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  Abstract 

  We present results of our research on two-field (two-frequency) microwave spectroscopy in nitrogen-
vacancy (NV-) color centers in a diamond. Both fields are tuned to transitions between the spin sublevels of the 
NV- ensemble in the 3A2 ground state (one field has a fixed frequency while the second one is scanned). 
Particular attention is focused on the case where two microwaves fields drive the same transition between two 
NV- ground state sublevels (ms=0 ↔ ms=+1). In this case, the observed spectra exhibit a complex narrow 
structure composed of three Lorentzian resonances positioned at the pump-field frequency. The resonance 
widths and amplitudes depend on the lifetimes of the levels involved in the transition. We attribute the spectra to 
coherent population oscillations induced by the two nearly degenerate microwave fields, which we have also 
observed in real time. The observations agree well with a theoretical model and can be useful for investigation of 
the NV relaxation mechanisms.  
 

1. INTRODUCTION   

Nitrogen-vacancy color centers are point defects in the diamond lattice, which consist of a nearest 
neighbor pair of a substitutional nitrogen atom and a lattice vacancy. The negatively charged NV- 
centers are used in many areas, e.g., as fluorescent markers for biological systems, for quantum 
information processing or for sensing electric and magnetic fields [1–7]. One of the techniques used to 
probe NV- centers is optically detected magnetic resonance (ODMR), where one detects the 
fluorescence intensity changes which correspond to the ground-state population changes induced by 
resonant microwave (MW) fields [8, 9]. The excitation, spin polarization, and interrogation of the 
ground-state spin are often done with green laser light.   
 
In a recent work [10], it was shown that a strong MW field can burn a hole in the NV- ODMR 
spectrum that can then be probed with a weak MW field, similarly to the case of nonlinear Doppler-
free laser spectroscopy of gas samples [11,12], or spectral hole burning in solids [13-16]. In the case of 
crystals, NV diamond in particular, the different local strain and magnetic fields are the sources of 
inhomogeneous broadening, rather than Doppler effect. The MW hole-burning technique removes the 
inhomogeneous broadening and was shown to be useful for magnetic-field-insensitive thermometry at 
room temperature [10]. The experiment studied the case where the two MW fields were tuned to two 
distinct transitions of the V configuration in the NV- ground state manifold, i.e., ms = 0 ↔ ms = −1 and 
ms = 0 ↔ ms = +1, where ms is the spin projection on the axis of the NV- center (Fig. 1).  
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In the present work we also observed two-field nonlinear and interference effects within the NV- 
ground state, but with two phase-coherent MW fields acting on the same transition, ms = 0 ↔ ms = +1. 
 

 
Fig.1. (a) The energy level structure of the NV− ground-state 3A2 without (B=0) and with (B≠0) magnetic 
splitting.  b) Transitions induced by the pump (double solid arrow) and probe (broken arrow) microwave fields. 
The pump acts on the ms = 0 ↔ ms = +1 transition, while the probe can be tuned to either of the ms = 0 ↔ ms = ±1 
transitions. The pump and probe field detunings from resonance are labelled as Δ and δ, respectively. 

The resonances observed at the same transition differ from those studied previously with two distinct 
transitions: they have larger amplitude and exhibit complex multi-Lorentzian shapes. We attribute the 
resonances occurring on the same transition to the coherent population oscillations (CPO) resulting 
from interference (beating) between two coherent electromagnetic fields [17, 18]. The notion of 
CPO is widely used in the atomic physics/quantum optics community but is essentially unknown in 
the EPR/ODMR community. With this paper we want to show that the CPO ideas are applicable and 
useful also for EPR/ODMR field.  
  
The beating of two coherent waves leads to a temporal modulation of the population difference 
between the upper and lower states, described in literature as the coherent population oscillations. The 
population oscillations combine with the incident waves and enhance them or attenuate, depending on 
relative phases of the population and wave beating. Because of the population inertia, the effect 
occurs only for beat frequencies within the range determined by the population relaxation times. As 
demonstrated below, the CPO effect changes drastically the shape of saturation hole within a very 
narrow spectral range, on the order of the population relaxation rates.   
 
We note that closely related effect occurs when one modulated wave is used. The sidebands created by 
such modulation act similarly to two independent waves and also cause population modulation. There 
is a difference, though,  between the amplitude or power modulation of a single beam and the two 
waves: in the former case the modulation does not affect the carrier wave, in the later the net 
amplitude is sensitive to the modulation phase. The beat-note of the resulting net power is identical in 
both scenarios. However, some differences can be expected when the dynamics of the system is 
governed by the amplitude rather than the power of the field. Appendix 1 presents detailed comparison 
of the case of two coherent waves with the amplitude modulation of a single field.    
 
While the basic features of the hole burning with distinct transitions are satisfactorily explained by 
the population saturation, the case of the same transition requires accounting for the CPO 
interference effects. In particular, the simple hole-burning model [11] fails to predict the appearance 
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of saturation dips if the transition under consideration is only homogenously broadened [19]. Such 
dips are, however, described theoretically [19-22] and detected experimentally in a number of 
systems, including p-type semiconductors [23], semiconductor quantum wells [24], ruby crystals [25], 
Sm+2:CaF2 crystals [23], erbium-doped optical fibers [27], and atomic vapors in room [28-30]  and 
sub-mK temperature [31]. 
The phenomenon of CPO plays an important role in nonlinear spectroscopy [11, 20-22,32] and wave-
mixing experiments [33-36]. Recently, it attracted much attention because of its potential for light 
storage [28-31, 37,38]. So far, however, the effect has not been directly observed with diamond. Very 
interesting indirect observation was recently presented by Golter et al. who studied CPO-related 
interference effects between modulated optical and optomechanical excitations [39].  
 
To interpret our observations of CPO, we adopted the laser spectroscopy approach of Baklanov and 
Chebotayev [20,21] and applied it to our experiment with ensemble NV diamond and two continuous-
wave (cw) MW fields. We reproduced qualitatively the experimental observations, and particularly the 
difference between the resonances on distinct and the same transitions. By controlling the phases of 
the two MW fields we were able to directly observe the CPOs as a function of time (in real time), 
while by changing the frequency difference between the pump and probe fields we resolved complex 
internal structure of the hole-burning resonance, absent for the case of distinct transitions. As 
demonstrated below, analysis of this structure should enable determination of the relaxation rates of 
the spin states in the ground state of the NV diamond sample.  
 
The paper is organized as follows: Sec. 2 describes the experimental conditions, Sec. 3 presents our 
results, and Sec. 4 explains the modeling of the observed effects by an analytical approach within a 
steady-state approximation. Section 5 is devoted to the observation and time-dependent analysis of 
population oscillations. Conclusions are presented in Sec. 6. 
 
2.    EXPERIMENTAL CONDITIONS 
 
The goal of the experiment was to study the simultaneous interaction of two microwave fields with the 
NV- color centers in a diamond at room temperature. The MW fields were tuned to the transitions 
depicted in Fig. 1(b). 
 
A schematic diagram of the experimental setup is shown in Fig. 2. In our measurements we used a 
diamond sample with initial nitrogen density below 200 ppm manufactured by Element Six by high-
temperature high-pressure growth, 3×3×0.3 mm3 in size, and cut along the {100} surface. The sample 
was irradiated with an electron beam (14 MeV, fluence 1.5×1018 cm-2) and annealed for two and a half 
hours at 750 ºC. The resulting NV- concentration is about 20 ppm.  
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Fig.2. The experimental setup for hole burning experiments.  

The optical part of the setup utilizes a confocal arrangement. The sample is optically excited using 
532 nm laser light (5 mW power), and the fluorescence is recorded in the 600–800 nm range through 
the same microscope objective (Olympus 40×, numerical aperture 0.75) and an avalanche photodiode 
(50 MHz bandwidth).  

The MW fields, pump (fixed frequency ωS tuned close to the ms = 0 ↔ ms = +1 central frequency) and 
probe (variable frequency ωp, scanned linearly in time) were created using two generators, combined, 
and connected to the microstrip structure [40] attached to the sample. The field detunings from exact 
resonances were Δ = ωs – ω+10 and δ = ωp – ω±10, where ω±10 is the central frequency of the ms = 0 ↔ 
ms = ±1 transition. The effect of two cw MW fields on the NV- ground-state populations was 
monitored by optical fluorescence (the ODMR technique). The RF power was calibrated by measuring 
the Rabi oscillation frequency. We used Rabi frequencies to characterize the MW fields as they allow 
a better comparison between the spectra recorded under different conditions, like different distances of 
the spot on the sample from the MW antenna. Typical values of the on-resonance Rabi frequencies 
were 2π×1.6 MHz for the pump and 2π×1.2 MHz for the probe, unless specified otherwise. The scan 
of the probe frequency had a staircase shape, with a fixed number of steps (typically 16000) and the 
overall time of scan of 100 ms. The phase of the probe MW field was preserved during the jumps 
between discrete frequency steps of the frequency synthesizer. 

In a magnetic field B=28 G, aligned along the [111] diamond axis, the linearly polarized MW fields 
were driving well-resolved transitions between the mS = 0 ↔ mS =  ±1 ground states (Fig. 1). The 
Zeeman splitting for the NV- centers oriented along this direction equals 2β = 2gμBB where g is the 
Landé factor, μB is the Bohr magneton, and B is the magnetic field, while for the other three 
alignments it amounts to 2β = 2gμBB|cos(109.5o)|. In this work we focus on the case when both MW 
fields are tuned to the same transition between the ms = 0 ↔ ms = +1 ground states. Consequently, the 
studied transition is essentially between the states of a two-level system. An additional difference 
between the current experiment and the one in Ref. [10] was that one of the generators provided the 10 
MHz frequency reference for the second one. Such synchronization allowed observation of the 
interference effects for small (sub-kHz) detunings of the two fields with no detectable phase drift of 
the two generators over whole scans.  
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3.   RESULTS 

Figure 3(a) shows the ODMR spectra recorded with the magnetic field of 28 G oriented along the 
[111] crystallographic direction. The black curve presents the regular ODMR spectrum recorded as a 
function of ωp without the pump field. It consists of four Gaussian-like resonances corresponding to 
inhomogeneously broadened transitions. The inhomogenous width (~10 MHz) is comparable to that 
observed in the cw case in Ref. [10] and results from various contributions, like local magnetic field 
and/or strain inhomogeneity, and unresolved hyperfine structure with a possible power broadening. 
For the red curve the pump field was applied with the frequency 2948.5 MHz, which matched the ms = 
0 ↔ ms = +1 transition frequency for the NV- centers aligned along the [111] crystal direction. As seen 
in the figure, the presence of the pump field resulted in burning of two holes: one at the ms = 0 ↔ ms = 
+1 transition, and another one around 2788 MHz, which corresponds to the frequency of the ms = 0 ↔ 
ms = -1 transition for the same crystallographic orientation. No effect of the pump field is seen in the 
other ODMR components corresponding to three other possible alignments of the NV- centers. This 
fact reflects the sensitivity of MW saturation/hole burning to the alignments of the NV- subensemble 
in the diamond sample.  
 
The shapes of the holes burned in the two transitions (ms = 0 ↔ ms = ±1) differ considerably: for the 
case of pumping and probing on the same MW transition, the resonance is sharper and deeper than that 
appearing at the different transition and clearly non-Lorentzian, i.e., exhibiting internal structure  [Fig. 
3(c)]. Moreover, positions of the two holes are correlated such that when the pump beam (and one 
hole) is at ω+10–Δ [Fig.3(c)], the second hole appears around ω-10+Δ [Fig.3(b)].  This observation 
supports the conclusion of Ref. [10] that the inhomogenous broadening of the observed ODMR lines is 
primarily caused by the local magnetic field, rather than strain variations [41]. Hereinafter we refer to 
the situation when the pump and probe fields interact with the same transition (ms = 0 ↔ ms = +1) as to 
the +/+ case, while that with the pump at the ms = 0 ↔ ms = +1 and the probe at ms = 0 ↔ ms = −1, as 
the +/– case.  In this work we concentrate on the +/+ case. 
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Fig.3. (a) ODMR spectrum without (black) and with (red) pump MW field in the static magnetic field of 28 G along the [111] 
direction. In the rightmost line the pump and probe act on the same transition (the +/+ case) and the effect of hole burning is 
well visible; The two central lines correspond to other orientations of the NV- center; in the leftmost line the pump and probe 
act on two different transitions of the V structure (the +/-  case). (b, c) Zoom-in on the ODMR lines with burned holes in the 
+/- and +/+ case, respectively. Solid lines mark the centers of the inhomogeneously broadened lines. 

Figure 4 presents the dependence of the shape of the holes burned in the inhomogeneously broadened 
ODMR lines on the pump power [Fig. 4(a)] and frequency [Fig. 4(b)]. For the sake of comparison, we 
present side by side the +/+ normalized spectra along with the corresponding +/- ones.  In both cases 
MW pump field causes an increase in the fluorescence level, i.e. burns a hole in the population of the 
ms= 0 state. In the +/+ case,  a central narrow (width on the order of 10 kHz) peak on top of the wide 
(~1 MHz) pedestal is also visible [Fig. 4(a) right spectra]. The position of these features is determined 
by the pump frequency ωs relative to the frequency of the transition ms= 0 ↔ ms= +1. For high pump 
powers the fluorescence level approaches the off-resonant values (saturates), the pedestal broadens, 
and the central peak vanishes. We attribute the observed narrow structures to the CPO effect, and 
discuss the complex hole lineshape in more detail in the next section. For the +/- situation [Fig. 4(a) 
left spectra] only the wide pedestal is visible, and the fluorescence level is generally lower, i.e., the 
ODMR signal has higher contrast than for the +/+ case. With increasing pump power the 
inhomogeneously broadened line flattens due to the increase of the hole amplitude and its power 
broadening. In Fig. 4 (b) the spectra obtained for different frequencies of the pump field are presented. 
In the +/+ case, when ωs is tuned to the side of the inhomogeneously broadened profile, the burned 
holes appear as skewed profiles. The central narrow structure, however, preserves its shape and 
appears always at the pump frequency. The maximum fluorescence level remains constant 
independently of pump detuning. 
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More regular hole shapes are observed in the +/- case, however their low contrast hinders accurate 
quantification of hole positions for not-too-strong MW powers. This can be seen, e.g., on the green 
curve in Fig. 4 (b), where the +/- profile shows an apparent shift towards higher frequencies, due to the 
line-pulling effect of the hole burned on the lower frequency side of the inhomogeneously broadened 
line. 

 

Fig.4. Comparison of the spectral hole-burning spectra recorded for: (a) probe power of 1.2 MHz and different pump powers 
(in Rabi-frequency units), and (b) probe frequencies (for pump power of 2π×1.0 MHz and probe power 2π×0.5 MHz). The 
left-hand side resonances in (a) and (b) represent the +/- case, while the right-hand side ones correspond to the +/+ case. The 
curves have been normalized individually (to the off-resonance level) to show the relative fluorescence changes.  

The same qualitative dependences (frequency shifts and power broadening) we have observed also 
with other samples although the quantitative details vary from sample to sample.   

 

4. STEADY-STATE MODELLING  

In order to model the ODMR resonances arising from the interaction of the two MW fields in the +/+ 
case, we employ the method developed for laser spectroscopy with two-level atomic systems by 
Baklanov and Chebotaev [20,30] and Sargent et al. [22]. This approach has been extended by Boyd 
and Mukamel [19] by taking into account interference of all possible time orderings of the interacting 
fields. For the +/+ case with well-resolved ODMR transitions, the two-level system composed of ms = 
0 and ms = +1 is sufficient to describe the basic mechanism of hole burning and probing by two 
independent fields.   
 
Evolution of a two-level system perturbed by two fields of frequencies ωs and ωp may be characterized 
with the help of a density matrix formalism, by the matrix element between states ms = 0 and ms = +1, 
i.e. the coherence ρ01. Coherence ρ01 contains time dependent contributions oscillating not only at the 
field frequencies ωs and ωp but also at the combination frequencies 2ωs-ωp, and 2ωp-ωs and their 
harmonics due to nonlinear wave mixing. The number of the harmonics increases with the power of 
the interacting fields as more waves are generated and themselves contribute to the wave mixing. In 
the optical domain these contributions have been interpreted as various nonlinear phenomena such as 
wave-mixing or coherent population oscillations [19, 21, 32, 33].  
In this section we demonstrate that analogous wave coupling is possible in solid-state samples 
perturbed by MW fields. Moreover, the difference between the optical and MW frequency domains 
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enables observation of interesting dynamics of interfering MW fields, which in the optical range is 
typically observed only as a time-averaged quasi-stationary response.  
 
Following the formalism of Ref. [20,21], applicable for a weak probe, the leading contribution to ρ01 

contains three time-dependent terms: ߩଵሺݐሻ ൌ ܴ݁ఠೞ௧  ݅Ω ݁ܣఠ௧ െ  ݅Ω כܤ ݁൫ଶωೞିఠ൯௧ , (1) 
               
where R, A, and B denote slowly-varying amplitudes of the components of the coherence oscillating 
with frequencies ωs, ωp, and 2ωs-ωp, respectively. Quantities R, A, B are nonlinear functions of the 
pump field Rabi frequency ΩS. The effect of the probe is accounted for by the two terms proportional 
to the Rabi frequency Ωp. In the model it is assumed that Ωp<<ΩS which neglects all higher-order 
terms in Ωp in Eq.(1).  We assume here that optical excitation establishes initial populations of the ms -

states by pumping most of NVs to the ms = 0 state and enables detection of these populations but has 
no other effect on the system dynamics.  
 
Since the MW fields couple non-diagonal elements of the density matrix (contributions R, A, B) with 
the diagonal ones (populations), the oscillations of the coherence components in Eq. (1) result in the 
related oscillations of the ms state populations. The effect appears most strongly when the initial fields 
ωs, ωp, and the additional one 2ωs-ωp beat together, i.e. at the center of the +/+ hole at ωs = ωp. This 
phenomenon is described in Ref. [20-22] as the modulation or coherence effects and as coherent 
population oscillations in Ref. [19, 33].   
 
ଵଵߩ  െ ߩ ൌ ሺߩଵଵ െ ሻௗߩ  ሺߩଵଵ െ ሻሺഘሻ݁ഘ௧ߩ  ሺߩଵଵ െ  ሻሺିഘሻ݁ିഘ௧,    (2)ߩ
 
where the subsequent terms represent, respectively, the stationary population difference and the 
contributions oscillating as ±Δω, explicitly responsible for CPO.  
   
The formalism of Refs. [20,21] needs to be considered as the first-order approximation to a more 
complete picture. In particular, if the probe field becomes comparably strong as the pump, Eq.(1) 
would include also terms oscillating as 2ωp-ωs and at other combination frequencies, i.e. at higher 
harmonics of Δω=ωp-ωs. Still, even that simplified approach reproduces the main features of the CPO 
effect and allows us to interpret the experimental results. 
 
For the +/- case, the relevant frequencies differ strongly, hence the beating effect is negligible because 
the beat frequency is usually faster than the NV- reaction time characterized by the relaxation rates of 
the involved spin states. Consequently, the MW absorption spectrum κ’(ωp), for ωp scanned around 
the ω-10 frequency, recorded when the pump field frequency ωS is tuned close to the ω+10 resonance 
frequency, is mainly characterized by hole-burning in the population of the mS=0 state, with the 
Lorentzian profile of the hole:  ′൫ఠ൯ ൌ ݁ିቀഘషభబషഘೈ ቁమ ൬1 െ ଶீ ସΓమሺఠషభబିΔିఠሻమାସΓమ൰ ,                                      (3) 

 
where: κ’(ωp) denotes the absorption coefficient of the probe MW field and κ is its on-resonance 
nonsaturated value, W is proportional to the inhomogeneous width of the ms = 0 ↔ ms = -1 transition, 
G = 2ΩS

2/(γΓ) is the saturation parameter associated with the pump-field Rabi frequency ΩS, Γ is the 
homogenous linewidth, γ0 and γ1 are the population relaxation rates of state mS = 0 and mS  = +1, 
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respectively, and γ = γ0γ1/(γ0+γ1). Expression (3) reflects the inhomogeneously broadened absorption 
profile with a saturation dip well known from laser spectroscopy. The dip (hole) depth is determined 
by the value of G while Γ sets its width. Neither optical nor MW power broadening is considered in 
this low-field model. The rates γ0, γ1, and Γ are directly related to the standard 1/T1, 1/T2 longitudinal 
and transverse rates: 1/T1 = (γ0+ γ1)/2 and 1/T2 = Γ. In a general case, when coherence decay is 
enhanced by some dephasing, the transverse relaxation is faster than that resulting from the relaxation 
of populations: Γ=(γ0+ γ1)/2+Γd where Γd is the dephasing rate [42].  

For the +/+ case, the above discussed beating and the resulting population oscillations become more 
important. The analysis of Refs. [20-22] based on the steady-state approximation yields for this case 
an analytical expression, which for not-too-strong pump field (G<<1) can be cast into an approximate 
form:  

′൫ఠ൯ ൌ ݁ିቀഘశభబషഘೈ ቁమ ቄ1 െ ଶீ ସΓమ
Δഘమ ାସΓమ ቂ1 െ ఊ

Γ
 ቀ ఊఊబ  ఊଶΓቁ ఊబమ

Δഘమ ାఊబమ  ቀ ఊఊభ  ఊଶΓቁ ఊభమ
Δഘమ ାఊభమቃቅ.         (4) 

 
In the experiment with NV- centers we do not directly measure the absorption coefficient of the probe 
field as in Ref. [20]. Instead, we apply optical detection of luminescence induced by the green light, 
which, on the one hand, creates spin polarization in the ground state, represented by the initial values 
of populations n0

0 and n1
0, and, on the other hand, is sensitive to the actual ms state populations and 

their difference. Consequently, the populations of the ms, and the absorption features of the κ’ 
coefficient [Eqs. (3, 4)], transform into the corresponding fluorescence-intensity variations seen as the 
hole-burning resonances in ODMR spectra.  
 
The main difference between the spectra described by Eqs. (3) and (4) is the shape of the saturation 
hole burnt by the pump in the absorption spectrum. In the +/+ case the hole is composed of several 
Lorentzian contributions with relative amplitudes: 1-γ/Γ, γ/γ0+γ/2Γ, and γ/γ1+γ/2Γ and half-widths: 2Γ, 
γ0, and γ1, respectively. If the relaxation rates γ0, γ1, and Γ are comparable, and particularly if there is 
no dephasing and Γ = (γ0+γ1)/2, the dips observed in the +/- and +/+ case are not very different. The 
situation changes significantly, however, when the dephasing becomes significant, Γ >> γ0, γ1. In that 
case, the superposition of all contributions to Eq. (3), yields a hole, which is deeper and more pointed 
than that predicted by Eq. (3) for the +/- case. The presented modeling of the ODMR spectra with two 
MW fields reproduces the observed features, as illustrated by the hole shapes presented in Fig.3(b) and 
3(c).   

For a detailed comparison, Figure 5 presents the +/+ signals recorded in a wide (a) and narrow (b) 
range of ωp – ωS, along with the fitted signals (red solid lines). The fitting curve is a sum of a Gaussian 
background which represents the inhomogeneously broadened ODMR line and three Lorentzian 
components occurring at ωp = ωS as predicted by Eq.(4). The fitted lineshape is in agreement with the 
recorded data, with the broad pedestal, as well as the intermediate and narrow structures. The 
Lorentzian contributions have the widths (HWHM) of 27(7) kHz, 137(49) kHz, and 2.903(38) MHz. 
In our modeling they are attributed respectively to the γ0 and γ1 (the two lower values) and 2Γ (the 
highest value) relaxation rates of the NV- population and coherence under the influence of the optical 
excitation light and MW fields. The signals shown in Fig. 5 were recorded with the steps of 3.125 kHz 
per 6 μs. As the width of the recorded narrowest Lorentzian could be affected by the scan rate, we 
have also recorded narrow scan-range spectra of the central structure with higher resolution. These 
data revealed interesting additional oscillatory structure, which is discussed in detail in the next 
section.  
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Fig.5. Central part of the ODMR hole burned in the +/+ case with the pump field tuned to the center of the mS = 0 ↔ mS = +1 
transition (a) and its zoom (b). The fitted curve (solid red) is a sum of Gaussian background dip (HWHM = 10,037(33) MHz) 
and three peaks centered at ωs with widths, respectively: 27(7) kHz, 137(49) kHz, and 2.903(38) MHz).  

The individual contributions to Eq. (4) are most easily separated when the relevant relaxation rates γ0, 
γ1, and Γ differ strongly. When the rates are comparable, i.e. when the individual contributions to the 
overall resonance have comparable widths, their separation is not easy. In the Appendix we present 
results of two fitting procedures applied to the data of Fig. 5, involving two and three individual 
contributions. While raw observation of the resulting lineshape does not allow immediate 
identification of all three components, the fitting procedure supports interpretation in terms of three 
contributions discussed above.   
 
 
5. POPULATION OSCILLATIONS  
 
Figure 6 shows the ODMR signal for the +/+ configuration, recorded under the same conditions as in 
Figs. 3(c) and 5 but with higher spectral resolution. In Fig. 6 (a) the inhomogeneously broadened (~10 
MHz linewidth), regular ODMR profile is seen with the complex structure of wide and narrow peaks 
at ωp=ωc. Successive plots (b – d), with decreasing frequency span, gradually reveal additional 
oscillatory structure with an increasing amplitude. As seen in Fig. 6(d), the phase of oscillations 
depends quadratically on the detuning (time), which results from our linear frequency sweep. The 
oscillatory structure represents the coherent population oscillations mapped onto corresponding 
oscillations of the fluorescence intensity, as discussed in Sec.4. When two MW fields have sufficiently 
similar frequencies, their interaction with the sample could be considered as an interaction of a single 
effective field, with slowly varying amplitude/power due to the wave beating. In such case, the 
populations follow adiabatically the effective field and result in the observed oscillations of the 
fluorescence intensity. The fluorescence level at Δω = 0 in Fig. 6 (c) and (d) reflects the relative MW 
phase and varies from one scan to another over the whole oscillation amplitude, depending on the 
initial phase at the beginning of the scan. The asymmetry between the top and bottom envelope 
profiles and the non-sinusoidal form of the oscillation signal are manifestations of nonlinearity of the 
MW-NV interaction. The width of the envelope depends on the frequency scan rate and time, thus 
neither the oscillations, nor the envelope seen in Fig. 6 (c and d) should be considered as direct 
spectral characteristics of the signal. They are just representations of single realizations of the linear 
frequency scans. If, however, the frequency of the probe MW field is scanned at a fast rate, the 
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populations cannot follow the effective field and the oscillations become averaged. This behavior is 
most evident in Fig. 6 (c) as a decrease of the oscillation amplitude.  
 

 

 
Fig.6. The  +/+ ODMR resonance observed with ωS/2π = 2948.5 MHz , i,e. at the central frequency of the m = 0 ↔ ms = +1 
transition and magnetic field of 28 G in the [111] direction. For all plots the scan time was 100 ms and total number of 
frequency steps was 16000 with the different frequency step size.  
 
 
Since the fluorescence signal oscillates at the beat-note frequency, a stable spectral response can be 
seen only if time/phase-averaging is provided, e.g., by averaging scans with different relative phases 
of the two MW fields. To find the true spectral characteristics we have summed a few thousand 
recordings taken for different relative phases of the two MW fields, distributed uniformly over 2π. 
Figure 7 presents the comparison of such a phase-averaged signal with a similar set recorded for a 
fixed initial phase of the MW fields. The trace of latter exhibits a high-amplitude oscillation with the 
fluorescence level approaching that without MWs [black curve in Fig. 3a, outside the resonances], 
since the maximum fluorescence occurs at instances of the destructive interference of the two fields. 
While the envelope of the single-phase realization depends on the scan rate, the phase-averaged trace 
is insensitive to the scanning rate and  shows a Lorentzian-shape of reduced height and the HWHM 
width on the order of 1 kHz. Thus, the phase-averaged scans enable us to assign the width of the 
central feature to the slowest of the relaxation rates (γ0 or γ1). In contrast to the optical domain and 
typical laser sources where phase-randomization results from the finite spectral width of the lasers 
used, the MW sources may preserve the phase for many scans and explicit averaging mechanism has 
to be applied to extract the spectrum from the frequency scans. 
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Fig.7. Averaged fluorescence signals as a function of Δω with fixed (black curve) and evenly distributed (red curve) initial 
relative MW phase of each scan. Data were taken with Rabi frequencies ~ 2π×100 kHz. 

It was shown above that the signatures of population oscillations can be observed in the spectral 
domain, which requires averaging for a time longer than the characteristic oscillation period or 
equivalent phase averaging. Apart from this, for the very small detunings Δω we were able to observe 
the population oscillation directly by recording the time-dependent NV- fluorescence for a fixed value 
of the detuning. Figure 8 (a) presents the CPO oscillations observed in a real time with Δω/2π = 1 kHz 
detuning between the pump and probe MW fields Δω/2π = 1 kHz. The oscillations are also non-
sinusoidal and contain many harmonics as shown in the Fourier spectrum of the time dependence in 
Fig. 8 (b). The number of harmonics rapidly increases with the MW power.  
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Fig. 8. (a) Time-domain of the ODMR signal ODMR signal for  (ωs-ωp)/21 = ߨ kHz. (b) Fourier transform of the signal 
shown in (a). (c) Amplitude of the first harmonic peak of the Fourier-transformed signals as a function of the detuning Δω/2π 
in the range from -200 to 200 kHz with 1 kHz being the lowest difference measured. 
 
In Figure 8 (c) we demonstrate how the amplitude of CPO oscillations extracted from the FFT of the 
fluorescence signals depends on detuning Δω. The amplitude is rapidly reduced when Δω increases but 
the oscillations are still visible even for detunings on the order of 100 kHz. Interestingly, the 
oscillation envelope [Fig. 8 (c)] resembles the shape of the narrow resonance demonstrated in Fig. 5 
(b) for the +/+ case, although Fig. 8 (c) displays only the first harmonic of the beat signal, whereas all 
harmonics contribute to the cw resonances. Given the observed oscillations occur only when the 
frequencies of two MWs are close to the specific frequency of the spin transition between the NV spin 
states, we find that our observations rule out the possibility of a trivial electronic wave beating as an 
origin of the observed oscillations.   
 
 

6. TIME-DEPENDENT MODELLING 

By solving density matrix equations one can calculate not only optical coherence for analysis of 
spectral dependences such as described in a previous section, but also the populations ρ00 and ρ11 of 
our model two-level system and their time dependence. Similarly as in Refs. [39, 43] one may 
adiabatically eliminate the optical coherence ρ01 and arrive at rate equations that describe the time and 
phase dependence of the populations on time-scales much longer than 1/Γ. 
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Here, we take a more intuitive approach which gives more insight to the phenomenon of CPO. We 
take advantage of the fact that for very small frequency difference of ωS and ωp the net MW field 
becomes quasi stationary. Rather that analyzing each of the fields separately, we take into account the 
effective slowly varying MW field, resulting from the joint action of both MW fields. Equations for 
the populations ρ11 and ρ00  read then: 
 
ሶଵଵߩ  ൌ െߛଵሺρଵଵ െ ݊ଵሻ െ ሺρଵଵ െ ρሻ,                                                        (5a) 
ሶߩ  ൌ െߛሺρ െ ݊ሻ  ሺρଵଵ െ ρሻ,                                                        (5b) 
 
where ρ11 and ρ00 are the populations of the ms = 0 and ms = +1 states, respectively, p is the effective 
MW mixing rate, γ0 and γ1 are the population relaxation rates, and ݊ and ݊ଵ are the equilibrium 
populations of the ms = 0 and ms =+1 states in the presence of optical excitation. In our modeling we 
postulate the effective field resulting from beating of the individual MW fields, so that p(t) takes the 
form: 

ሻݐሺ             ൌ ቄ1  ܨ ఊమఊమାሺఉ௧ሻమ cos ሾሺ߱  ݐሻݐߚ  ߶ሿቅ    .

 (6) 
 

Here, p0 is the mean pump rate,   ൌ ߚ ,ଶ/Γߗ  ൌ ߲Δఠ/߲ݐ is the scan (chirp) rate, and F is the 
contrast factor reflecting the ratio between the pump and probe powers. The Lorentzian term in Eq.(6) 
reflects the limited temporal response of the populations to the modulation of the total MW field and, 
consequently, reflects the finite width of the resonances observed as a function of ωp (Fig. 5). Out of 
resonance, the dynamics of populations is given by the total MW power (p0), while on-resonance the 
system is driven by the amplitude modulated field p(t) due to the cosine term. As the time dependence 
of p(t) becomes slow for nearly equal frequencies of the beating fields, we solve Eqs. (5) in a steady-
state approximation, which yields the population difference equal to: 

 ρሺݐሻ െ ρଵଵሺݐሻ ൌ ఊሺ௧ሻାఊ ሺ1 െ 2݊ଵሻ.                                                          (7) 

In this simple analysis, the initial population ݊ଵ  is responsible for the amplitude of the signal, while the 
temporal changes of p(t) result in the oscillatory behavior of the ODMR signal, which is proportional 
to the left-hand side of Eq. (7). For the comparable pump and probe powers, the rate p(t) oscillates 
between zero and its maximum value, which for p>γ create strong nonlinearity of the ODMR signal. 
The amplitude of the population oscillations corresponds to the full depth of the ODMR line in a 
single MW field experiment (black curve in Fig. 3 (a)), rather than that of a pump-probe situation (red 
curve, Fig. 3 (a)).   

To verify the model and get more physical insight, we have simulated the difference of populations for 
the chirp rates corresponding to the ones in Fig. 6, assuming equilibrium population of ms = +1 state 
equal ݊ଵ = 0.1, the Rabi frequency of Ω/2π = 0.4 MHz and the relaxation rates equal to: ߛ/2π = 10 
kHz,  ߛଵ/2π = 50 kHz, and Γ/2π ൌ 5.8 MHz. The initial beating phase was adjusted to match the 
experimental data. Results of the simulations are shown in Fig. 9. They agree qualitatively with the 
signals shown in Fig. 6, the main difference being the shape of the envelope, which was taken as 
Lorentzian in our model, while the experimental data show more pointed envelope shape around zero 
detuning. We believe the difference is caused by the simplicity of our beating model, like neglecting 
of nonlinear interaction with the probe field and higher-order mixing terms in Eq. (1). 
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Fig.9. Simulation of the population difference in the system calculated using rate-equations and quasi-stationary 
effective mixing field with the parameters corresponding to those of Fig.6. (periodic signal drops seen in (a) and 
(b) are numerical artefacts).  

 

7.   CONCLUSIONS  

We have presented detailed studies of the MW hole-burning in NV- diamond when the pump and 
probe MW fields are acting on the same transition in the ground state of NV- color center which 
extend and complement the case described in Ref. [10] where the pumping and probing occurred on 
distinct transitions. The experimental results, as well as our theoretical modeling, indicate that in the 
case of the same transition the effect of coherent population oscillation (CPO) strongly affects the 
observed ODMR spectra. 

We have observed the population oscillations in the intensity of fluorescence of the investigated 
sample in the spectral domain as a function of MW frequency/phase, and in the time domain, as a 
function of time.  The oscillations observed in the time domain occur when the frequencies of two 
MWs are close to each other and to the frequency of the spin transition. They have a rich harmonic 
content with the number of harmonics increasing with the MW power. To our knowledge, this is the 
first direct observation of the CPO in real time and the first observation of CPO effects in NV 
diamond.  

The oscillations can be resolved in a narrow frequency range determined by the relaxation properties 
of the sample. In that range the population oscillations reach a high amplitude but become sensitive to 
the relative phase of the MW fields. Consequently, retrieving of the spectral information requires 
phase averaging. With proper averaging, we have recorded narrow MW resonances in the ODMR 
spectrum, which have a complex structure composed of three Lorentzian resonances positioned at the 
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pump-field frequency and having their widths and amplitudes dependent on the lifetimes of the levels 
involved in the transition.  

The described oscillations and hole-burning lineshapes in the +/+ configuration are specific for the 
NV samples:  (1) They do not occur when the MW frequencies are detuned from the transitions 
between the spin states; (2) They occur in time domain as real-time oscillations in a narrow bandwidth 
and exhibit widths characteristic for the NV sample; (3) They agree well with the theoretical 
modelling of CPO, verified by several earlier experiments in the optical domain. 

These observations give insight into the nonlinear dynamics of the system consisting of an NV-      
sample and microwave field. Specifically, their sensitivity to the relaxation dynamics of the NV 
sample suggests using the CPO resonances as an alternative method for studying the relaxation 
processes in NV- samples. Careful analysis of the +/+ hole shape yields three relaxation constants γ0 
and γ1, which can be related to the populations of ms = 0 and ms = +1 states, and Γ, which reflects the 
decoherence rate of the studied NV- system. While Γ is directly associated with the transverse 
relaxation time Γ = 1/T2, the constants γ0 and γ1 determine the longitudinal relaxation rate, ½(γ0+γ1) = 
1/T1. As compared with other methods, like relaxation in the dark with delayed optical readout 
[44,45], a possible advantage of CPO would be its specificity to relaxation and dephasing of 
individual states of the NV sample. CPO method is also free from some assumptions inherent in other 
methods (see the discussion in Ref. [45]). On the other hand, one has to remember that the measured 
relaxation constants characterize the system perturbed by the light, and MWs, so that a comparison 
with other measurements requires extrapolation of the measured results to zero light intensity and 
MW power. As pointed out in the Appendix, in the case of narrow resonance profiles the fitting 
procedure may be inaccurate if the individual profiles do not differ much.  

In conclusion, we have analyzed the properties of the hole-burning spectroscopy with two MW fields 
which share the same spin transition. We have found that the hole shape is determined by CPOs and 
were able to demonstrate directly the population oscillations. Analysis of the MW spectra suggests a 
practical use of the CPO resonances as an alternative method for measurements of the individual 
lifetimes in the NV- ground state manifold.  
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APPENDIX 1: Beat-note of two frequencies vs. amplitude modulation of a single frequency. 

In this appendix we discuss the differences between two schemes in which CPO can be observed: the 
beating of two independent microwave fields and the amplitude modulation of a single-frequency 
field.  

A) AM modulation 

What is typically considered as an amplitude modulated wave can be written in a form:     

ሻݐሺܨ   ൌ ሻݐሺܣ cosሺ߱ݐ  ߮ሻ ൌ ሾ1ܣ  ݉ cosሺ߱ெݐ  ߮ெሻሿ cosሺ߱ݐ  ߮ሻ, (A.1) 

where ܣ is the wave’s amplitude, m is the modulation index (in the range of 0 to 1), ߱ and ߱ெ are 
the carrier and modulation frequencies, respectively, while ߮ and  ߮ெ stand for their corresponding 
phases. Importantly, the amplitude ܣሺݐሻ is always a non-negative number.  

Neglecting the phases, the equation (A.1) can be rewritten to a form: ܨሺݐሻ ൌ ܣ cosሺ߱ݐሻ  బ ଶ cosሾሺ߱  ߱ெሻݐሿ  బ ଶ cosሾሺ߱ െ ߱ெሻݐሿ,   (A.2) 

where one identifies the carrier frequency and two sidebands separated by 2߱ெ from each other. In the 
full modulation case, ݉ ൌ 1, the carrier wave carries 2/3, and each sideband only 1/6th of the full 
power.  

One could also envisage the sine modulation of the field power rather than amplitude. In this case, the 
term ܣሺݐሻ should be replaced with ඥܣሺݐሻ, which again is a non-negative number.  

  

B) Two-frequency beat-note. 

In the case of our experiment the MW field consists of two independent waves G1(t) and G2(t) with 
constant amplitudes: ܩሺݐሻ ൌ ሻݐଵሺܩ  ሻݐଶሺܩ ൌ ଵܣ cosሺ߱ଵݐ  ߮ଵሻ  ଶܣ  cosሺ߱ଶݐ  ߮ଶሻ.   (A.3) 

We assume ω1>ω2, neglect the phases again and equalize the amplitudes by setting A1=A2. In this case, 
each wave carries half of the power and eq. (A.3) takes the form of: ܩሺݐሻ ൌ ଵcos ሺఠభିఠమଶܣ2 ሻcos ሺఠభାఠమଶݐ  ሻ,       (A 4)ݐ

which resembles eq.(A 1) when we set ߱ ൌ ఠభାఠమଶ   and the beat-note frequency ߱௧ ൌ ఠభିఠమଶ . The 
key difference, however, is that now the amplitude, given by the term: 2ܣଵ cosሺ߱௧ݐሻ, oscillates 
between േ2ܣଵ. The negative values of the amplitude can be viewed as a ߨ shift of the carrier wave 
phase, which occurs every half of the modulation period. An important NMR technique exploiting 
such a phase jumps is the rotary echo [46], where the carrier phase is periodically being shifted by ߨ. 

Let’s further rewrite eq. (A 4) using simple trigonometry to the form: ܩሺݐሻ ൌ േ2ܣଵඥܿݏଶሺ߱௧ݐሻ cosሺ߱ݐሻ ൌ േ2ܣଵඥሾ1  ሻሿ/2ݐ ሺ2߱௧ݏܿ cosሺ߱ݐሻ,          (A 5) 
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where one has to keep the appropriate sign of the square root (which changes every half-period of the 
modulation). Here one can clearly see the difference between ܩሺݐሻ and ܨሺݐሻ given by eq. (A.1) in a 
form of a square root of the modulation term and an alternating sign. The former can be achieved by 
the cosine modulation of the power rather then amplitude of the MW field. The experimental 
realization of the carrier phase reversal, however, requires more complex modulation schemes, as 
simple amplitude modulators in the form of rf mixers/attenuators, variable gain amplifiers or choppers 
(in case of optical fields) generally preserve the carrier phase.  

The above reasoning shows that ܨ and ܩ are clearly not equivalent. In our ODMR experiment, 
however, the dynamics of the system on a timescales much longer than T2 time is governed by the 
intensity (power) of the MW field, rather than its amplitude. One way of looking at it is that the 
direction of the oscillating magnetic part of the MW field (which corresponds to the phase of carrier 
frequency) in a rotating frame is not important. What is important is the field magnitude, which 
corresponds to the power of MWs and neglects their phase. Coherent population oscillations can be 
thus observed for low modulation frequency AM and two-frequency beating because the material 
(NV) system adiabatically follows the power of the MW field. This allows us also to use the rate 
equations for modelling NV dynamics, as presented in Sec.6 above. For fast modulation frequencies, 
coherent processes have to be taken into account and the dynamics becomes sensitive to the phase of 
the MW field. For this reason, the spectral characteristics obtained in Sec. 4 are applicable only to the 
two-frequency case.  
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APPENDIX 2: Resonance Lineshape 

In this Appendix we present the results of fitting the observed structure of the hole burned in the +/+ 
configuration to Eq. (3). As discussed in Sec. 4, the observed spectrum may consist of three 
contributions of different amplitudes and widths. Their separation may be difficult if the widths of 
individual contributions do not differ much. Below, we depict the results of fitting the observed MW 
pump-probe spectrum (Fig.6) appearing as a broad line with a narrow peak, by a set of two and three 
Lorentzians. Qualitatively, both fits are satisfactory. Analysis of the fit residuas reveals, however, the 
observed signal consists of three, rather than two resonances. Such analysis of the lineshape enables  
determination of the relaxation rates of the NV- ensemble under various conditions and should be 
useful for analysis of relaxation phenomena. In the analyzed case, the difference between the spectra 
containing two and three narrow contributions is small, so the fitting results need be considered 
carefully. A better statistics and careful analysis of other experimental conditions, like the light 
intensity, should allow for more reliable data, allowing meaningful comparison with other 
measurements.  

 
A.1. Fit of the experimental data (red points) from Fig.6 with the sum of three (a) and two (c) 
Lorentzian profiles (black curve). Also shown are the individual Lorentzian curves. Residuals are 
shown in (b) and (d), for the (a) and (b) plots, respectively. Note the horizontal scale change. 
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