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The significant electron-electron interactions that characterize the π-electrons of graphene
nanoribbons (GNRs) necessitate going beyond one-electron tight-binding description. Existing the-
ories of electron-electron interactions in GNRs take into account one electron-one hole interactions
accurately but miss higher order effects. We report highly accurate density matrix renormaliza-
tion group (DMRG) calculations of the ground state electronic structure, the relative energies of
the lowest one-photon versus two-photon excitations and the charge gaps in three narrow graphene
nanoribbons (GNRs) within the correlated Pariser-Parr-Pople model for π-conjugated systems. We
have employed the symmetrized DMRG method to investigate the zigzag nanoribbon 3-ZGNR and
two armchair nanoribbons 6-AGNR and 5-AGNR, respectively. We predict bulk magnetization of
the ground state of 3-ZGNR, and a large spin gap in 6-AGNR in their respective thermodynamic
limits. Nonzero charge gaps and semiconducting behavior, with moderate to large exciting binding
energies are found for all three nanoribbons, in contradiction to the prediction of tight-binding the-
ory. The lowest two-photon gap in 3-ZGNR vanishes in the thermodynamic limit, while this gap is
smaller than the one-photon gap in 5-AGNR. However, in 6-AGNR the one-photon gap is smaller
than the two-photon gap and it is predicted to be fluorescent.

I. INTRODUCTION

Carbon has come to the fore in the last few decades for
many exciting electronic and magnetic properties with
the discovery of buckyball in the eighties to carbon nan-
otubes in the nineties to graphene and graphene nanorib-
bons in the last decade1–3. In all these systems, we can
assume that the carbon atom is in sp2 hybridization and
hence, these systems belong to the class of π-conjugated
carbon systems. In recent years, graphene nanoribbons
(GNRs) have attracted considerable attention because
of their exotic electronic properties and plausible ap-
plications in nanoelectronics4–8. GNRs with different
widths can be made using various techniques like me-
chanical cutting of exfoliated graphenes or by patterning
epitaxially grown graphenes9–14. GNRs are quasi one-
dimensional forms of graphene, which exhibit exciting
electronic properties because of the confinement of elec-
trons in low dimension4,15–18. These electronic properties
also depend crucially on the geometry of the edges of the
ribbons. The GNRs are classified into two types based on
the edge structures, namely, zigzag and armchair GNRs
(ZGNRs and AGNRs respectively). Within the one-band
tight-binding theory, ZGNRs are predicted to be metallic
with zero bandgap, while AGNRs can be both semicon-
ducting or metallic, depending upon their width15–17,19;
AGNRs with 3p+2 (with integer p) dimer bonds between
nearest neighbor carbon atoms across the ribbon width
are metallic and others are semiconducting17.
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FIG. 1. Molecular structures of (a) zigzag 3-ZGNR, (b) arm-
chair 6-AGNR and (c) armchair 5-AGNR. The unit cell for
each nanoribbon is indicated by the square brackets.

The quasi one-dimensional character of the GNRs
leads to confinement and enhanced electron repulsion be-
tween the π-electrons. Thus extended screening lengths
and long range electron-electron interactions are ex-
pected in the semiconducting GNRs, and even in the
metallic GNRs which are better described as zero gap
semiconductors16,17. Electron-electron interactions in
GNRs and single-walled carbon nanotubes have been con-
sidered in the past within the time-dependent density
functional approach20–22 as well as the GW approxi-
mation accompanied by Bethe-Salpeter corrections23–25.
These approaches take into account one electron-one
hole (1e-1h) interactions, are equivalent to the sin-
gles configuration interaction approximation of quantum
chemistry26–28, and have successfully predicted the exci-
tonic character of the lowest optical absorption in the
semiconductors. Our goal here, however, is to probe the
consequences of the strong four-fermion two electron-two
hole (2e-2h) interactions. As in previous work26–28, we
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probe the consequences of realistic electron-electron in-
teractions on the optical and charge gaps in three nar-
row GNRs, the ZGNR with three carbon-carbon bonds
across its width (3-ZGNR) and AGNRs with 6 and 5
carbon-carbon bonds across their widths (6-AGNR and
5-AGNR), respectively (see Fig. 1). Beyond this, how-
ever, we also probe their ground state magnetic character
and the spin gap. We further determine the relative en-
ergy orderings of the lowest one- versus two-photon states
in all three nanoribbons. In the past, the experimental
demonstration that the lowest two-photon state occurs
below the optical one-photon state in linear polyenes29,
in contradiction to the predictions of tight-binding and
Hartree-Fock theories29, provided the most convincing
demonstration of the strong electron correlations in these
systems. More recently, similar experimental results have
also been obtained from nonlinear optical measurements
of graphene nanofragments30. Accurate computational
investigation of the relative energy orderings of one- and
two-photon states also requires going beyond existing
techniques. Finally, we compute nearest neighbor bond
orders (nearest neighbor charge-transfers) to examine the
tendency to structural distortions.

For conjugated carbon systems, the Pariser-Parr-Pople
(PPP) model, which assumes σ − π separability and in-
corporates long-range electron-electron repulsions31, is
known to reproduce ground and excited state properties
very well32–35. It has also been demonstrated that the
symmetrized DMRG method can provide highly accu-
rate descriptions of ground and low-lying excited states
within the PPP model36,37. We report here symmetrized
DMRG calculations on the three GNRs of Fig. 1.

We briefly mention here existing related works about
edge-magnetism in zigzag nanoribbons which was spec-
ulated quite early in the literature and has been stud-
ied rather extensively. Fujita et al. have studied both
armchair and zigzag graphene ribbons with tight-binding
approximation and reported the presence of a flat band
and localized edge states near the Fermi level for zigzag
nanoribbons, resulting in high density of states near the
Fermi level15. In armchair nanoribbons, these almost
flat bands (which are a consequence of the topology of
the π-conjugation) are absent. In the correlated picture,
these almost flat bands result in magnetic states whose
spins are arranged ferromagnetically at the edges15. Op-
posite edges of the ribbon will have opposite alignment
of spins making the ribbon non-magnetic in the ther-
modynamic limit. Even in a general nanoribbon which
cannot be classified either as perfectly armchair or per-
fectly zigzag, a few sequentially placed zigzag sites can
result in significant density of states at the Fermi level
resulting edge ferromagnetism16. Sasaki and coworkers
studied graphene in the continuous model using Weyl
equation with a special gauge field resulting from the
local deformation in the π-backbone and confirmed pres-
ence of localized states at zigzag edges38. Consequences
of the presence of these edge states in quantum Hall ef-
fect in graphene have also been studied within localized39

and continuum pictures40. Wakabayashi et al. stud-
ied electronic and magnetic properties of GNRs in the
presence of a magnetic field in the tight-binding approx-
imation and proposed that zigzag nanoribbons will show
diamagnetic behavior at high temperature and paramag-
netic behavior at low temperature41. Louie et al. have
also showed that the edge-magnetic nature of ZGNRs
can induce half-metallicity in the presence of transverse
electric field across the ribbon width, resulting in a spin
current42. The edge magnetism in zigzag nanoribbon has
also been studied using mean-field Hubbard model by
Jung and coworkers43, employing quantum Monte Carlo
technique by Golor et al.44 and by renormalization tech-
nique by Hikihara et al.45 and experimentally at room
temperature by Magda and coworkers46. Instead of the
presence of ferromagnetically aligned spins at the edges,
all the above studies predicted singlet ground state in
ZGNR in absence of an external field; however, a few den-
sity functional studies predicted a ferromagnetic ground
state in ZGNR on doping47. Dutta et al. have studied
low-energy properties of both zigzag and armchair GNRs
within the Hubbard model using quantum many-body
configuration interaction method and predicted that the
ground state of zigzag GNRs is a high-spin state while
for armchair GNRs the ground state is a singlet48. Spin
density calculations at the edges of zigzag nanoribbons
show presence of both up and down spin at a given edge
instead of predominance of a specific spin as predicted by
tight-binding and density functional theories. This study
indicates that the picture can be significantly different in
the presence of long-range electronic correlation.

There are also extensive studies of electronic proper-
ties such as band gaps, quasiparticle energies in GNRs.
Ezawa has studied bandgaps in a range of nanoribbons
in the Hückel picture and predicted the width depen-
dence of the bandgaps in these systems17. He has also
found that incorporation of edge effects by changing the
transfer term or site energies of the edge sites has little
effect on the band structure. Brey and Fertig studied
electronic structure of zigzag and armchair nanoribbons
using massless Dirac equation and their results are in
agreement with the tight-binding results, except for nar-
row nanoribbons19. They proposed that the continuum
analysis of graphene can quantitatively predict the prop-
erties of these nanoribbons. Louie et al. have computed
the band gaps for zigzag and armchair GNRs employ-
ing the first-principle approach within local (spin) den-
sity approximation49 and GW approximation with many-
body Green’s function technique25 and proposed ana-
lytical expressions for band gaps as a function of GNR
widths. They argued all GNRs to be semiconducting,
contradicting earlier tight-binding predictions. Recently,
spin and charge gaps of the armchair polyacene have been
studied within the PPP model50. It has been shown that
the ground state of armchair polyacene is a singlet and
the system is an insulator in the ground state.

This paper is organized as follows. In section II, we
introduce the model Hamiltonian and briefly describe the
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DMRG scheme which we have employed in our study.
In section III, we present and discuss our results for the
three GNRs. In the final section, we present a comparison
of these three GNRs and summarize our results.

II. THEORETICAL MODEL, THE DMRG

SCHEME FOR GNRS AND SYMMETRY

SUBSPACES

A. PPP Hamiltonian and parameters

The PPP Hamiltonian is written as,

H =
∑

<i,j>,σ

tij(a
†
iσajσ+a†jσaiσ) +

1

2

∑

i

Uini(ni − 1)

+
∑

i>j

Vij(ni − 1)(nj − 1)

(1)

where < i, j > are the bonded pair of atoms and tij is

the corresponding hopping or transfer integral, a†iσ (aiσ)
is the creation (annihilation) operator at site i with spin
σ and ni is the number operator. U is the Hubbard on-
site repulsion and Vij are the intersite electron-electron
repulsion between carbon atoms i and j. Vij are obtained
from the Ohno parametrization51,

Vij = 14.397

[

(

14.397

Ui

)2

+ r2ij

]− 1

2

(2)

which is arrived at by interpolating between U at rij = 0
and e2/rij for rij → ∞. In Eq. 2 the distances are

in Å while the energies are in eV 52. We have taken
the nearest neighbor distance between the carbon atoms
as 1.42 Å and we fixed parameters tij = −2.40 eV and
U = 11.26 eV as in many of the previous studies involv-
ing carbon-based conjugated systems34,36,37; the U value
chosen53 is the sum of ionization energy and electron
affinity of carbon and gives the energy change in the pro-
cess CC → C+C−.

B. The DMRG scheme

We are interested in the properties of the three GNRs
of Fig. 1 in the thermodynamic limit, which is reached
from finite size scaling. Exact studies of the model Hamil-
tonian is confined, at best, to about 18 carbon sites and
hence cannot be employed for extrapolation to the ther-
modynamic limit. Restricted configuration interaction
approaches are not size consistent and cannot be em-
ployed with finite size scaling. Quantum Monte Carlo
approach is also not suitable since we have long-range
interactions in the model. For semiconducting narrow

nanoribbons, the DMRG method will be the method of
choice as the area law of entanglement entropy holds and
for the same DMRG cut-off similar accuracy is retained
independent of the length of the nanoribbons54,55. In
case of metallic nanoribbons, gapless low-lying excita-
tions are present and the area law of entanglement en-
tropy will not hold. This leads to increasing errors with
increasing system sizes in the DMRG method if we em-
ploy a fixed cut-off in the number of block states (Ml) for
all system sizes. However, for finite systems in correlated
models, there is always a finite gap in the excitation spec-
trum and by keeping a large number of block states, we
can deduce correct excitation energies. While our calcula-
tions will not reproduce all behavior of metals, we believe
that the particular properties we are investigating can be
obtained from extrapolations of these excitation energies.
It has also been shown that for models with diagonal in-
teractions in the real space such as the PPP model, the
entanglement entropy is similar to those in the Hubbard
and the Heisenberg models in one-dimension56. Taken to-
gether, the above justify the use of the DMRG approach
for PPP calculations of GNRs.

The DMRG method, discovered by White in 1992 di-
vides a system block into two sub-blocks54,55,58,59, gen-
erally referred to as the left sub-block (L) and the right
sub-block (R), while the wavefunction of the total system
block is described in the direct product space of these two
sub-block basis states. In the DMRG method, the Fock
spaces of the two sub-blocks are approximated and it has
been found that the best approximations of the sub-block
Fock spaces can be obtained by retaining a small num-
ber of reduced density matrix eigenvectors corresponding
to the highest reduced density matrix eigenvalues. Re-
duced density matrix of a chosen sub-block is obtained by
treating the other block as an environment block and trac-
ing the density over the states of the environment block.
The reduced density matrix for a sub-block of size l, so
obtained, is diagonalized and Ml eigenvectors with the
highest reduced density matrix eigenvalues are stored as
column vectors of a Ml−1dσ × Ml matrix where Ml−1

is the number of density matrix eigenstates retained at
l − 1-th iteration and dσ is the dimension of the Fock
space of the new site added to the sub-block at the l-th it-
eration. The Hamiltonian of the sub-blocks are renormal-
ized using this Ml−1dσ ×Ml matrix and the matrices of
site operators are also transformed to this new basis. All
terms in the PPP Hamiltonian including the long-range
correlation terms can be expressed using these renormal-
ized site operators and the matrix elements of the system
Hamiltonian can be obtained by taking appropriate direct
products. The next step in the DMRG algorithm involves
expanding the system block by adding a few sites (usu-
ally two) to the previous system block. The Hamiltonian
matrix is constructed in the direct product basis of the re-
tained block states of the two sub-blocks and Fock states
of the newly added sites. From the Hamiltonian matrix,
desired eigenstates are obtained and the process of con-
structing the reduced density matrix, truncating the Fock
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FIG. 2. (a) Construction of 3-ZGNR of 16 sites in the infinite DMRG method starting from a small system (4 sites). The number of
bonds between the new and the old sites at the intermediate system sizes are kept close to that in the final system for higher accuracy.
At every step of the algorithm two new sites are added, one to the left sub-block (L) and other to the right sub-block (R). The sites in
L are denoted by unprimed numbers while those in R are denoted by primed numbers. The newly added sites are shown by filled square
(�) while old sites are denoted by filled circles (•). Solid lines are bonds within a sub-block. The broken lines denote the bonds between
• and �. Bonds between the two sub-blocks as well as the bond between � are denoted by hatched lines. (b) Scheme for sweeping in
finite DMRG method for 16-site (2N=16) 3-ZGNR. In the forward sweep, the left block size increases from N − 1 to 2N − 2 sites as the
right block size decreases from N − 1 to 2 sites; in the reverse sweep, the opposite happens. During finite DMRG sweepings, the total
system size remains constant. The corresponding figures for 6-AGNR and 5-AGNR are shown in Figs. 1, 2 and 3 in the supplementary
material57.
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TABLE I. Exact versus DMRG ground state energies (in eV)
of 3-ZGNR, 6-AGNR and 5-AGNR within the non-interacting
model (U=Vij=0). The DMRG cut-off in the number of block
states is 500.

System type and size Ground state energy

Exact calculation DMRG method

3-ZGNR and 40 sites -137.841 -137.738

6-AGNR and 40 sites -139.503 -139.312

5-AGNR and 40 sites -137.859 -137.813

space of the augmented system and expanding the system
by adding two additional sites and again solving for the
desired eigenstate is repeated until we achieve the tar-
geted system size. The dimension of the Hamiltonian
matrix is independent of the system size as the num-
ber of block states retained to span the Fock space of the
sub-blocks is fixed, independent of the physical size of the
sub-block. The method described above is known as the
infinite DMRG method.

In order to obtain the behavior in the thermodynamic
limit using only the infinite DMRG method, we would
need to retain a rather large number of block states (Ml)
and go to much larger system sizes which is beyond our
current computational capability. Instead, we have car-
ried out finite DMRG calculations on systems of moder-
ate sizes to obtain energy gaps with high accuracy and
rely on finite size scaling to obtain the physical properties
in the thermodynamic limit.

The finite DMRG algorithm was introduced by White
to improve the accuracy of finite system calculations. In
the infinite DMRG method, the density matrix of a p-
site sub block is built from the eigenstates of a 2p site
system block. This leads to errors in the target system of
2N sites (N >> p). In order to correct this error, the p-
site density matrices are iteratively constructed from the
eigenstates of the 2N site target system block, until con-
vergence is achieved. This procedure is termed ‘sweep-
ing’ where iteratively the size of one of the sub-blocks in-
creases at the expense of the other, while the total system
block size remains unchanged. At the final step of one
full sweep, sizes of the two sub-blocks become equal and
same as in the infinite DMRG step. The finite DMRG
procedure for molecular systems is nontrivial but essen-
tial as the energies improve considerably following the
sweeping. We have employed the finite DMRG algorithm
with a block state cut-off (Ml) of 500 and finite DMRG
iteration of two sweeps to compare the DMRG method
results with the exact calculation results for all the three
nanoribbons within the non-interacting model (Table I).
The ground state energies compare well with the exact
nearest neighbor tight-binding energies in all cases with
a cut-off in the number of block states Ml = 500. For
the interacting models, we expect the DMRG method
to be more accurate for the same cut-off as interacting
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FIG. 3. (Color online) Calculated lowest one-photon (opti-
cal) gaps ((a), (c) and (e)) and lowest two-photon gaps ((b),
(d) and (f)) in short 3-ZGNR (left panel), 6-AGNR (middle
panel) and 5-AGNR (right panel), plotted against the number
of unit cells for different cut-off values of block states (Ml).
The symbols denote the following: black open circle– one-
photon gap with Ml =∼ 750; red open square– one-photon
gap with Ml =∼ 900; blue open triangle– one-photon gap with
Ml =∼ 1000. Corresponding filled symbols denote two-photon
gaps.

systems are less entangled. The method of constructing
the GNRs in the infinite DMRG procedure as well as the
method of finite sweeps are shown in Fig. 2 and Figs.
1, 2 and 3 in the Supplementary Material57.

C. Symmetry subspaces and one versus

two-photon excitations

The GNRs of interest possess C2 symmetry along the
axis perpendicular to the plane of the molecule, which we
utilize in our computations as well as characterization of
eigenstates. Eigenstates are labeled A or B depending
upon whether they are of even or odd parity with re-
spect to C2 operation. The PPP Hamiltonian conserves
total spin S, but total spin conservation is difficult within
the DMRG scheme with large cut-off in the block states.
We exploit partial spin symmetry by performing our cal-
culations for the Sz = 0 sector in which the Hamiltonian
has spin inversion symmetry, corresponding to invariance
of the Hamiltonian when all spins of the system are re-
versed. This symmetry bifurcates the Sz = 0 space into
a subspace with even total spin, i.e., S = 0, 2, 4, · · · (here-
after designated as ‘e’) and another with odd total spin,
S = 1, 3, 5, · · · (designated as ‘o’). Finally, the exactly
half-filled band that we are investigating also exhibits
charge-conjugation symmetry (CCS); eigenstates are la-
beled even or odd (hereafter ‘+’ or ‘-’) depending upon
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FIG. 4. Ground state energy in eV per unit cell vs 1/N for
(a) 3-ZGNR, (b) 6-AGNR and (c) 5-AGNR within the PPP
model. Here N is the number of unit cells as depicted in Fig.

1.

the eigenvalue ±1 reached when operated by the CCS
operator60,61. The identity, the three symmetry opera-
tors and their products form an Abelian group of eight
elements. Hence, the Sz = 0 sector gets subdivided into
8 subspaces.
In general, the ground state is even with respect to all

symmetry operations and lies in the eA+ subspace. Op-
tical one-photon states are reached by one application of
the current operator j on the ground state

ĵ = (i/~)
∑

<i,j>,σ

tij(a
†
iσajσ − a†jσaiσ) (3)

which clearly changes the parity under C2 symmetry while
conserving Sz. It can also be shown that the application
of the ĵ changes CCS60. Two-photon states are reached
by one application of ĵ on the optical state (or two appli-
cations of the operator on the ground state), thus indicat-
ing that they also lie in eA+ subspace. In the Sz = 1 sec-
tor, spin inversion symmetry cannot be implemented and
the lowest S = 1 state is in the B+ space. Using the sym-
metrized DMRG method 62 with a modified algorithm63,
all of these symmetries have been exploited in our calcu-
lations.
In each symmetry subspace, we have calculated a few

low-lying energy states of the Hamiltonian using David-
son’s algorithm for symmetric sparse matrices. At each
step of the DMRG algorithm, block states are computed
from the average reduced density matrix obtained from
these eigenstates instead of the reduced density matrix
of a single state. The average reduced density matrix
is defined by ρ =

∑

k ωkρk where ρk are the reduced
density matrices corresponding to eigenstates |k〉 and ωk

are the weights of the corresponding eigenstates58. We
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FIG. 5. (Color online) Spin gaps (see text) in eV versus the
inverse of the number of unit cells for (a) 3-ZGNR (b) 6-
AGNR and (c) 5-AGNRwithin the PPP model. Insets: (∆2−

∆1) [black solid triangle up] and (∆3−∆2) [red solid triangle
down], also versus the inverse of the number of unit cells.

have taken ωk = 1/Nk, where Nk is the number of low-
lying eigenstates computed in the symmetry subspace. In
what follows we define all energy gaps with respect to the
ground state energy (thus the lowest one and two-photon
gaps are the energy differences between the corresponding
eigenstates and the ground state).
In order to arrive at the desired cut-off in block states

Ml for our calculations, we have calculated lowest two-
photon gaps and lowest optical gaps with different cut-
offs for small systems of 3-ZGNR, 6-AGNR and 5-AGNR
(Fig. 3). We note that Ml ≃ 750 is adequate for com-
parisons with experiments in all three GNRs.

III. RESULTS AND DISCUSSION

We have used the unsymmetrized DMRG technique to
calculate the ground state energies of these nanoribbons
within the PPP model (Fig. 4). The excellent linear fit
of the energies as a function of system size shows that
the procedure is stable and accurate.

A. Spin gaps

As mentioned above, it is difficult to exploit total S in-
variance in the DMRG scheme. We have therefore com-
puted the lowest energy states in the different Sz sectors;
the total S are determined from the calculated energy
gaps ∆k = E0(Sz = k) − E0(Sz = 0), where E0(Sz = k)
is the lowest energy in the Sz = k sector. In the absence
of external magnetic field, the different z-components of
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TABLE II. Different ∆k values in eV calculated for 3-ZGNR
with 5 unit cells, for different number of retained block states.
The change in the energy gaps for the different cut-off values
are not significant.

Block states cut-off ∆1 ∆2 ∆3

700 0.290 1.608 4.174

750 0.292 1.610 4.177

800 0.293 1.612 4.180

a given total S are degenerate; thus ∆1 = 0 implies that
the ground state lies in the total spin S = 1 subspace.
This is true for arbitrary ∆p, and hence in general for
∆1 = ∆2 = · · · = ∆p = 0 and ∆p+1 > 0, the ground
state has spin S = p.

We have shown the dependence of the computed energy
gaps (∆k) on the DMRG cut-off for a moderate-sized 3-
ZGNR system in Table. II. We find that keeping ∼ 750
block states is sufficient for getting accurate gaps. Among
all GNRs in this study, the energy gaps are smallest in 3-
ZGNR; hence, we expect the same cut-off to be adequate
for AGNRs also.

In Fig. 5(a) we have plotted spin gaps ∆k as a function
of the inverse of the number of unit cells (N) for 3-ZGNR.
For N < 14, we find ∆1 > 0, indicating that the ground
state is a singlet. For N ≥ 14, Sz = 1 and Sz = 0
states are degenerate (within the DMRG accuracy) which
implies that the ground state has S = 1. ∆2 > 0 in this
region, but becomes smaller as N is further increased.
It appears that S=2 will become the spin of the ground
state for larger N values. Similarly, the gap between Sz =
3 and Sz = 0 states also decreases with increasing N. The
inset to Fig. 5(a) shows the behavior of ∆3 − ∆2 and
∆2 −∆1, both of which rapidly approach 0 at large N .
From these trends in the the spin gaps, we predict that
the ground state of this system is ferromagnetic in the
thermodynamic limit.

The spin gaps ∆k for 6-AGNR are shown in Fig. 5(b).
∆1 now exhibits weak size dependence and continues to
be nonzero even in the thermodynamic limit. The extrap-
olated ∆1 in the thermodynamic limit is 1.43 eV which
is actually larger than the non-interacting tight-binding
bandgap of 1.19 eV. This implies that the ground state of
this system is a singlet. Indeed ∆1 is larger than that in
polyacene which has a spin gap of ∼0.5 eV in the thermo-
dynamic limit37. The spin gaps ∆2 and ∆3 are also large
and weakly size-dependent, as are the differences between
the spin gaps ∆2 − ∆1 and ∆3 −∆2, plotted in the in-
set of Fig. 5(b). In general E(S) > E(S′) for S > S′

here, where E(S) is the lowest energy in the total spin
S subspace, and the corresponding energy differences are
large.

For 5-AGNR, the spin gaps between different Sz sec-
tors and Sz = 0 are shown in Fig. 5(c). The extrap-
olated (∆1) in the thermodynamic limit is 0.15 eV, in-
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FIG. 6. A few energy levels near the Fermi level for (a) 3-
ZGNR (b) 6-AGNR and (c) 5-AGNR within the tight-binding
model are plotted as a function of number of unit cells. The
hopping energy considered is 2.40 eV. The symbol index is
same for all the three panels and are as follows: HOMO en-
ergy level (solid circle); HOMO–1 energy level (solid square);
HOMO–2 energy level (solid triangle up); LUMO energy
level (open circle); LUMO+1 energy level (open square) and
LUMO+2 energy level (open triangle up).

dicating that the ground state is spin singlet. From the
N-dependent behavior of ∆2 and ∆3 (see in particular the
inset) it is conceivable that the energy spectrum above
∆1 may be gapless.

It is instructive to see what is to be expected for the
spin gaps in the non-interacting limit. The energy levels
of the frontier molecular orbitals of the three GNRs are
shown in Fig. 6. We see that in 3-ZGNR, the energy gap
between frontier orbitals approach zero rapidly implying
that switching on exchange interaction will lead to a high
spin ground state. In 6-AGNR, the gap between bonding
and antibonding frontier orbitals is finite for all system
sizes. Introduction of electron-electron interaction will
therefore not change the spin of the ground state and
the ground state will always be a singlet. In 5-AGNR,
the gap between the bonding and antibonding frontier
orbitals progressively decreases but remain finite for large
system sizes. The small band gap implies a small spin
gap in the interacting picture.

In summary, the effects of electron-electron interac-
tions on the three GNRs we have studied are very differ-
ent and could not have been anticipated from their tight-
binding electronic structures. The ferromagnetic ground
state in 3-ZGNR is different from the edge-state ferro-
magnetism found earlier in wider ZGNRs15,42,49. More
interestingly, while within tight-binding theory 5-ZGNR
is metallic and is hence expected to be without a spin gap,
we find a small but nonzero spin gap here, although the
spectrum of spin excitations above the lowest gap may
be gapless. As we show in section III(C), this system
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FIG. 7. (Color online) Lowest optical and two-photon gaps
in 3-ZGNR versus the inverse of number of unit cells. As the
ground state spin value changes on increasing the number of
monomer units, lowest optical gaps and lowest two-photon
gaps in both S = 0 and S = 1 sectors are plotted. Symbols
represent the following: lowest optical gap in singlet space
(△); lowest two-photon gap in singlet space (�); lowest optical
gap in triplet space (N); lowest two-photon gap in triplet space
(�). Inset: Magnified plot of the lowest optical gaps and its
extrapolation in 3-ZGNR systems, 11-16 monomer units.

also has a nonzero exciton binding energy for nonzero
electron-electron interactions. In 6-AGNR, which is a
band semiconductor, both charge and spin gaps are ex-
pected within the tight-binding model. Our calculated
results indicate that electron-electron interactions further
enhance the spin gap here. We discuss these effects fur-
ther in section section III(B).

B. Excited state ordering of one- versus
two-photon states

As already mentioned in section II(C), the occurrence
of the lowest two-photon states below the lowest op-
tical one-photon states in linear polyenes64,65 was the
strongest evidence for higher order Coulomb interaction
effects beyond 1e-1h interactions. It is therefore of inter-
est to determine the excited state ordering in these nar-
row GNRs we are probing; this is particularly so because
should the present systems become available experimen-
tally, the corresponding two-photon states can be reached
by a variety of nonlinear spectroscopic techniques, and
our theoretical predictions tested.
We have obtained the low-lying one- and two-photon

excited states for all three GNRs within the PPP model.
We have done calculations starting from 2 units up to a
maximum of 16 units of 3-ZGNR, from 2 units up to a
maximum of 8 units of 6-AGNR and from 1 unit up to 9
units of 5-AGNR, which correspond to about 100 carbon
atoms in the largest systems studied. For extrapolation
of different energy gaps in all three nanoribbons, we have
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FIG. 8. (Color online) Lowest one-photon (optical) (△) and
two-photon (�) gaps in (a) 6-AGNR and (b) 5-AGNR, versus
the inverse of the number of unit cells. The ground state
remains in both the cases in S = 0 space. The extrapolated
one-photon and two-photon gaps are also indicated in the
figures.

considered the largest system sizes, specifically, from N =
10 to N = 16 for 3-ZGNR, from N = 5 to N = 8 in 6-
AGNR and from N = 4 to N = 9 in 5-AGNR (N is
number of unit cells).
In 3-ZGNR, the lowest two-photon state occurs above

the lowest optical state for system sizes up to three
units, but this energy ordering is reversed in larger sys-
tems (Fig. 7) Similar size-dependence has also been
observed in linear polyenes and is expected from theoret-
ical considerations29. As pointed out above, the ground
state of 3-ZGNR changes beyond a certain size. We have
therefore plotted in Fig. 7 the lowest optical and two-
photon gaps for both S = 0 and S = 1 ground states.
In Fig. 7 inset, the data points are shown on an ex-
panded scale and appear to be scattered. However, the
calculated standard deviation66 for the linear fit is small
(0.036 eV). The extrapolated value of the optical gap in
thermodynamic limit is found to be 2.25 eV, irrespective
of the ground state spin, which is in contradiction to the
prediction of a metallic state for this nanoribbon within
one-electron theory (see also section I). Note that for sys-
tem sizes where the ground state is a triplet, the singlet
optical gap increases with system size. This is an arti-
fact that is irrelevant for the real system with a magnetic
ground state. As shown in the figure as well as in the in-
set, the triplet and singlet optical gaps lie on the same
continuous curve if the data from the artificially large sin-
glet gaps are ignored. However, the two-photon gaps in
both singlet and triplet spaces extrapolate to zero in the
thermodynamic limit. In linear polyenes, the lowest two-
photon state is known to be a quantum-entangled state of
two triplets with overall spin angular momentum of zero.
The zero gap two-photon state in the present case is to
be anticipated, should the same theoretical description
as a triplet-triplet state persist here.
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FIG. 9. Extrapolation of the charge gaps against the inverse
of the number of unit cells, for (a) 3-ZGNR, (b) 6-AGNR and
(c) 5-AGNR, respectively.

In 6-AGNR, the lowest optical state always remains be-
low the lowest two-photon state for all system sizes. The
extrapolated one- and two-photon gaps at the thermo-
dynamic limit are quite distinct (Fig 8a). The extrapo-
lated value of the optical gap is 2.45 eV while that of the
two-photon gap is 2.72 eV. The standard deviations of
the linear fits of the optical gaps and the two-photon gaps
are 0.032 eV and 0.026 eV respectively. The larger two-
photon gap here is a reflection of the predominantly band
semiconductor character of 6-AGNR, therefore the one-
electron contribution to the optical gap must be larger
than the many-electron contribution. The relative energy
locations of the optical and two-photon states in 6-AGNR
suggest that these systems will be fluorescent. In the case
of 5-AGNR, on the other hand, the optical state always
remains above the lowest two-photon state, although the
lowest two-photon gap does not vanish in the thermody-
namic limit (Fig 8b) but saturates at a value of 0.60 eV.
The optical gap in 5-AGNR extrapolates to 1.33 eV at
the thermodynamic limit. Optical gap larger than the
two-photon gap in 5-AGNR is a consequence of the for-
mer being dominated by Coulomb as opposed to band
contribution.

C. Charge gap

We have calculated the charge gaps in these nanorib-
bons to explore the conducting nature in the thermody-
namic limit, in the presence of long-range interactions
(Fig. 9). The charge gap of a system with N unit cells,
∆c(N) is defined as the energy required to create a well
separated electron-hole pair from the ground state of the
system: ∆c(N) = E+(N) + E−(N) − 2E0(N), where
E+(N) and E−(N) are the ground state energies of the
cation and anion respectively and E0(N) is the ground
state energy of the neutral system. In the thermody-
namic limit, the charge gaps of 3-ZGNR, 6-AGNR and
5-AGNR extrapolate to 3.09 eV, 3.58 eV and 2.46 eV
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FIG. 10. Bond indices for the interior bonds of (a) 3-ZGNR,
(b) 6-AGNR and (c) 5-AGNR.

respectively. Interestingly, the exciton binding energy
(Exb) of the optical state (E1ph) which is measured as
Exb = Ecg − E1ph is quite small in all the three GNRs
compared to other known organic conjugated systems.
The exciton binding energies are 0.84 eV in 3-ZGNR, 1.13
eV in 6-AGNR and 1.13 eV in 5-AGNR. Hence, these con-
jugated systems can have importance in molecular photo-
voltaics as the electron-hole pair can be relatively easily
disassociated.

D. Bond order

We have calculated bond orders for the ground state
and a few low-lying excited states of the largest systems
we studied. The bond order (pij) for the < i, j > bond

in a given state |R〉 is defined as (− 1
2
)
∑

σ〈R|(a†iσajσ +
h.c.)|R〉, and their deviation from an average value shows
the tendency for the bond to distort. If the bond order
is more (less) than the average, we expect the bond to
shorten (lengthen) at equilibrium geometry. The num-
bering of bonds in the interior units of 3-ZGNR, 6-AGNR
and 5-AGNR are shown in Fig. 10. The bond orders
towards the ends of the ribbons are normally different
from the bond orders in the interior because of edge ef-
fects. In Table III, the bond orders of the interior unit
of 3-ZGNR are given. In 3-ZGNR series, we have given
bond orders for two different system sizes; one with 13
monomer units, which has a singlet ground state and
another one with 16 monomer units with triplet ground
state. In both systems, the bond order difference be-
tween edge bonds in the ground state are small, implying
almost uniform geometry of the edges. The rung bond
orders are slightly smaller than the edge bonds, imply-
ing longer rung bonds than edge bonds at equilibrium
geometry. The ground state, optical state and the lowest
spin state all have similar geometries. The bond orders
in the singlet and triplet two-photon states are similar
away from middle of the ribbon. However, in the middle
of the ribbon, the triplet two-photon state has marked
single and double bond character in the top and bottom
edge bonds (bonds 1, 2, 10, 11).
The bond orders in 6-AGNR systems show somewhat

different behavior. In the ground state, bonds on the ring
and on the exterior of the edge (bond 13) show tendency
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TABLE III. Bond orders of an interior unit of 3-ZGNR. Bond orders in systems with ≤ 13 monomer units are given in the first
row while that for systems with > 13 monomer units are given in the second row.

State 1 2 3 4 5 6 7 8 9 10 11
Ground state 0.54 0.56 0.47 0.47 0.52 0.52 0.52 0.47 0.47 0.56 0.54

0.56 0.54 0.47 0.47 0.52 0.53 0.52 0.47 0.47 0.54 0.56
Optical state 0.54 0.57 0.46 0.46 0.54 0.50 0.54 0.46 0.46 0.57 0.54

0.56 0.54 0.46 0.46 0.51 0.54 0.51 0.46 0.46 0.54 0.56
Two-photon state 0.52 0.58 0.48 0.47 0.50 0.54 0.50 0.47 0.48 0.58 0.52

0.54 0.56 0.47 0.47 0.51 0.52 0.51 0.47 0.47 0.56 0.55
Spin state 0.56 0.53 0.47 0.47 0.52 0.53 0.52 0.47 0.47 0.53 0.57

0.54 0.55 0.47 0.47 0.53 0.52 0.53 0.47 0.47 0.55 0.54

TABLE IV. Bond orders of an interior unit of 6-AGNR.

State 1 2 3 4 5 6 7 8 9 10 11 12 13
Ground state 0.58 0.59 0.37 0.57 0.56 0.44 0.45 0.51 0.57 0.56 0.58 0.58 0.66
Optical state 0.49 0.50 0.48 0.53 0.50 0.48 0.50 0.51 0.53 0.50 0.49 0.50 0.72

Two-photon state 0.57 0.57 0.38 0.54 0.54 0.47 0.47 0.50 0.55 0.54 0.56 0.58 0.65
Triplet state 0.48 0.48 0.50 0.52 0.48 0.48 0.51 0.51 0.52 0.48 0.47 0.48 0.73

TABLE V. Bond orders of an interior unit of 5-AGNR.

State 1 2 3 4 5 6 7 8 9 10 11 12 13
Ground state 0.60 0.39 0.60 0.63 0.51 0.51 0.52 0.51 0.51 0.61 0.39 0.60 0.63
Optical state 0.57 0.42 0.57 0.67 0.51 0.51 0.51 0.51 0.52 0.57 0.42 0.57 0.67

Two-photon state 0.50 0.48 0.51 0.72 0.52 0.52 0.49 0.52 0.52 0.51 0.48 0.50 0.71
Triplet state 0.52 0.47 0.51 0.72 0.52 0.52 0.50 0.52 0.52 0.52 0.47 0.51 0.72

to contract, while bond 3 on the edge which is on the
interior shows a tendency to expand. There appears to
be a period (short-short-short-long) on one edge and out
of phase by two bonds on the opposite edge. In the two-
photon state, the bond orders remain almost the same
as those in the ground state. In the one-photon state,
there is considerable deviation in the bond orders in the
central region of the nanoribbon, but the effect decreases
towards the ends. However in the triplet state it appears
that this distortion is much more pronounced. Thus,
the equilibrium geometries of the excited states are quite
different from that in the ground state and we may expect
larger Stokes shifts in the spectra of 6-AGNR compared
to 3-ZGNR.

The bond orders on the edges of 5-AGNR are simi-
lar to those in the 6-AGNR. Except for the bonds which
have rather large and small bond order values, all other
bonds have nearly equal bond orders. So the distortion
is expected more on the edges than in the interior. In all
excited states, the interior bonds remain almost unper-
turbed. The edge bond structure in the central region of
the nanoribbon shifts from short-long-short-short mod-
ulation to long-long-long-short modulation, while being
unchanged towards the ends of the nanoribbon. The ex-
tent of distortion in the central region is highest in the

two-photon and triplet states as compared to one-photon
state.

IV. CONCLUSION

We have studied correlated electronic properties of 3-
ZGNR, 6-AGNR and 5-AGNR within the PPP Hamilto-
nian with long range Coulomb interactions. In all three
cases the ground state, as well as excited state behavior
are qualitatively different from the predictions of tight-
binding theory, as summarized below.

We find 3-ZGNR to be a magnetic semiconductor with
a Mott-Hubbard optical gap and a substantive exciton
binding energy. The lowest two-photon state is gapless.
The semiconducting behavior of 3-ZGNR is not entirely
unanticipated, as similar Mott-Hubbard semiconducting
behavior was previously predicted from correlated-electron
calculations67,68 and also experimentally demonstrated69

in narrow single-walled carbon nanotubes which would be
metallic within one-electron theory. As with 3-ZGNR,
5-AGNR is expected to exhibit metallic behavior within
tight-binding theory, but is also found to be a Mott-
Hubbard semiconductor here, with now however a sin-
glet ground state with small spin gap. The two-photon
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state is again below the optical gap. 5-AGNR thus resem-
bles an idealized trans-polyacetylene strand, where bond-
dimerization leads to a spin gap, and where the occur-
rence of the two-photon state below the one-photon optical
gap is believed to be a signature of greater Mott-Hubbard
contribution to the optical gap than the contribution due
to the Peierls bond-dimerization35. In 6-AGNR, the
one-electron optical gap is enhanced by Coulomb inter-
actions, there occurs a large spin gap and the two-photon
state occurs above the optical gap. The overall behav-
ior is reminiscent now of the conjugated polymers poly-
paraphenylene and poly-paraphenylenevinylene, where the
optical gap is dominated by the one-electron gap ex-
pected in systems with unit cells containing an even
number of carbon atoms33. The three GNRs we have
studied thus span the full range of behavior expected in
quasi-one dimensional correlated-electron systems. Con-
versely, the apparent similarities between these narrow
GNRs and conjugated polymers reflect the deep and fun-

damental universality that exists among low-dimensional
correlated-electron systems. Experimental tests of our
theoretical predictions will provide fresh insight on the
role of electron-electron interactions in carbon nanos-
tructures. It is also of interest to determine how these
features evolve upon controlled increase in the widths of
GNRs. This is a topic of future research.
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