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There has been a growing interest in realizing topologically nontrivial states of matter in band insulators,

where a quantum Hall effect can appear as an intrinsic property of the band structure. While the on-going

progress is under way with a number of directions, the possibility of realizing novel interaction-generated topo-

logical phases, without the requirement of a nontrivial invariant encoded in single-particle wavefunction or band

structure, can significantly extend the class of topological materials and is thus of great importance. Here, we

show an interaction-driven topological phase emerging in an extended Bose-Hubbard model on kagome lattice,

where the non-interacting band structure is topological trivial with zero Berry curvature in the Brillouin zone.

By means of an unbiased state-of-the-art density-matrix renormalization group technique, we identify that the

groundstate in a broad parameter region is equivalent to a bosonic fractional quantum Hall Laughlin state, based

on the characterization of universal properties including groundstate degeneracy, edge excitations and anyonic

quasiparticle statistics. Our work paves a way of finding interaction induced topological phase at the phase

boundary of conventionally ordered solid phases.

I. INTRODUCTION

While fundamental particles in nature are either bosons

or fermions, the emergent excitations in two-dimensional

strongly-correlated systems may obey fractional or anyonic

statistics1,2. The most famous example is the quasiparticles or

quasiholes in fractional quantum Hall (FQH) effects in strong

magnetic field, which are topological states of matter whose

low-energy physics is governed by the Chern-Simon gauge

theory. Interestingly, recent theoretical discoveries have re-

vealed that FQH effects can also be realized in lattice systems

in the absence of an external magnetic field3–7. Such a lattice

realization of FQH phases is attributed to two key points: 1)

a nearly dispersionless single-particle energy band with non-

trivial topology characterized by a nonzero Chern number, 2)

and a strong many-body interaction comparing to the band

width. The condition of nearly flat topological band is es-

sentially important, as the kinetic energy of particles can be

quenched in such a topological band akin to the Landau level

physics. The strong interaction also plays the vital role in sta-

bilizing the FQH phases. In fact, without the interaction or

interaction being a subleading correction, the system is ex-

pected to be in a Fermi liquid like state at fractional fillings

rather than forming a topological phase.

Given above facts, a natural question that we address in

this paper is whether a FQH phase is also possible in a lat-

tice model with trivial non-interacting band. Actually, there

have been a series of proposals along this direction8–13, where

the common wisdom is that the presence of strong interac-

tions in a strongly frustrated system can give rise to a nonlocal

complex bond order parameter and a spontaneous breaking

of time-reversal symmetry (TRS) through flux attachment8.

However, lacking of a theoretical method to predict the quan-

tum phase for microscopic interacting systems, theoretical

studies usually resort to different mean-field approximations,

which often favor topological phases. As an example, Raghu

et. al10 showed that a quantum anomalous Hall effect can be

dynamically generated in an extended Hubbard model on the

honeycomb lattice. The similar idea has been applied to other

lattice systems with a quadratic band crossing point, such as

kagome11, checkerboard12, diamond13 and Lieb lattice14,15.

However, comprehensive numerical studies have been search-

ing for true groundstates in different lattice systems and failed

to find exotic topological phases predicted by the mean-field

theories16–21. Here a crucial difficulty is that, instead of trig-

gering the desired TRS spontaneously breaking, the strong

interactions also tend to stabilize competing solid orders by

breaking translational symmetry. Thus, the simple concept of

realizing interaction-induced FQH phases in topological triv-

ial bands was illusive in realistic lattice models.

Very recently, theoretical studies of extended kagome anti-

ferromagnetic systems have discovered a particular class of

spin liquids, the so-called chiral spin liquid22,23, with TRS

spontaneously24,25 (or explicitly26) broken, which shed lights

on this elusive area: Long-ranged frustrated interactions may

favor the FQH-like ground state near the boundary between

ordered states27. So far the existing examples are rare and

all occur at the half-filling (half of spins are pointing up in

z-direction) on kagome lattice, which may be attributed to

quantum fluctuations near the non-coplanar spin ordered state

(cuboc phase)27–29. Thus it is highly desired to search for the

interaction-induced FQH phase beyond the half-filling, which

serves as the proof of the principle that TRS broken phase can

emerge in more general conditions without a nearby cuboc

phase. On the other hand, kagome-based magnetic systems

have been widely studied under an external magnetic field61,

which can tune the spin systems into different magnetizations

corresponding to hardcore boson systems at different fillings.

The interesting candidate states have been established includ-

ing the valence bond crystal state30–32 and the featureless Mott

insulator33 as possible groundstates. Beside these topological

trivial phases, a Z2 topological phase may survive in an easy-

axis kagome system34, which is currently under debate35. It is

theoretically proposed that FQH state can also emerge at 1/3

filling36,37, however, so far this possibility has not been estab-

lished by controlled theoretical methods beyond mean-field

approaches. Along this line, the existence of a topological
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ordered phase at one-third filling remains open.

In this paper, we study an Bose-Hubbard model on the

kagome lattice in the hard-core limit:

H = t
∑

〈rr′〉

[

b†
r
′br + H.c.

]

+ V1
∑

〈rr′〉
nrnr

′

+ V2
∑

〈〈rr′〉〉
nrnr

′ + V3
∑

〈〈〈rr′〉〉〉
nrnr

′ (1)

, where b†
r

(br) creates (annihilates) a hard-core boson at site

r. t = 1 is the nearest-neighbor hopping amplitude, V1, V2, V3
are the density-density repulsion strengths on first, second and

third nearest neighbors, respectively. We focus on the bo-

son filling number 1/3 in this paper. This model can also be

mapped onto the spin−1/2XXZ model, allowing for an inter-

pretation of our results in terms of both bosons and quantum

spins. The energy band for hosting hardcore bosons is topo-

logical trivial (with real hopping terms) with zero Berry cur-

vature in the Brillouin zone. In order to study the ground state

phase diagram in the {V1, V2, V3} parameter space, we im-

plement the density-matrix renormalization group (DMRG)

algorithm on cylinder geometry combined with the exact di-

agonalization (ED) on torus geometry (see Appendix A for

computational details), both of which have been proven to be

powerful and complementary tools for studying realistic mod-

els containing arbitrary strong and frustrated interactions.

II. RESULTS

A. Phase Diagram

Our main findings are summarized in the phase diagram

Fig. 1(a-b). In the parameter region V2 ≈ V3 and V2, V3 > V1
(0 6 V1 6 2.0), we find a robust FQH phase emerging with

the TRS spontaneously breaking. The FQH phase is centered

around the line V2 ≈ V3, which persists to |V2 − V3| < 0.1
approximately as shown for V1 = 0 in Fig. 1(b). The FQH

phase is characterized by a four-fold groundstate degeneracy

on torus geometry, which arises from two sets of Laughlin

ν = 1/2 FQH states with opposite chiralities. In particular,

the TRS spontaneous breaking can be inspected by identifying

local circulating currents on the cylinder geometry, while the

nature of bosonic Laughlin ν = 1/2 state will be identified

by the edge excitation spectrum, fractional Chern number and

the anyonic quasiparticle statistics as elaborated later. Inter-

estingly, we also show that the FQH liquid phase is neighbor-

ing with several solid phases which all respect TRS (without

emergent spin current): a strip phase, a charge density wave

q = (0, 0) phase, and q = (0, π) phase with q as the ordering

wave vectors. Compared to the distinctive Bragg peaks in the

structure factor for solid phases (Fig. 1(c-d)), the FQH phase

shows a structureless feature (Fig. 1(e)). Finally, between

the FQH phase and q = (0, 0) phase, there exists a narrow

window for the coexistence of both FQH and charge density

order (labeled by shaded area in Fig. 1(a)). By comparing

our quantum phase diagram with the classical phase diagram,

we find that the FQH phase is present near the classical phase
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FIG. 1: Phase diagram of the extended Bose-Hubbard model on

kagome lattice obtained by DMRG calculations on cylinder of cir-

cumference Ly = 4. (a)The phase diagram plotted in V1 and

V2 = V3 parameter space. The shaded area is a coexistence re-

gion. (b)The phase diagram plotted in V2 and V3 parameter space by

setting V1 = 0. The contour plots of static density structure factor

for: (c) charge density wave q = (0, 0) phase, (d) strip phase and (e)

FQH phase. The white dashed line shows the first Brillouin zone.

boundary neighboring with different solid phases (Appendix

B). The current work provides an example of bosonic topo-

logical phase (or chiral spin liquid in spin language) beyond

half-filling on kagome lattice, which distinguishes our work

from earlier results at half-filling24–26.

B. Energy Spectrum and Doubled Topological Degeneracy

Topological ordered states have characteristic groundstate

degeneracy on compactified space (i.e. torus) while TRS

spontaneous breaking topological phase has doubled topolog-

ical degeneracy. To demonstrate this property in the interme-

diate FQH region, we first investigate the low-energy spectra

based on ED calculation. In Fig. 2, we show the scan of en-

ergy spectra along the line V1 = 0.5 and varying V2 (= V3).

It is clear shown that there is a fourfold groundstate degen-

eracy in the regime 0.8 < V2 = V3 < 1.5, which is sepa-

rated by higher excited states by a robust spectrum gap. The

fourfold degeneracy arises from two-fold topological degen-

eracy for the ν = 1/2 Laughlin state (full evidences will be

shown below) and an additional factor of 2 from two-copies

of states with the opposite chirality due to the TRS sponta-

neously breaking. All four groundstates are located in mo-

mentum sector k = (0, 0), consistent with the expectation

of the momentum folding rule for emerging FQH state with

12 particles on 3 × 3 × 4 kagome lattice6,7. The low-energy

spectrum gap for different system sizes is shown in Fig. 2(b),

where we find that the energy gap between the fourth lowest

energy state and the fifth one is robust against the increase of

system sizes (Fig. 2(b)). This result indicates the emergent
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FIG. 2: Energy spectra from ED calculation. (a) A scan across the

reference line in Fig. 1 by setting V1 = 0.5 on the Ns = 3 × 3 ×
4 = 36 sites cluster. The four-fold degeneracy of the FQH state

is present around 0.8 < V2 = V3 < 1.5. Different colors and

symbols correspond to different momentum sectors. (b) Energy gap

for various system sizes Ns by setting V1 = 0.5, V2 = V3 = 1.2.

(c)Contour plot of energy gap versus V1 and V2 = V3 on Ns = 36
sites cluster.

FQH phase may be robust at thermodynamic limit, which will

be further confirmed by our larger system results based on

DMRG. We also find that the energy gap is robust in the whole

FQH regime while it drops to near zero at the phase boundary

as illustrated in Fig. 2(c).
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FIG. 3: Local current Jij pattern of |ΨL

11〉 from DMRG calculation.

The parameter is V1 = 0.5, V2 = V3 = 1.2 on Ly = 4 cylinder

(only show the five columns in the center). Width of bond is propor-

tional to the current value (Jij is shown on the bond as a number)

and arrows correspond to current directions.

C. Time Reversal Symmetry Spontaneously Broken and Local

Current

Since the Hamiltonian (Eq. 1) preserves TRS, the emergent

FQH state as the groundstate breaks TRS spontaneously. To

investigate this mechanism, we move to larger systems with

the cylinder geometry and obtain the groundstates |ΨL(R)

11,s
〉

by implementing DMRG calculation. By using different ran-

dom initial wavefunction in DMRG, we obtain four different

groundstates. Here we label topologically different ground-

states by their chiral and anyonic nature on cylinder geome-

try, where L (R) stands for “left-hand” (“right-hand”) chiral-

ity, and 11 (s) stands for identity (semion) quasiparticle (see

below).) A simple picture of the TRS broken can be obtained

by measuring the local circulating currents in real-space. As

shown in Fig. 3, the current Jij = Im〈ΨL
11
|b†ibj |ΨL

11
〉 be-

tween two nearest-neighbor sites (i, j) forms loop structure

and is in the clockwise direction in each triangle in the bulk

of the system, which is referred as “left-hand” chirality. The

emergent loop current is a direct demonstration of TRS spon-

taneously breaking for the state, which enables experimental

detecting from local current measurements. Here the spin cur-

rent at one-third filling is distinct from the previously discov-

ered chiral spin liquid at half filling where the net spin current

is zero24–26. In addition, we also find that the TRS partner

|ΨR
11,s

〉 hosts anti-clockwise loop current in each triangle.

D. Fractionalization and Fractional Statistics for

Quasiparticles

To uncover the anyonic nature of groundstates in the in-

termediate region, we investigate hallmark signatures of FQH

state including characteristic excitation spectrum on the edge,

fractional Chern number and quasiparticle braiding statistics

in the bulk. All the evidences we obtain fully support the

topological phase in the intermediate region is the emerging

bosonic ν = 1/2 Laughlin state.

1. Entanglement Spectrum

Firstly, we study the characteristic edge excitation with the

help of entanglement spectrum (ES)38, as partitioning a cylin-

der into two halves manifests a “spatial” boundary. Fig. 4

shows the ES for two of the groundstates |ΨL
11,s

〉 with “left”

chirality. The ES is grouped by the relative boson number

∆NL of the half system and their relative momentum quan-

tum number ∆Ky (relative to the total Ky of the highest

weight spectrum level) along the transverse direction (referred

to as y-direction). The leading ES of |ΨL
11,s

〉 displays the se-

quence of degeneracy pattern {1, 1, 2, 3, 5, ...} in each ∆NL

sector. The finite splitting among degeneracy group is due

to the finite size effect. Importantly, the edge mode count-

ing rule agrees with the prediction of the free chiral boson

in SU(2)1 conformal field theory which describes the edge

theory of Laughlin state39. In addition, Fig. 4 also signals

the chiral nature of the edge spectrum (ES increases as Ky

varies from 0 to −2π by a step ∆Ky = −2π/Ly), which re-

sults from the TRS spontaneously breaking. The other two

groundstates |ΨR
11,s

〉 with “right” chirality have opposite chi-

rality (δKy = 2π/Ly) but the same degeneracy pattern in

ES (not shown). Compared with previously works at half-

filling24–26, we did not observe the emergent SU(2) symme-

try between different NL sectors, since the ∆NL = 1 is no

longer equivalent to ∆NL = −1 away from half filling.
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FIG. 4: The low-lying ES of |ΨL

11 (left) and |ΨL
s (right) on Ly = 6

cylinder. The ES is labeled by the relative boson number ∆NL =
NL −N0

L of left half cylinder in each tower (N0

L is the boson num-

ber of the state of reduced density matrix with the largest eigen-

value). In each tower, the horizontal axis shows the relative mo-

mentum ∆Ky = Ky − K0

y in the transverse direction of the corre-

sponding eigenvectors (K0

y is momentum of the state with the largest

eigenvalue in each tower). The numbers below the red dots label the

nearly degenerating pattern for the low-lying ES with different ∆Ky .

The black dashed line shows the entanglement gap in each momen-

tum sector.

2. Fractional Charge and Chern Number Quantization

Secondly, we perform a numerical flux insertion simula-

tion on cylinder systems24,40–42, to determine the quantiza-

tion of Hall transport and the topological Chern number of

the ground state. This simulation realizes Laughlin gedanken

experiment43–45, where a quantized charge will be pumped

from one edge to the other edge by inserting a U(1) charge

flux in the hole of the cylinder for a quantum Hall state. As

shown in Fig. 5 (a), by threading a flux quantum θ = 2π,

|ΨL
11
〉 adiabatically evolves into |ΨL

s 〉. Further increasing flux

up to 4π will drive the system back to the |ΨL
11
〉. Interest-

ingly, comparing the ES at θ = 0 and 4π, the adiabatic flux

insertion shifts the lowest level of ES from ∆NL = 0 to

∆NL = −1, signaling a net charge transfer ∆Q = 1 (a unit

charge) from the left edge to the right edge. In Fig. 5(b),

the net charge transfer ∆Q is demonstrated, which is nearly

quantized at ∆Q ≈ 0.50 at θ = 2π. Based on these observa-

tions, we identify the bulk Chern number of the groundstate

as C11 = Cs = 1/2, fully characterizing the obtained state as

the Laughlin ν = 1/2 state.

Here we identify each groundstate hosts a fractional Chern

number C = 1/2, which is similar to the Laughlin ν = 1/2
state in fractional Chern insulator46. The key difference is, the

ground state in the fractional Chern insulator inherits the non-

trivial topology from the non-interacting band. However, our

extended Bose-Hubbard model (Eq. 1) has a Chern number

C = 0 for the single-particle band. Thus, our model realizes

an interaction-driven topological phase from a topologically

trivial band structure47 resulting from the spontaneous TRS

breaking.
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FIG. 5: (a) The ES flow with inserting flux θ in the hole of the cylin-

der with Ly = 4. Starting from the identity ground state |ΨL

11〉 at

θ = 0, the system evolves into the ground state |ΨL
s 〉 by adiabati-

cally threading a θ = 2π flux. Further increasing flux up to 4π will

drive the system back to the identity ground state |ΨL

11〉. (b) Charge

transfer from one edge to the other edge on the cylinder geometry.

3. Modular Matrix

We further demonstrate the fractional quasiparticles in the

bulk satisfy the so-called “semionic” statistics, as expected

for Laughlin ν = 1/2 state. In the topological quantum field

theory, quasiparticle statistics is encoded in the modular ma-

trices which describe the action of modular transformation

on the topological groundstates48–50. The S−matrix contains

the mutual statistics information of the anyonic quasiparticles,

such as quantum dimensions and fusion rules between differ-

ent quasiparticles. The U−matrix encodes the self-statistics

of the quasiparticles, i.e. topological spin hi. Here we uti-

lize the route of the “twist” overlap between the two topolog-

ically degenerating groundstates |ΨL
11
〉 and |ΨL

s 〉 to construct

the modular S and U matrices51–53.

The obtained results at V1 = 0.5, V2 = V3 = 1.0 onLy = 4
cylinder are

S ≈ 1√
2

[

1 1
1 −1

]

+

[

0.029 0.053
0.005 0.036 + 0.033i

]

U ≈ e−i 3π
4

[

1 0
0 i

]

×
[

1 0
0 ei0.03π

]

.

Indeed, the numerical obtained modular matrices are very

close to the analytical prediction from SU(2)1 Chern-Simons

theory48–50,69: SSU(2)1 = 1√
2

[

1 1
1 −1

]

and USU(2)1 =

e−i π

12

[

1 0
0 i

]

. From S− and U− matrices, we obtain full

statistics of fractionalized quasiparticles: 1) There are two

kinds of quasiparticles in total: Identity 11 and semion s, and

the total quantum dimension is D =
√
2; 2) The fusion rule of

quasiparticles (that specifies how the quasiparticles combine

and fuse)49: 11 × s = s, s × s = 11; 3) 11 and s respectively

has topological spin (the phase factor for the quasiparticle ob-

tained during a self-rotation of 2π): h11 = 0, hs = 1/4.

These braiding statistics provides the strongest confirmation

that the topological groundstate is equivalent to the bosonic

FQH ν = 1/2 state.
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III. DISCUSSION AND CONCLUSION

We have established a phase diagram for the Bose-Hubbard

model for kagome system at 1/3 filling number with the emer-

gent FQH phase in the intermediate regime. We also address

the nature of the quantum phase transitions between the FQH

phase and solid phases (see Appendix D). We utilize several

quantities, such as entanglement entropy, correlation length

and groundstate wavefunction fidelity. The numerical evi-

dences signal the first order character of the phase transition

between FQH phase and the strip phase as well as the charge

density wave state. Moreover, we also find that in all three

phases, the obtained correlation length is much smaller than

the cylinder width Ly , which confirms that our DMRG calcu-

lation offers a reliable phase diagram for the thermodynamic

limit.

Regarding the laboratory realization for the emergent FQH

state, a natural experimental setting for Bose-Hubbard physics

is ultracold atomic gases54. One advantage of our model

is that it only contains real nearest-neighbor hoppings and

density-density interactions. Moreover, we also note that

there are several existing candidates of spin−1/2 materi-

als with kagome structure, such as BaCu3V2O8(OH)2
59,

Cu3(Mg,Zn)O7(OH)2 ·H2O
60, Cu3V2O7(OH)2 ·H2O

61,

Rb2Cu3SnF12
62 and Dy3Ru4Al12

63, and each of them has

its own interactions deserving to be studies more carefully un-

der magnetic field for possible detecting of the exotic mag-

netization plateaus. But the fine tuning of second and third

nearest neighbor interactions in such materials may be diffi-

cult to achieve. So the material-realization of our proposed

FQH phase in condensed matter setting may depend on syn-

thesising more kagome materials in the future.

In conclusion, we have presented a global phase diagram

of an extended Bose-Hubbard model on the kagome lattice

at fractional one-third filling. Importantly, the interplay be-

tween the underlying lattice and strong interaction gives birth

to a fractional quantum Hall (FQH) liquid phase, even though

the non-interacting band structure is topological trivial. We

also provide complete characterization of the universal prop-

erties of the FQH phase, including ground state degener-

acy, topological entanglement spectrum, fractionally quan-

tized Chern number and anyonic quasiparticle statistics. To

our best knowledge, this is the first example of a TRS break-

ing topological phase at one-third filling on kagome lattice

system.

We believe our current work will inspire upcoming research

efforts both in theoretical and experimental fields. From the

theoretical side, the origin of topological phase in bosonic sys-

tem is under intense study. Very recently, Ref.70 proposed a

plausible theory to understand the microscopic origin of chi-

ral spin liquid on kagome lattice. However, this theory only

applies to half filling on kagome system (At one-third filling,

the mapping shown in that paper only gives topological triv-

ial phase). Our current findings and also previous theoretical

works36,37 will stimulate further study on the origin of bosonic

topological phases (or chiral spin liquid) on kagome lattice.

Moreover, the present calculations show that the model of

strongly interacting hard-core bosons can harbor rich and in-

teresting phases through interaction engineering. It is also

interesting to study the interacting particles to be spinless or

spinful fermions, since the possible topological liquid phase in

fermionic models has been sought for a long time10,11. From

the experimental side, our work will provide direction and in-

sight in searching for the topological liquid phase in realis-

tic materials with kagome lattice structure, or by engineering

such systems in ultracold atomic settings. Thus our present

findings would provide both theorists and experimentalists a

rich playground in searching of new topological phases in-

duced by strong interaction.
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Appendix A: Method

In this paper, the calculations are based on the density-

matrix renomralization group (DMRG) algorithm on cylinder

geometry64,65 and the exact diagonalization (ED) on torus ge-

ometry, both of which have been proven to be effective and

complementary tools for studying realistic models containing

arbitrary strong and frustrated interactions. On one hand, ED

is straightforward in identifying the groundstate degeneracy

on compactified spaces. But the drawback is that with the ex-

ponential growing of the Hilbert space, the accessible systems

are limited to smaller sizes, up to Ns = 36 for this study.

On the other hand, DMRG calculation allows us to obtain ac-

curate groundstates and related entanglement measurements

on much larger system sizes beyond the ED limit. More-

over, DMRG calculation also has the advantages of probing

ground states with spontaneous symmetry breaking and topo-

logical ordering. The DMRG calculations on long cylinder

tend to automatically select the groundstates with minimal

entropy66, which is helpful to study the fractionalized quasi-

particle statistics in topological ordered states52.

1. Details of DMRG Calculation

We study the cylinder system with open boundaries in the

x direction and periodic boundary condition in the y direc-

tion. The available system sizes are cylinders of circumfer-

ence Ly = 3, 4, 5, 6 (in unit of unit cell). For the largest sys-

tem width (Ly = 6), we keep up to M = 8400 U(1) states

and reach the DMRG truncation error 5× 10−7.

The entanglement entropy and spectrum can be easily ob-

tained in the DMRG. By partitioning the system into sub-

systems A and B, the groundstate wavefunction |ψ〉 can

be decomposed according to Schmidt decomposition |ψ〉 =



6

∑

i λ
1/2
i |ψi

A〉|ψi
B〉, where λi are eigenvalues of the reduced

density matrix ρ̂A of subsystem A. Thus the entanglement en-

tropy can be defined as SA = −tr[ρ̂A ln ρ̂A] = −
∑

i λi ln λi.
The eigenvalues log{λi} plotted against the relative momen-

tum quantum number ∆ky of the subsystem A, is defined as

the entanglement spectrum38.

2. Adiabatic DMRG and Fractionally Quantized Chern

Number

We have used the numerical flux insertion experiment based

on the adiabatical DMRG simulation to detect the topological

Chern number of the bulk system24,40,41. To simulate the flux θ
threading in the hole of a cylinder, we impose the twist bound-

ary conditions along the y direction with replacing terms

b†
r
′br + h.c. → eiθr′rb†

r
′br + h.c. for all neighboring (r, r′)

bonds with hoppings crossing the y-boundary in the Hamilto-

nian (Eq. 1). The charge pumping from one edge to the other

edge can be computed from 〈∆Q(θ)〉 = Tr[ρ̂L(θ)Q̂(θ)],

where Q̂(θ) is the U(1) quantum number and ρ̂L(θ) is re-

duced density matrix of left half system. Due to the quantized

Hall response, the Chern number of ground state is equal to

the charge pumping by threading a θ = 2π flux43. To realize

the adiabatic flux insertion, we use the step of flux insertion

as ∆θ = 0.25π.

Appendix B: Classical Phase Diagram

In this section, we discuss the phase diagram of the model

without hopping term t = 0, where the system reduces

to a classical Ising model with competing antiferromagnetic

interactions17. We compare the energy of four states, i.e., the

q = (0, 0) state, the q = (0, π) state, the stripe state, and the√
3 ×

√
3 state. The pattern of these states are shown in the

inset of Fig. 6(a). Interestingly, we find that when both V2, V3
are larger than V1, the stripe state always has the lowest en-

ergy; otherwise, the q = (0, 0) and q = (0, π) states compete

depending on the strengths of V2 and V3 (see Fig. 6(a)).
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FIG. 6: Classical phase diagram in {V1, V2, V3} parameter space.

(a)The phase diagram plotted in V2/V1 and V3/V1 parameter space.

The insets show the unit cells of the different phases, where the

large and small circles denote the occupied and the unoccupied sites.

(b)The phase diagram plotted in V1 and V2 = V3 parameter space.

It is interesting to compare this classical phase diagram with

the quantum phase diagram as shown in Fig. 1(a). To compare

them, we set V2 = V3 as shown in Fig. 6(b), where the system

shows two phase regions, a stripe phase and a charge den-

sity wave phase region with the boundary at V2 = V3 = V1.

Interestingly, the charge density wave states with q = (0, 0)
and q = (0, π) are degenerated in the case of V1 < V2. In the

quantum case, the degeneracy is lifted with the q = (0, 0) state

having the lower energy. The FQH phase obtained by DMRG

appears in the transition region between the stripe phase and

the q = (0, 0) phase of the classical phase diagram. The

emergence of the topological phase appears seems to arise as

a result that quantum fluctuations destroy long-ranged orders

around the transition region. This could serve as a guiding

principle for finding topological phases in other models and/or

on other lattices.
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FIG. 7: Entanglement entropy scaling with Ly .

Appendix C: Topological entanglement entropy

For a gapped quantum phase with topological order,

the topological entanglement entropy (TEE) γ is proposed

to characterize the non-local entanglement67,68. Generally

speaking, entropy has the form S = αLy−γ, where Ly is the

boundary of the subsystem, and α is a non-universal constant.

While a positive γ is a correction to the area law of entangle-

ment and reaches a universal value determined by total quan-

tum dimensionD of quasiparticle excitations as γ = lnD. For

the ν = 1/2 Laughlin state, the quantum dimension of each

quasiparticle is 1 (see main text), leading to the total quantum

dimension D =
√
2 and thus the TEE γ = lnD = 1

2 ln 2.

By using the DMRG simulations, we obtain the minimal

entropy state51,66 with spontaneously broken time-reversal

symmetry and calculate the corresponding Von Neuman en-

tanglement entropy. The converged entropy are available for

Ly = 3, 4, 5, 6 cylinders. For V1 = 0.5, V2 = 1.0, V3 = 1.0,

we make a linear fitting of the entropy data for Ly = 3, 4, 5, 6
cylinders, and find the TEE γ ≈ 0.343± 0.075. (If we make

the linear fitting based on data for Ly = 4, 5, 6 (not shown),

the obtained result is γ ≈ 0.241 ± 0.098). Despite some un-

certainty in the fitting, the obtained TEE approaches the pre-

diction of the ν = 1/2 Laughlin state γ = 1
2 ln 2 ≈ 0.346.
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FIG. 8: (a) Entanglement entropy and (b) correlation length versus

V2(= V3) by setting V1 = 0.5. The calculations are performed on

Ly = 4 cylinder, by keeping M = 800 (brown dots) and 1600 (blue

dots) states. (c) Wavefunction fidelity plotted as V2(= V3) by setting

V1 = 0.5. The calculations are performed on Ly = 4 cylinder, by

keeping M = 800.

Appendix D: Quantum phase transitions

In order to uncover the nature of corresponding phase tran-

sitions between FQH phase and solid phases, we inspect sev-

eral quantities that are expected to be sensitive to a phase tran-

sition, such as the entanglement entropy S, and correlation

length ξ. Both quantities are expected to show a finite jump

when crossing a first order transition. We also calculate the

groundstate wavefunction fidelity F = |〈ψ(V )|ψ(V + δV )〉|
(V is some parameter in Hamiltonian)65, which can faithfully

describe the first-order transition or energy level crossing.

We show the results along the reference line in Fig. 1 (in

the main text), by fixing V1 = 0.5 and varying V2 = V3. In

Fig. 8(a), it is found that the entanglement entropy shows

a sharp jump around V2 = V3 ≈ 0.8 and a drop around

V2 = V3 ≈ 1.5. We also observe the similar behavior when

looking at the correlation length, as shown in Fig. 8(b). Both

of these two measurements signals a direct first order phase

transition between FQH phase and solid phases. In addition,

we also find that, between the FQH phase and charge den-

sity wave q = (0, 0) phase, there exists a narrow window

for the coexistence of both FQH nature and the charged or-

der, as shown by the shaded area in the phase diagram. We

have checked that, in this intermediate regime, the ground-

state hosts the quantized Chern number C = 1/2, but devel-

ops weak charge order. From the wavefunction fidelity in Fig.

8(c), it is shown a first-order transition between the coexis-

tence region and the FQH phase (q = (0, 0) phase).

Moreover, when studying the topological order on cylin-

der geometry with finite width Ly, the correlation length ξ of

the ground state offers a natural consistency check for the as-

sumption that the value of Ly is large enough to be represen-

tative of the thermodynamic limit. The correlation length is

defined by ξ = − ln |ǫ1/ǫ2|, where ǫ1,2 are two largest eigen-

value from transfer matrix65. If Ly is much larger than ξ, we

indeed expect finite size effects to be very small. Indeed, in

Fig. 8(b), the condition Ly > ξ is satisfied so that our DMRG

calculation offers a reliable and relevant results for thermo-

dynamic limit. Based on these measurements, we expect the

finite size effect should be small in our calculations.
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56 H. P. Büchler, E. Demler, M. Lukin, A. Micheli, N. Prokof’ev,

G. Pupillo, and P. Zoller, Phys. Rev. Lett. 98, 060404 (2007).
57 S. Flling, F. Gerbier, A. Widera, O. Mandel, T. Gericke, and

I. Bloch, Nature 434, 481 (2005).
58 G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger,

D. Greif, and T. Esslinger, Nature 515, 237 (2014).
59 H. Okamoto, Y.and Yoshida and Z. Hiroi, J. Phys. Soc. Jpn. 78,

033701 (2009).
60 O. Janson, J. Richter, and H. Rosner, Phys. Rev. Lett. 101, 106403

(2008).
61 H. Ishikawa, M. Yoshida, K. Nawa, M. Jeong, S. Krämer, M. Hor-
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