotation around Γ axis on figures).

FIG. 5. Evolution of GeSe band structure with strains in armchair (a) to (d) and zigzag direction (e) to (h). The dotted lines locate the valence band maxima. The structure inversion $^{261}\,$ is found at $\epsilon_y = 0.15$. It is apparent that the band structure²⁶² (b) $\epsilon_x = 0.22$ (or an uniaxial stress of $\sigma_{xx} \sim 1.4\text{GPa}$) is 1stem equivalent to the band structure (h) $\epsilon_y = 0.30$ (or an uniaxial₂₆₄ stress of $\sigma_{yy} \sim 1.4 \text{GPa}$) if the \hat{x} and \hat{y} are inverted (rotation₂₆₅) around Γ axis on figures).

²³⁷ therefore, two two-fold degenerate valleys, designated $V_{x^{269}}$ 238 and V_y , respectively. At large strains along \hat{x} , SnS trans-270 ²³⁹ forms to a hexagonal phase at $\epsilon_x = 0.72$ resembling blue₂₇₁ $_{240}$ $_{240}$ $_{240}$ phosphorene (Fig. 4 (c)) [\[34\]](#page-7-30) and becomes a direct gap-zz ²⁴¹ at $\epsilon_x = 0.75$. For uniaxial stress along \hat{y} there is a tran-273 ²⁴² sition from indirect gap to direct gap at $\epsilon_y = 0.02$ (see₂₇₄)

 F_{243} Fig. $4(e)$ $4(e)$, after which the system again becomes indirect ²⁴⁴ gap.

²⁴⁵ The band structure of GeSe under uniaxial stress is 246 shown in Fig. [5](#page-4-1) (a) to (d) for the \hat{x} and (e) to (h) for the $247 \hat{y}$. Even though unstrained GeSe is a direct-gap semicon-²⁴⁸ ductor, there are also two nearly degenerate conduction ²⁴⁹ band minima at the V_x and V_y points. The swapping 250 between the \hat{x} and \hat{y} of the Pnma-ML structure under ₂₅₁ tensile stress along the \hat{y} direction occurs at $\epsilon_y = 0.15$ ²⁵² and is in this case accompanied by a loss of the direct ²⁵³ bandgap, which becomes indirect as the structure reverts $_{254}$ back into $Pnma-ML$. As shown in Fig. [5,](#page-4-1) the band struc-²⁵⁵ ture (b) $\epsilon_x = 0.22$ is equivalent to the band structure (h) ²⁵⁶ $\epsilon_y = 0.30$ if the \hat{x} and \hat{y} are inverted (rotation around Γ ²⁵⁷ axis on figures). The transition to a hexagonal phase un-²⁵⁸ der tensile stress along \hat{x} ($\epsilon_x = 0.78$) is also accompanied ²⁵⁹ by an indirect- to direct-gap semiconductor transition.

In addition, we calculated the projected density of states for SnS and GeSe for various strains (Fig. 6). The ²⁶² trends of the evolution of PDOS of GeSe and SnS with increasing strain are similar. Specifically, the relative contributions of the p -orbitals for Sn and Ge atoms at ²⁶⁵ energies close to the maximum valence band increases ²⁶⁶ with increasing strain.

²⁶⁷ The selection of valleys V_x or V_y can be achieved by at ²⁶⁸ least two different optical methods: (i) using the fact that the direct gap is different at the two valley pairs; or (ii) using the optical selection rules. The direct transitions at the V_x and V_y valleys have different energies, provided there is a means to identify the orientation of the crystal $(Fig. 7)$ $(Fig. 7)$. We plot the energy difference between valence and conduction band of SnS as functions of in plane wave

FIG. 6. Projected density of states (PDOS) of SnS (a) to (e) and GeSe (f) to (j) for different strains. The top panels are PDOS of Sn (Ge) atom and the bottom panels are PDOS of S (Se) atom.

 275 275 275 vectors shown in Fig. 7 (a) and (b). It can be seen that 291 2[7](#page-6-0)6 the gap surface of $\epsilon_x = 0.22$ (Fig. 7 (a)) is equivalent to 292 ^{2[7](#page-6-0)7} $\epsilon_y = 0.27$ (Fig. 7 (b)) but rotated 90°. It is evident that 278 under uniaxial stress in \hat{y} the bands have rotated in the 294 279 Brillouin Zone, i.e. the V_y valley effectively becomes the 295 280 V_x valley after passing the transition point of $\epsilon_y=0.08$. 296

²⁸¹ Transition probabilities

 $_{282}$ Using linearly polarized light to select the valleys V_{x301} 283 or V_y provides an additional method to detect the phase v_{302} $_{284}$ transition optically. The interband transition probability $_{302}$ 285 at a given wave vector \bf{k} is given by [\[7,](#page-7-34) [38\]](#page-7-35)

$$
P_i(\mathbf{k}) \propto \left| \frac{m}{\hbar} \left\langle c(\mathbf{k}) \left| \frac{\partial H}{\partial k_i} \right| v(\mathbf{k}) \right\rangle \right|^2, \qquad (2)_{3(3)}^3
$$

286 where i is the direction of the light polarization, $c(\mathbf{k})$ isses ²⁸⁷ the conduction band wave function, $v(\mathbf{k})$ is the valence₃₀₉ $_{288}$ band wave function, and H is the Hamiltonian. Alter- $_{310}$ ²⁸⁹ natively, one can relate the transition probability to the ²⁹⁰ dipole moment between the initial and the final bands:

 $\langle c|\hat{p}_{x/y}|\mathbf{v}\rangle$, where the momentum direction corresponds to the light polarization. For the transition to be allowed, the dipole moment must not vanish. It is possible to determine whether it is finite or not using the symmetry of the bands and the momentum. Since the dipole moment is computed by integrating the product of the ²⁹⁷ initial and final wave functions, and the momentum, it ²⁹⁸ is nonzero only if this product $(\propto c^{\dagger}(\mathbf{r})\partial_{x/y}\mathbf{v}(\mathbf{r}))$ is not ²⁹⁹ odd with respect to any of the axes. In other words, the ³⁰⁰ integrand must remain unchanged under every symmetry transformation of the space group characterizing the crystal.

We used our *ab initio* results to calculate the transi- 304 tion probabilities. For unstrained SnS, \hat{y} -polarized light ∞ populates only the V_y valleys, as there is no coupling ∞ between the valence and conduction band at V_x in the \hat{y} direction (see Fig. [7](#page-6-0) (e)). As shown by Ref. [\[38\]](#page-7-35), the conduction band, valence band, and the p_x have a same irreducible representation. Consequently, the direct product of these quantities results in a non-vanishing transition probability coupling. On the other hand, \hat{y} polarized light cannot excite V_x , as it possesses differ-

FIG. 7. Band gap surfaces (a) $\epsilon_x = 0.22$ and (b) $\epsilon_y = 0.27^{359}$ demonstrate the valley swapping. (c) Schematic selective val-360 ley polarization. (d) Evolution of the bandgap and (e, f) relative polarization under uniaxial stress along \hat{y} , highlighting₃₆₂ the phase transition. Under small strain, the direct transition at V_x is only visible under incident x-polarized light, while the ₃₆₄ V_y transition is visible under both incident y and x (with a small coupling) polarized light.

313 ent representation. \hat{x} -polarized light can populate both₂₆₀ V_x and V_y but it populates predominantly the V_x val-315 leys, with $P_x(V_x)/P_x(V_y) \sim 40$. Similar behavior is ob-₃₇₁ 316 served in GeSe with a smaller selective valley polariza- 317 tion ratio. For instance, with linearly \hat{x} -polarized light ³¹⁸ the selective valley polarization ratio was found to be₃₇₄ 319 $P_x(V_x)/P_x(V_y) \sim 15$. The schematic valley polarization₃₇₅ 320 is shown in Fig. $7(c)$ $7(c)$.

³²¹ The evolution of local gap V_x and V_y of SnS under₃₇₇ 322 stress in the \hat{y} direction is shown in Fig. [7\(](#page-6-0)d). We see₃₇₈ 323 that there is an abrupt change in V_y gap near the tran- 379 324 sition point $\epsilon_y = 0.08$. We also plot the relative polar-₃₈₀ 325 ization $P_y(V_x)/P_x(V_x)$ and $P_x(V_y)/P_y(V_y)$ as a function₃₈₁ 326 of axial strain ϵ_y , shown in Fig. [7\(](#page-6-0)e) and (f) for SnS and₃₈₂ 327 GeSe, respectively. As we discussed earlier, \hat{x} -polarized₃₈₃ $_{328}$ light populates predominantly the V_x valleys but there is₃₈₄ 329 still a small transition probability at V_y when \hat{x} -polarized₃₈₅ 330 light is used. The absorption threshold for \hat{x} -polarized₃₈₆ 331 light has an abrupt change near $\epsilon_y = 0.08$ ($\epsilon_y = 0.15$ ₃₈₇) 332 for GeSe), when the phase transition takes place. How-388 333 ever, the absorption edge for \hat{y} -polarized light changes₃₈₉ ³³⁴ smoothly.

335 Before the transition point, the structure has a mirror 391 336 symmetry inverting \hat{y} , and the V_y valleys can be pop-392 337 ulated using polarized light along \hat{y} and \hat{x} (the latters is ³³⁸ with a very small coupling). However, after the transi-³³⁹ tion point, the puckering direction is rotated to be in the

³⁴⁶ In summary, we have used first-principles calculations to demonstrate the potential of group-IV monochalco- genide monolayers as functional materials for information storage. This strategy, demonstrated using SnS and GeSe as prototypes, relies on the metastability and the possi- bility of switching the polarization direction using stress or electric field, creating a binary memory device. Com- paring these prototype materials, SnS differs from GeSe because it has a stable centrosymmetric phase which, at $T = 0$, is close in energy to the *Pnma*-ML phase.

³⁵⁶ Due to their peculiar band structures, both SnS and ³⁵⁷ GeSe could in principle be used as functional materials ³⁵⁸ for memory devices that can easily be interfaced with valleytronics logic. Valleytronics is based on the concept that the valley index can potentially be used to store information for subsequent logic operations, equivalent to spin in spintronics. However, in most valleytronics materials the information can be considered non-volatile ³⁶⁴ only up to the timescale defined by inter-valley scattering ³⁶⁵ processes, which are ubiquitous in real materials. Struc-³⁶⁶ tural changes, used to store information in phase change ³⁶⁷ memory devices, take place on a timescale orders of mag-³⁶⁸ nitude longer. Materials such as SnS and GeSe can be used to convert information stored as structural phase into information stored as valley index. One possibility is for example by using near-bandgap light that excites only the pair of valleys corresponding to the lowest energy exciton. The subsequent electronic state will have electron-hole pairs with momentum $(\pm k_x, 0)$ or $(0, \pm k_y)$, depending on the structure orientation. This valley state 376 can be transmitted onto a valley-filter [\[39\]](#page-7-36). Alternatively, ³⁷⁷ if coupled to a polarized light detector, the polarization switching can be detected optically taking advantage of valley-dependent direction of the linear polarization of the luminescence [\[38\]](#page-7-35).

³⁸¹ P.Z.H. is grateful for the support of the Physics and Mechanical Engineering Departments at Boston University, the hospitality of the NUS Centre for Advanced 2D Materials and Graphene Research Centre where this work was initiated, the support of the Materials Science and ³⁸⁶ Engineering Innovation Grant and the Boston University High Performance Shared Computing Cluster. A.C. acknowledges support by the National Research Foundation, Prime Minister Office, Singapore, under its Medium ³⁹⁰ Sized Centre Programme and CRP award "Novel 2D materials with tailored properties: beyond graphene" (Grant No. R-144-000-295-281). D.K.C. is grateful for the hospitality of the Aspen Center for Physics which is supported by NSF Grant $\#PHY-1066293$, and of the International Institute for Physics of the Federal Uni versity of Rio Grande do Norte, in Natal, Brazil, where some of this work was completed. HSP acknowledges 398 the support of the Mechanical Engineering Department⁴⁵⁰ at Boston University. We thank Alex Rodin for helpful comments and discussions.

- ∗ ⁴⁰¹ Corresponding author: dkcampbe@bu.edu
- † ⁴⁰² Corresponding author: parkhs@bu.edu
- $_{403}$ [1] P. Miro, M. Audiffred, and T. Heine, [Chem. Soc. Rev.](http://dx.doi.org/10.1039/C4CS00102H) $404 \qquad \qquad 43,6537 \ (2014).$
- ⁴⁰⁵ [2] V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. ⁴⁰⁶ Strano, and J. N. Coleman, Science 340 (2013).
-
- 407 [3] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, 464 $\frac{1}{408}$ and M. S. Strano, Nature Nanotechnology 7, 699 (2012).
- 409 [4] P. Johari and V. B. Shenoy, ACS Nano 6, 5449 (2012). ⁴¹⁰ [5] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh,
- ⁴¹¹ and H. Zhang, Nature Chemistry 5, 263 (2013).
- ⁴¹² [6] H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Nature ⁴¹³ Nanotechnology 7, 490 (2012).
- ⁴¹⁴ [7] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, [Phys.](http://dx.doi.org/ 10.1103/PhysRevLett.108.196802) ⁴¹⁵ Rev. Lett. 108[, 196802 \(2012\).](http://dx.doi.org/ 10.1103/PhysRevLett.108.196802)
- ⁴¹⁶ [8] E. J. Sie, J. W. McIver, Y.-H. Lee, L. Fu, J. Kong, and ⁴¹⁷ N. Gedik, Nature Materials 14, 290 (2014).
- ⁴¹⁸ [9] J. Kim, X. Hong, C. Jin, S.-F. Shi, C.-Y. S. Chang, M.-H. 419 Chiu, L.-J. Li, and F. Wang, Science 346[, 1205 \(2014\).](http://dx.doi.org/10.1126/science.1258122)
- ⁴²⁰ [10] M. Sepioni, R. R. Nair, S. Rablen, J. Narayanan, $F.$ Tuna, R. Winpenny, A. K. Geim, and I. V. Grig-⁴²² orieva, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.105.207205) 105, 207205 (2010).
- ⁴²³ [11] E. B. Song, B. Lian, S. M. Kim, S. Lee, T.-K. Chung, 424 M. Wang, C. Zeng, G. Xu, K. Wong, Y. Zhou, et al., 480 ⁴²⁵ Applied Physics Letters 99, 042109 (2011).
- 426 $[12]$ Y. Zheng, G.-X. Ni, C.-T. Toh, C.-Y. Tan, K. Yao, and 482 427 B. Ozyilmaz, [Phys. Rev. Lett.](http://dx.doi.org/ 10.1103/PhysRevLett.105.166602) 105 , 166602 (2010).
- ⁴²⁸ [13] R. Simpson, P. Fons, A. Kolobov, T. Fukaya, M. Krbal, 429 T. Yagi, and J. Tominaga, Nature Nanotechnology $6^{485}_{,486}$ ⁴³⁰ 501 (2011).
- 431 [14] S. Alptekin, Journal of Molecular Modeling 17 , 2989^{487}_{488} 432 $(2011).$
- ⁴³³ [15] T. Chattopadhyay, A. Werner, H. Von Schnering, and 434 J. Pannetier, Revue de Physique Appliquée $\overline{19}$, 807^{490}_{491} 435 (1984) .
- 436 [\[](http://dx.doi.org/10.1103/PhysRevB.89.094303)16] V. L. Deringer, R. P. Stoffel, and R. Dronskowski, [Phys.](http://dx.doi.org/10.1103/PhysRevB.89.094303)⁴⁹² 437 Rev. B $89, 094303$ (2014).
- 438 [\[](http://dx.doi.org/10.1103/PhysRevLett.112.176801)17] A. S. Rodin, A. Carvalho, and A. H. Castro Neto, $\frac{17}{45}$ ⁴⁹⁴ $\text{Rev. Lett. } 112, 176801 \text{ (2014)}.$
- ⁴⁴⁰ [18] H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomnek, ⁴⁴¹ and P. D. Ye, ACS Nano 8[, 4033 \(2014\).](http://dx.doi.org/10.1021/nn501226z)
- ⁴⁴² [19] J. R. Brent, D. J. Lewis, T. Lorenz, E. A. Lewis, N. Sav-⁴⁴³ jani, S. J. Haigh, G. Seifert, B. Derby, and P. OBrien, 444 Journal of the American Chemical Society 137, 12689⁵⁰⁰ 445 (2015) .
- ⁴⁴⁶ [20] B. Mukherjee, Y. Cai, H. R. Tan, Y. P. Feng, E. S. Tok,
- ⁴⁴⁷ and C. H. Sow, [ACS Applied Materials & Interfaces](http://dx.doi.org/ 10.1021/am402550s) 5,

[9594 \(2013\).](http://dx.doi.org/ 10.1021/am402550s)

- [\[](http://dx.doi.org/10.1103/PhysRevB.92.085406)21] L. C. Gomes and A. Carvalho, [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.92.085406) 92 , 085406 (2015) .
- [\[](http://dx.doi.org/ http://dx.doi.org/10.1063/1.4934750)22] R. Fei, W. Li, J. Li, and L. Yang, [Applied Physics Letters](http://dx.doi.org/ http://dx.doi.org/10.1063/1.4934750) 452 107[, 173104 \(2015\).](http://dx.doi.org/ http://dx.doi.org/10.1063/1.4934750)
- ⁴⁵³ [\[](http://dx.doi.org/10.1103/PhysRevB.92.214103)23] L. C. Gomes, A. Carvalho, and A. H. Castro Neto, [Phys.](http://dx.doi.org/10.1103/PhysRevB.92.214103) ⁴⁵⁴ Rev. B 92[, 214103 \(2015\).](http://dx.doi.org/10.1103/PhysRevB.92.214103)
- ⁴⁵⁵ [24] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, ⁴⁵⁶ C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococ-⁴⁵⁷ cioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, ⁴⁵⁸ G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, ⁴⁵⁹ A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, ⁴⁶⁰ F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcov-⁴⁶³ itch, [Journal of Physics: Condensed Matter](http://www.quantum-espresso.org) 21, 395502 $(19pp)$ (2009) .
	- [\[](http://dx.doi.org/10.1103/PhysRevB.43.1993)25] N. Troullier and J. L. Martins, [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.43.1993) 43, 1993 (1991) .
- [\[](http://dx.doi.org/10.1103/PhysRevB.13.5188)26] H. J. Monkhorst and J. D. Pack, [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.13.5188) 13, 5188 ⁴⁶⁸ [\(1976\).](http://dx.doi.org/10.1103/PhysRevB.13.5188)
- [\[](http://dx.doi.org/10.1103/PhysRevB.47.1651)27] R. D. King-Smith and D. Vanderbilt, [Phys. Rev. B](http://dx.doi.org/10.1103/PhysRevB.47.1651) 47, ⁴⁷⁰ [1651 \(1993\).](http://dx.doi.org/10.1103/PhysRevB.47.1651)
	- [\[](http://dx.doi.org/10.1103/PhysRevLett.89.117602)28] I. Souza, J. Íñiguez, and D. Vanderbilt, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.89.117602) ⁴⁷² 89[, 117602 \(2002\).](http://dx.doi.org/10.1103/PhysRevLett.89.117602)
- 473 [\[](http://dx.doi.org/10.1103/PhysRevLett.89.157602)29] P. Umari and A. Pasquarello, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.89.157602) 89, 157602 (2002) .
- [30] We define puckering orientation as a unit vector of the in plane bond formed by the nearest neighbor of MX atoms in the direction of the broken mirror symmetry. For the SnS structure shown in Fig. $2(d)$ $2(d)$, the puckering direction 479 $\hat{d}_{\text{pack}} = \hat{x}$ as we define $\hat{d}_{\text{pack}} = \frac{\vec{x}_{\text{S}} - \vec{x}_{\text{S}_{\text{n}}}}{|\vec{x}_{\text{S}} - \vec{x}_{\text{S}_{\text{n}}}|}.$
- ⁴⁸⁰ [31] M. Mehboudi, A. M. Dorio, W. Zhu, A. van der Zande, ⁴⁸¹ H. O. H. Churchill, A. A. Pacheco-Sanjuan, E. O. Harriss, P. Kumar, and S. Barraza-Lopez, Nano Letters 16, 1704 $(2016).$
	- [32] S. Sanna, C. Thierfelder, S. Wippermann, T. P. Sinha,
	- and W. G. Schmidt, Phys. Rev. B 83 [, 054112 \(2011\).](http://dx.doi.org/ 10.1103/PhysRevB.83.054112)
[33] We found that once the stretch is removed the Cma We found that once the stretch is removed the $Cmcm$ structure spontaneously reverts back to $Pnma$ for both SnS and GeSe. However, we found that during compression, the $Cmcm$ phase of SnS is stable.
	- [34] M. Mehboudi, K. Utt, H. Terrones, E. O. Harriss, A. A. Pacheco SanJuan, and S. Barraza-Lopez, [Proceedings of](http://dx.doi.org/ 10.1073/pnas.1500633112) [the National Academy of Sciences](http://dx.doi.org/ 10.1073/pnas.1500633112) 112, 5888 (2015).
	- [35] W. Zhong, R. D. King-Smith, and D. Vanderbilt, Physical review letters **72**, 3618 (1994).
	- [36] H. Wang and X. Qian, arXiv preprint arXiv:1606.04522 $(2015).$
	- [37] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nature nanotechnology 6 , 147 (2011).
	- [38] A. S. Rodin, L. C. Gomes, A. Carvalho, and A. H. Castro Neto, Phys. Rev. B $93, 045431$ (2016).
	- [\[](http://dx.doi.org/10.1103/PhysRevLett.106.136806)39] D. Gunlycke and C. T. White, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.106.136806) 106, ⁵⁰² [136806 \(2011\).](http://dx.doi.org/10.1103/PhysRevLett.106.136806)