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We derive the single-particle eigenenergies and eigenfunctions for massless Dirac fermions confined to the
surface of a sphere in the presence of a magnetic monopole, i.e., we solve the Landau level problem for electrons
in graphene on the Haldane sphere. With the single-particle eigenfunctions and eigenenergies we calculate the
Haldane pseudopotentials for the Coulomb interaction in the second Landau level and calculate the effective
pseudopotentials characterizing an effective Landau level mixing Hamiltonian entirely in the spherical geometry
to be used in theoretical studies of the fractional quantum Hall effect in graphene. Our treatment is analogous
to the formalism in the planar geometry and reduces to the planar results in the thermodynamic limit.

PACS numbers: 71.70.Di, 73.43.-f, 71.10.Ca, 72.80.Vp
I. INTRODUCTION

The fractional quantum Hall effect (FQHE) provides a well-
established experimental manifestation of a strongly corre-
lated electron system supporting topologically ordered ground
states. When quasi-two-dimensional electrons are placed in a
strong perpendicular magnetic field of strength B (tens of tes-
las) at very low temperatures (7" < 1K) such that the electron
filling factor v = 27l%p is a rational fraction (Ip = \/hc/eB
is the magnetic length and p is the two-dimensional electron
density) the kinetic energy is quenched (macroscopically de-
generate Landau levels form), the low-energy physics is domi-
nated by the electron-electron interaction, and an incompress-
ible topological ordered quantum fluid forms ~. The experi-
mental phenomena of the FQHE is the observation of a plateau
in the Hall resistance R, = h/fe? along with a vanishing of
the longitudinal resistance R, = 0, when f = p/q is a ra-
tional fraction. The existence of fractionally charged Abelian
anyonic quasiparticles is experimentally established with the
observation of fractional charge combined with an unambigu-
ous theoretical understanding -*. In addition, there is tantaliz-
ing and controversial experimental evidence of Abelian and
non-Abelian statistics’. However, the observation of frac-
tional braiding statistics and the definitive observation of non-
Abelian anyon quasiparticles” remain elusive—the experimen-
tal confirmation of either would be a major step towards the
construction of a topologically protected quantum computing
device™".

The FQHE requires a quasi-two-dimensional electron sys-
tem and was first discovered in GaAs semiconductor het-
erostructures and has since been observed in other quasi-two-
dimensional systems, one of which is the newly discovered
atomically thin two-dimensional system of graphene’. The
experimental exploration of the FQHE in graphene is still in
its relatively early development™™'~. Graphene is a hexagonal
crystal system of carbon atoms with two atoms (A and B sites)
per unit cell. The low-energy Hamiltonian, in the continuum
limit of a nearest neighbor tight binding model, consists of 7-
electrons in two bands (K and K’ valleys) each with a mass-
less linear spectrum, therefore, each two-dimensional electron
has a spin and valley index. In the presence of a perpendicu-

lar magnetic field, the linear Dirac spectrum gives a cyclotron
energy of sgn(n)\/2|nlhivr/lp = (2.2/¢) K where € is the
dielectric and vy ~ 10° m/s is the Fermi velocity. The Landau
level index n = 0,+£1, 42, ... has a spacing between consec-
utive Landau levels decreasing as 1/+/n for large n (compared
to fiw.(n + 1/2) for electrons in semiconductor heterostruc-
tures with n = 0,1,2,... with constant Landau level spac-
ing).

At the simplest level, one can theoretically study the FQHE
with a Hamiltonian consisting of only the Coulomb interac-
tion between electrons in the n'" Landau level. However, it
is important to take into account realistic physics when they
may produce qualitatively different effects compared to the
minimal model of the Coulomb Hamiltonian alone. To lead-
ing order, the most important realistic effects in graphene are
Landau level mixing and disorder. (Note that graphene is
atomically thin, so unlike the FQHE in semiconductor het-
erostructure, one does not need to consider the width of the
quasi-two-dimensional system.) Landau level mixing is the
tendency of electron/hole excitations in unoccupied/occupied
Landau levels outside the n'" level and can be parameter-

ized by the ratio « of the Coulomb interaction strength to the

Landau level spacing: k£ = ((;Zie/ll’i)) = e?/ehvr and, in-

terestingly, it is independent of the magnetic field strength.
If Kk < 1 then Landau level mixing can be safely ignored
when constructing an effective theoretical model. Experimen-
tal samples where the FQHE in graphene has been observed
(both suspended graphene and graphene on a boron nitride
substrate”™ ), however, have a Landau level mixing parame-
ter of 0.5 < k < 2.2 and Landau level mixing can never be
safely ignored in graphene. Therefore, it is important to at
least study a well-defined model where the effects of Landau
level mixing can be understood in a controlled approximation
that is exact in some limit (in our case as x — 0).

Previous numerical work "~ has shown the system to be
sensitive to small perturbations to the Hamiltonian and only
some~' have attempted to take Landau level mixing into ac-
count. In this work, however, we do not discuss specific re-
sults of exact diagonalization or variational Monte Carlo stud-
ies of the FQHE in graphene, rather, we seek to provide a more
accurate formalism going forward in which to investigate re-



alistic effects with less chance of significant systematic errors.

A technique commonly used in theoretical studies is to map
the two-dimensional plane to the compact sphere—this geom-
etry has the advantage of being free of boundaries allowing a
more straightforward study of bulk properties (we will discuss
the spherical geometry in more detail below). Most numerical
studies of the FQHE in graphene that have utilized the spheri-
cal geometry have formulated the Hamiltonian describing the
electron-electron interactions in terms of Haldane pseudopo-
tentials calculated in the infinite planar geometry. While it
is feasible that the use of planar pseudopotentials in spher-
ical geometry calculations may better approximate the ther-
modynamic limit, when the energy difference between com-
peting FQH states is small, which is apparently the case for
the FQHE in graphene, it is important to carefully approach
the thermodynamic limit using spherical geometry pseudopo-
tentials. Recent works by Balram et al.”’ and Wojs et al.
have investigated graphene using the spherical pseudopoten-
tials and have provided a formula for the Coulomb matrix el-
ements in the spherical geometry in terms of the usual matrix
elements for massive electrons—this allows one to calculate the
graphene spherical pseudopotentials. While the mathematical
physics problem of Dirac fermions in the presence of a mag-
netic monopole has received attention (cf. Refs. 23—25 and
and 27) the recent work™">~~ was justified by appealing to a
calculation of the eigenstates by Jellal

In this work, we accomplish essentially three things:

(i) One is to provide an alternative derivation (compared to
Jellal™®) of the eigenfunctions and eigenenergies for massless
Dirac fermions on the Haldane sphere — our approach is more
in line with the traditional approach used in the FQHE lit-
erature and utilizes the cyclotron motion operators discussed
previously by Greiter~. Incidentally, we note that our Hamil-
tonian is different from the one analyzed previously~’. The
single-electron eigenfunctions ¥ ,,,, and eigenenergies Fq,
are

. ) ( —sg0(n)iY|Q|+1]n - 1m )
TR YiQlinim

and

Q

where Ygnnm, are the monopole harmonics used in FQHE stud-
ies in the spherical geometry, () is the monopole strength at
the center of the sphere that produces the radial magnetic field,
andn = 0,1, 2,...is the Landau level index.

(ii) The second thing we do is use the above single-particle
eigenstates Wy, to calculate the Haldane pseudopotentials
for the n = 1 Landau level of graphene completely within
the spherical geometry and tabulate the values for a number
of commonly diagonalized/studied system sizes.

(iii) The third thing we do is formulate an effective Landau
level mixing Hamiltonian entirely within the spherical geom-
etry for use in subsequent studies. This is possible because we
find the single-particle kinetic energy (Fqy). This is a crucial
ingredient to understand the effect of Landau level mixing in

h 1
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graphene for finite sized spherical systems. Again, we tabu-
late the three-body pseudopotentials and two-body pseudopo-
tential corrections that characterize the effective interaction
for a number of commonly studied finite sized systems.

In the process of characterizing the finite sized effective
Hamiltonian we learn a number of important things. We
learn precisely how the pseudopotentials approach the ther-
modynamic limit, how different the finite size values are from
the values in the thermodynamic limit, and the number of
Landau levels that need to be kept in the sums over virtual
transitions to higher and lower Landau levels in order to ob-
tain proper convergence. This is important because an al-
ternative approach to studying Landau level mixing in the
FQHE is to exactly diagonalize or implement density-matrix-
renormalization-group techniques in an expanded, yet trun-
cated, Fock space’’. However, due to computational limita-
tions the number of Landau levels kept in these sorts of cal-
culations is on the order of 5 or 6. What we learn here is that
the three-body pseudopotentials converge rather quickly with
the number of Landau levels kept in the sums and usually are
nearly converged by 5 or 6 Landau levels—this is good news
for the expanded Fock space method of incorporating Lan-
dau level mixing. However, the two-body corrections to the
bare pseudopotentials commonly require well over 10 Landau
levels to ensure reasonable convergence—this is not very good
news for the expanded Fock space approach. It is important
in the future to determine the validity and precise parameter
regimes where the two alternative methods of including Lan-
dau level mixing are valid.

This paper is organized as follows: in Sec. II we derive the
eigenvalues and eigenfunctions for massless Dirac fermions
on the Haldane sphere, in Sec. III we analyze the Haldane
pseudopotentials in the n = 1 Landau level, in Sec. IV
we formulate the effective Landau level mixing Hamiltonian
for graphene entirely within the spherical geometry and pro-
vide the two-body pseudopotential corrections and three-body
pseudopotentials, in Sec. V we compare results of exact diag-
onalization using the newly derived spherical pseudopoten-
tials against results using the pseudopotentials calculated in
the infinite planar geometry,finally in Sec. VI we conclude.
For completeness we have provided some derivations and for-
mulae in Apps A and B.

II. LANDAU LEVELS FOR MASSLESS DIRAC FERMIONS
IN THE SPHERICAL GEOMETRY

We wish to calculate the single particle eigenvalues and
eigenfunctions for massless Dirac fermions confined to the
surface of a sphere of radius R in the presence of a magnetic
monopole of strength Q = R2?/1%, i.e., we confine the parti-
cles to the so-called Haldane sphere’ . We choose the vector
potential A = —@Qccot(h)/eR such that V x A = BQ
where Q0 = R/R is the unit vector in the radial direc-
tion. The single particle solution for massive fermions with
a quadratic energy dispersion are known and the eigenfunc-
tions are given by the monopole harmonics Y, (6, ¢) where
m = —Il,—l+1,...,1 — 1,1 is the z-component of angular



FIG. 1. The Haldane sphere: a magnetic monopole of strength @
is placed at the center of a sphere of radius R = /Qlp producing
a radial magnetic field of strength B = hcQ/eR?. The radial unit
vector Q = R/R is shown in green in addition to the coordinates in
the tangent plane (the plane defined by 6 and (z;.)

momentum, | = |@Q| + |n| is the single particle angular mo-
mentum, the Landau level (LL) index n = 0,1,2,..., and 6
and ¢ are the polar and azimuthal angles, respectively™’'-”.
See Fig. 1 for an illustration.

A. Review of solution for massless fermions on the plane

We briefly review the solution of the Landau problem in the
planar geometry, which has been shown before'*~'%*7, to ease
the discussion of the spherical geometry solution that follows.
The low-energy Hamiltonian for electrons in graphene is

H_UF<Hx~EiHy 11, Ozﬂy)_vFg.H (1)
where 0 = (01,092,03) are the Pauli matrices, and IT =
p + (e/c)A is the canonical momentum with A the vec-
tor potential satisfying V x A = Bz. After introducing
ladder operators af = (ilg/hV/2)(Il, + iIl,) and a =
—(ilp /h\/2)(I1, —ill,), such that [a, a'] = 1, we can rewrite
the Hamiltonian as

V2hvp 0 a
H= ilp (—aT 0) ' 2)
Amusingly, the square of H is diagonal, i.e.,
2h202 aat 0
2 _ F
i = 1% ( 0 afa ) )

and the eigenfunctions of H? can be readily found to be

- _ (\@)5”0 _Sgn(n)imn|—l,m(z)
i) = 2 (O

where 7),,,(z) are the single-particle eigenfunctions of the
usual quadratic energy dispersion for massive fermions (for
example, electrons in a GaAs heterostructure) with n =

0,1,2,... the LL index, m = —n,—n + 1,...,0,1,...
the orbital angular momentum (cf. Ref. 2), sgn(0) = 0,
sgn(z) = —1 for < 0, and sgn(z) = 1 for z > 0. Since

[H, H?] = 0 the eigenfunctions of H are given by 1, (,y)
[Eq.(4)] and the eigenenergy is

En = h’UF\/2|ﬂ|/lB . (5)

B. Review of Landau problem for massive fermions on the
sphere

We now review the solution for massive fermions with
quadratic dispersion confined to the surface of the Haldane
sphere.We take Greiter’s lead and introduce cyclotron mo-
tion operators S = (51,52, 53)" ~these operators are es-
sentially the operators for rotations in terms of Euler angles
in the body-fixed frame compared to the usual angular mo-
mentum operators which are in terms of Euler angles in the
space-fixed frame. These are most easily formulated using
Haldane’s spinor coordinates u = cos(6/2) exp(i¢/2) and
v = sin(6/2) exp(—i¢/2) as

) 0 0
S_ Sl+’LSQh<U8U—’Uau) (6)
) 0 0
S+_SlZS2_h<U(9uuaU) (7)
h 0 0 0 0
53:2<“au+”av‘“aa‘”a@> - ®

The cyclotron operators obey the algebra [S;, S;] = ihe; 1Sk
and we further note that [S;, L;] = 0 for all ¢ and j where the
Ly, Ly, and L, are the components of the angular momentum
operator L . All the operators H, S2, L2, Ss;, L3 mutu-
ally commute and share common eigenfunctions which are the
monopole harmonics Y., (6, $) mentioned above. Since the
Yoim’s are eigenfunctions of S, we can calculate their eigen-
values. First we change the notation of the monopole harmon-
ics and write the Y(;,,, in such a way to more easily facilitate
our final answer in the graphene case. Let us define

anm = YQ,Q+n,m = Yle (9)

to more clearly display the LL index quantum number n. The
above operators S act on the Vg, in the following ways:

S?Vonm = h(Q +n)(Q +n+ 1)Vonm , (10

S3Yonm = QY qgnm , (11)

S:Vonm =/(Q+n)(Q+n+1)—QQ*1)
XYo+1inFim - (12)



We see that S lowers (raises) the LL index n while simul-
taneously raising (lowering) the monopole strength ). The
single-particle angular momentum ! = ) + n remains con-
stant throughout all the above operations.

For massive fermions the single-particle Hamiltonian is

2

H = L . (13)
2m

For fermions confined to the surface of a sphere of radius R =
V/Qlp, the two-dimensional “plane” is the plane tangent to
the spherical surface. We can define the components of the
canonical momentum tangent to the plane through IT = Q x
[V 4+ (e/c)A]. Using the definition of A above,

: 1 0 1
H@ = —ZHRTH(Q)% + E COt(e)Sg, (14)
.10

Note that above we replaced @ in A with the operator S3 since
Q is it’s eigenvalue.

It turns out that, after some algebra (see App. B), we can re-
late S and II through RIIy = —5; and RIl, = S5. This for-
mulation is more natural if we are thinking of fermions con-
fined to the surface of a sphere with a radial magnetic field as
the map of the planar system to the spherical one—compared to
some combination of II, II,, and II, or in terms of L. Now
we can write

_m 15 + 113
T om 2m
(I + 11y ) (ITp — 11y ) — i[I1g, ]
2m
5.5, - i[S2, —51]
N 2mR?2
S_S, + hSs

T 2mR? (16

_ Yo (554, 5
= ( 50 +h2Q> (17)

where have substituted R? = QI% in the last line and intro-
duced the cyclotron frequency w. = eB/mc. Remembering
the eigenvalue of S5 is ) we see this is in direct analogy to
the planar system where H = hw,.(a'a + 1/2) since S_ S is
basically the number operator in the spherical geometry. The
action of S_S on Ygonm is

H

S_S.Vonm = [n(n+1) + 2nQ)A*Yonm - (18)

Hence, the eigenvalue of Eq. 17 is the well-known result

B 1 nn+1)

In the thermodynamic limit we obtain the planar result; E,, =
1imQHoo EQn = hwc(n + 1/2).

C. Solution for massless fermions on the sphere

We now tackle the graphene problem. From Eq. 1 we write,
expanding the Pauli matrices,

H:UFO"H

B 0 Iy — il
= UF (Hg +ill, 0 ) : (20)

This formulation of the Hamiltonian is the most natural for
graphene on the Haldane sphere because the dynamical mo-
mentum of the electrons is tangent to the spherical surface (in
the tangent plane). Equipped with the cyclotron operators S_,
Sy, and S3 we can now simply follow the procedure used in
the planar geometry to readily obtain the eigenfunctions and
eigenvalues. The Hamiltonian is

_Vr 0 S1 + 159
R \ S1—1i52 0
o U 0 S+
=7 < s 0 > . (21)
Again, the square of H is diagonal

H2:1J%<S+S 0 )

H =

R\ 0 5.5
2

v} (5.5, +2hS; O

- ( A 55 ) @

Hence, in direct analogy to the planar system, we can find the
eigenfunctions of Eq. 22 (and hence Eq. 21)

(V2)5no ( —sgn(1)i|Q|+1|n|—1m )
Yonm = ——=— ; 23
N V2 YiQlinjm )

and the eigenvalues of Eq. 21 are

Egn = sgn(n)ig\/mm + n|(7g+1) . 24)

In the thermodynamic limit the planar result is obtained,
limQﬁoo EQn = sgn(|n|)f'wa 2|n|/lB

An interesting feature of the graphene eigenfunctions on the
plane is that for n # 0 the electron is partially in the n*® LL
and the (n — 1) LL. In the spherical geometry this is also
true but the single particle angular momentum | = |Q| + |n|
is a good quantum number and constant for both electron
components—the value of the monopole harmonic is shifted
by one unit to compensate. That is, for the component in
the (n — 1)" LL the monopole strength is |Q| + 1 while
for the component in the n** LL the monopole strength re-
mains (). This has led some™"’ to define an average magnetic
length through I*¥ = R//Q", where Q®" is the average flux,
since the spherical radius is related to the square root of the
monopole strength. However, in our treatment the magnetic
length is well defined through R = [5+/Q with no ambiguity.



III. BARE HALDANE PSEUDOPOTENTIALS

The many-body Hamiltonian for interacting massless Dirac
fermions on the sphere is given by the Coulomb interaction
and parameterized by the Haldane pseudopotentials

2

H=Y Vi) =Y

where P;;(2l — m) is a projection operator that projects
onto states with relative angular momentum 2/ — m and

V2(ln—)m are the Haldane pseudopotentials, i.e., the Coulomb
energy between two electrons with relative angular momen-
tum 2/ — m; note that relative angular momentum m in the
planar geometry maps to 2/ —m in the spherical geometry, i.e.,
lim; s oo V;fjm — V™ where V" are the pseudopotentials
in the infinite plane. It is common to take the distance between

two electrons on the sphere to be the chord distance equal to

i<j i<j r; —r;| = V2R|ujvy — ugvy|. Using the single-particle
2l eigenfunctions for massless Dirac fermions above (Eq. 23) we
= Z V;fjm Z P;;(2l —m) (25) can explicitly write
m=0 i<j |
V2(ln_)m = Z (I,my;1,ma|20 —m, my 4+ mo)(l, mg; 1, ma|2l — m, mz + my)
{mi}
X 5m1 +mo,ma+my 5m1 +mo,2l—m <nm47 nms ‘ V‘nm% Tlm1>é?&7§}z (26)

where

\/i ?:1 5n,0
(namy, n3m3|V|n2m2,n1m1>é?£})l = %

((Inalma, Ins|ms|V|[nz|ma, [ngmq) (@™

+ sgn(nang)(|ng| — Imy, |ns|ms|V||nz| — 1ma, |n1\m1>(Q’”)

+ sgn(nany) x (|na|ma, [ng| — Img|V||na|ma, [ni| — 1mq )@

+ sgn(nansnang) x (|na| — Imay, n3| — Ims|V||ng| — Img, |nq| — 1m1>(Q’n)) .

V = V(I‘l,rg), and <n4m4,n3m3\V\n2m2,n1m1>(Q’") is
the general two-body Coulomb interaction matrix element
given for completeness in Appendix A. Note that the super-
script (@, n) is to indicate that this matrix element is taken
between states of constant angular momentum ! = @ + n and
each of the sums over the m;’s in Z{m,;} go from —{ to [.

In Table I we give the values of VQ(ll_)m for the n = 1 LL for
a number of systems sizes of interest and in Fig. 2 we plot
them versus m. In particular we provide pseudopotentials for
a few commonly studied systems, i.e., 2l = 13, 15,17, 18, and
21. These system sizes can be used to study the Moore-Read
Pfaffian’ (for a 1/2 filled LL) and Laughlin™ (for a 1/3 filled
LL) states projected into the n = 1 LL for N = §, 10, 12 and
N = 6,7, 8 electrons, respectively. (The relationship between
the total flux 2/ on the sphere and the particle number N for
the Moore-Read Pfaffian and Laughlin states is 2] = 2N — 3
and 20 = 3(NN — 1), respectively). Last, we note that we do
not provide any pseudopotentials for the lowest n = 0 LL
since they are identical to those for massive fermions given
elsewhere.

IV. LANDAU LEVEL MIXING: HALDANE
PSEUDOPOTENTIAL CORRECTIONS

Landau level mixing occurs when the electrons that par-
tially fill the n*® LL have a significant probability amplitude

27)

(

of making virtual transitions to higher unoccupied and lower
occupied LLs due to the Coulomb interaction. We focus on
systems where the LLs of spin and valley internal degrees of
freedom are approximately degenerate. As mentioned above
the tendency for LL mixing is captured in the LL mixing pa-
rameter given by the ratio of the Coulomb interaction energy
to the cyclotron energy,

(e%;) e 2.2 (Kelvin)
(M) T chvp €

lp

K= (28)

using vy = 105 m/s in the last equality. Since this has no mag-
netic field B dependency it can only be suppressed through
the manipulation of the dielectric €. For current experimental
systems 0.5 < k < 2.2.

It is a difficult theoretical problem to include LL mix-
ing within exact diagonalization. For graphene it is particu-
larly difficult since, without explicit or spontaneous symmetry
breaking of the SU(4) valley and spin degeneracy, the Hilbert
space is formidably large. It is therefore beyond current com-
putational capabilities of exact diagonalization to expand the
Hilbert space and allow electrons (holes) in the ntM LL to oc-
cupy unoccupied (occupied) Landau levels outside this level.

To approximately include LL mixing, one of the current au-
thors (along with Nayak) obtained a realistic effective Hamil-
tonian taking into account LL mixing perturbatively in powers
of the LL mixing parameter « following the original work of
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FIG. 2. Spherical pseudopotentials for the n = 1 Landau level of
graphene. Recall that the n = 0 graphene pseudopotentials are iden-
tical to those for massive fermions. We plot VQ(lljm vs. m for a few
notable values of 2/ (or Q where [ = @ + 1) in addition to the planar
value (thermodynamic limit). See Table I for specific values.

Ref. 35. An advantage of our approach, outlined in Ref. 36, is
that it is exact in the x — 0 limit. The disadvantage, or course,
is that it is perturbative and our small parameter & is not nec-
essarily always small (cf. Eq. 28). Ultimately we write an
effective many-body Hamiltonian in terms of Haldane pseu-
dopotentials

Heg (k) = Z Vobody (K, T3, T'j) + Z Vabody (K, T3, T, Tg)

1<j i<j<k
21
= >V oboay () Y Pij(2 — m)
m=0 i<j
3l
+ Z V3(zn—)m,3body("f) Z Pije(3l—m) (29
m=0 i<j<k

where P;;; (3] —m) is a projection operator that projects onto
triplets of electrons with relative angular momentum 3! — m.
Vz(ﬁ)m’%o ay () and VS(ZTi)m,Sbo ay () are the two- and three-
body, « dependent, Haldane pseudopotentials. The two-body
pseudopotential can be written as

‘G(lri)m,Zbody(K) = VYQ(lnf)m + K’(S‘/2(l7i)m (30)

which is a sum of the (bare) x-independent Coulomb pseu-

dopotential (cf. Eq. 26) plus  times a correction § VQ(l"_)m due
to LL mixing. In general, LL mixing does two things. One is
it “softens” the two-body interactions (in the thermodynamic
limit), i.e., 675:;)%0(1}, < 0 where (577(2'7)%0(1}, is the pseudopo-
tential correction in the thermodynamic limit—see below that
this is not true for finite-sized spherical systems. The sec-
ond thing LL mixing does is generate particle-hole symmetry
breaking three-body terms.

TABLE 1. V;,,’s for a a few common 2! = 2|Q| + 2|n|’s (see text).
Below we take n = 1 for all values. Hence, the monopole strength
Q@ = 21/2 — 1 and not, simply, 21/2. All energies are given in units
of €2 /el . The pseudopotentials in the thermodynamic limit (planar

geometry) are V...

Vi V. Vi, V., v, [V
0.829596 0.811619 0.798223 0.792728 0.779586|0.706212
0.599088 0.583274 0.571519 0.566705 0.555210(0.491579
0.469699 0.455676 0.445291 0.441048 0.430940(0.375608
0.372646 0.360723 0.351917 0.348325 0.339783|0.293390
0.326480 0.315110 0.306749 0.303347 0.295277|0.251956
0.297444 0.286145 0.277880 0.274528 0.266602|0.224640
0.277387 0.265888 0.257531 0.254154 0.246199|0.204748
0.262864 0.250969 0.242390 0.238939 0.230841|0.189393
0.252102 0.239646 0.230741 0.227176 0.218852|0.177064
0.244088 0.230914 0.221589 0.217877 0.209256|0.166877
0.238205 0.224149 0.214313 0.210423 0.201440(0.158273
0.234064 0.218948 0.208506 0.204406 0.194999|0.150880
0.231421 0.215039 0.203889 0.199546 0.189652|0.144437
0.230133 0.212242 0.200268 0.195646 0.185200(0.138755

0.210438 0.197507 0.192566 0.181496|0.133697
0.209553 0.195510 0.190204 0.178431|0.129155
0.194212 0.188490 0.175925|0.125047

0.193573 0.187372 0.173915|0.121308

0.186820 0.172356|0.117886

0.171214{0.114738

0.170465{0.111830
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Early theoretical work on the FQHE in graphene, much of
it before any experimental observation®™ -, did not consider
Landau level mixing and their connection to experiments is
therefore tenuous. However, more recent work has unearthed
an energy landscape of a variety of possible ground states that
are very close in energy >~'. Hence it is important for all fi-
nite size studies to approach the thermodynamic limit as deli-
cately as possible. Our contention is that one should use pseu-
dopotentials, and LL mixing corrections to the bare pseudopo-
tentials, fully appropriate to the finite sized spherical system
under study. To that end, we characterize the LL mixing ef-
fective Hamiltonian for graphene for the same systems sizes
that we calculated the bare two-body pseudopotentials above,
i.e., we calculate the two- and three-body pseudopotentials for
graphene in the presence of LL mixing.

(n)

The formalism used to calculate 0V, ", 5,4, and

‘/Ei(lTi)m,3bo ay (k) are provided in Ref. 36 and will not be re-
produced here. The main difference between the previous cal-
culations of the LL mixing effective Hamiltonian in the planar
geometry and the one presented here for the spherical geome-



try is the nature of the sums over angular momenta involved in
the virtual transitions across LLs and the use of the spherical
geometry finite-size systems Kinetic energy appearing in the
denominators of the expressions. Instead of the angular mo-
mentum sums extending from zero to infinity, the sums now
go over the possible single-particle angular momenta available
on the sphere, i.e., from —! to [ where | = |Q| + |n|. For ex-
ample, the three-body pseudopotential can be found through

VI(:;)body = Z <L7M|l7m477/;lvm5vﬂl;lvm67al>

{mi}
X<l, my, ] lamQaﬁ; l7m377|L) M>Ug§2%§;1 ’ (31)

where the ) indicates a sum over all {m;} € [—[,!] and
primed spin variables (o, 8’,~") with

0 le a’' X, Bay By Ay
3body ! Vew 2l Vsa,zs
Ups54;321 = — I3
Ng=—00 My=—l, 7= Qna — H
x= 2 =—ls y=1,{ cyc.perm.
(32)

where I, = |Q| + |nz|, p = Eqy is the chemical potential,
and the prime on the sum over n, indicates that we do not in-
clude n, = n. The energies in the denominator are of course
given by our new expression for the spherical kinetic energy
(Eq. 24). The matrix elements are

Vias ™ = Vism 067 — Vay016°%'6° (33)
where a, o/, 3, and (' label the spin indices. The Coulomb
matrix element is

Vizo1 = <n4m4,n3m3\v\n2m2,n1m1>§mph (34)
given in Eq. 27 and the matrix elements for the spherical ge-
ometry are well known” and given in Appendix A for com-
pleteness. We encourage the reader to consult Ref. for
more details regarding the formalism for calculating the pseu-
dopotentials characterizing the realistic effective LL mixing
Hamiltonian for graphene. The modifications described above

for calculating VL(?,))b ody Purely within the spherical geometry
are straightforward and easily generalized for the two-body
pseudopotential corrections 5VL(TL2)bO ay- Finally, we briefly
point out that in the spherical geometry the relative angular
momentum L maps to a relative angular momentum of m in
the planar geometry. That is, for the two-body and three-body
terms we have L = 2] — m and L = 3] — m mapping to m,
respectively, i.e.,

Qh—r>noo[Vz(\Q\Jrln\)*m,?)body]sl)here B [6Vm»2b0dy]plane ’

and

Qll_{noo[‘/:}(\Q\+|n\)7m,3body]SPh0rC = [Vin 3body lplane -

0.04

(1)
v 3-m, 3body
S
g

-0.08

-0.12

FIG. 3. (Color online) V3<11—)m,3bo 4y asa function of relative angular
momentum 3! — m where [ = |@Q| + |n| is the single-particle angular
momentum at @) in the n = 1 Landau level. The pseudopotentials
are in units of e? /el 3.
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FIG. 4. (Color online) V3(1123,3body versus the maximum Landau
level used in the finite truncated sum [ng]max in Eq. 32 for Q@ = 9.5
and 8.5 for total spin S = 1/2 and 3/2. Note that here n, = 1
is not included in the sum and that the value of Vs(ll_):;,3b0dy is well

converged by [ng]max > 6. The pseudopotentials are in units of
2
e / el B.

A. Three-body Landau level mixing pseudopotentials

In this work we only consider the single-valued three-body
pseudopotentials for m = 1, 2, and 3 for an unpolarized state
for total electron spin S = 1/2 (the spin is in units of f)
and m = 3,5, 6, 7, and 8 for spin polarized systems with
total spin S = 3/2 (there is no single-valued three electron



pseudopotential for m = 4). A full analysis of the matrix
three-body pseudopotentials will await further investigation,
cf. Refs. 37—

We now present LL. mixing pseudopotentials for the spher-
ical geometry for commonly studied system sizes and discuss
the three-body pseudopotentials given in Table II and plotted
in Fig. 3. Note that each VL(g)bo ay () is linear in « and enters

the Hamiltonian (Eq. 29) as HVL(";}) ody and only the value of

the pseudopotentials are given the table and figure. All three-
body terms vanish exactly due to symmetry for the lowest LL.

(n = 0). To calculate VL(Tg)b ody W solve Eq. 31 (and therefore
Eq. 32) for a finite number of virtual LLs n,, i.e., we truncate
the infinite sum. The careful reader will notice that the m = 6
pseudopotential in the thermodynamic limit given here (right-
most column of Table II) has the opposite sign to the value
appearing originally in Ref. 36—this was a typo in Ref. 36 as
indicated in a recent Erratum

The final results given in Table II and plotted in Fig. 3 are
the limits of the finite sums as the truncation is taken to infin-
ity. In general, the three-body terms converge quickly with n,
and usually are fully converged after including only 6 LLs in

/6
the n, sum (that is, E . is usually enough to produce
na=

convergence)—the convergénce is demonstrated for a couple
typical example systems in Fig. 4.

The dependence of the pseudopotentials on the spherical
radius (R = Ip+/Q) is relatively mild. However, there

are some interesting non-trivial effects. For example, the

V) 6 abody = —0.01234 (in units of e?/el3) in the thermo-

dynamic limit, however, for moderate finite sized (and com-
monly diagonalized) systems in the spherical geometry it is at
least a factor of ten smaller (in absolute value) and positive,
only achieving a negative value of —0.00100 for the @ = 9.5.
Other non-trivial effects can be seen most clearly in Table II.

B. Two-body Landau level mixing pseudopotentials

Finally, @—we discuss the two-body corrections,

6‘/'2(171_)7n72b0dy. Again we follow the procedure outlined
in Ref. and modify the sums and matrix elements for

the spherical geometry. Unlike the three-body terms, the
two-body corrections do not vanish for the lowest LL n = 0.
In Table III and Fig. 5 we provide values for 5‘/2(1@m’2body
for a number of common system sizes for m = 0...9 in the
lowest two LLs.

Similar to the planar geometry, the values of 5V2(ln_)m72b ody
are, in general, larger in the second n = 1 LL than they are in
the lowest n = 0 LL. Furthermore, the values become smaller

with increasing m as expected. In the thermodynamic limit

JV:;)%Ody are all negative (as expected). However, for finite

sized systems we find that for most values of 2] —m, especially
larger 2I — m (smaller m), the values produce positive LL
mixing corrections to the bare pseudopotentials and only be-
come progressively smaller and eventually negative for larger

systems. In addition, 5V2(ln_)m 2body APpear to saturate to a rel-
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FIG. 5. (Color online) Two-body pseudopotential corrections due
to Landau level mixing (5V2(£)m72b0 ay) for the lowest (n = 0, top
panel) and first (n = 1, bottom panel) Landau levels. § VQ(Q m,2body
is larger in absolute value than 5\/2(107)%%0 4y and both dramatically
decrease with increasing m. The thermodynamic limit (Q — oo,
denoted dV ,,2b0dy) Values are negative for all m for both Landau
levels. However, both Landau level results show non-trivial sign be-
havior for m > 2 (for n = 0) and m > 3 (for n = 1). All energies
are given in units of e /el p.

atively constant, and positive, value by m 2 4 — 5-this effect
is evidentially due to the curvature of the finite sphere. The
qualitative difference between the infinite system pseudopo-
tentials and finite size pseudopotentials could have important
consequences in exact diagonalization studies.

Again, in calculating § VQ(;’;)m abody WE truncate the infinite
sums

[n2]max
!

[e'e] [e'e] [nz]max
!/ li

)IEDIEE DD )

Ng=—00n;=—00  ny=—[nz]maxn)=—[Nz]max



TABLE II. ‘/Zi(lllm,3body(2l),s for particular values of 21 = 2|Q| + 2|n|’s for n = 1. All energies are given in units of ¢ /el where
I = R/+/Q. Note that in the n = 0 Landau level all the three-body terms vanish due to symmetry.

m 25 Vvl(Sllm 3body Vl(511m,3body V1(7llm 3bod ‘/1(811m 3body V2(111m,3body Vﬁi?sbody
1 1 -0.10657 -0.10882 -0.11055 -0.11127 -0.11303| -0.12370
2 1 -0.06282 -0.06595 -0.06832 -0.06931 -0.07169| -0.08560
3 1 0.02275 0.02117 0.01995 0.01945 0.01823| 0.01088
3 3 -0.02949 -0.03299 -0.03560 -0.03668 -0.03926| -0.05371
5 3 0.03034 0.02809 0.02637 0.02565 0.02391| 0.01345
6 3 -0.01261 -0.01565 -0.01785 -0.01874 -0.02082| -0.03132
7 3 0.02760 0.02674 0.02607 0.02578 0.02508| 0.02045
8§ 3 0.00705 0.00415 0.00199 0.00111 -0.00100| -0.01234

TABLEIIL § Vrf:gbo 4y (20)’s for a few values of 2/ = 2|Q| +2|n[’s in the n = 0 and n = 1 Landau levels, respectively. All energies are given

in units of 62/613.

m 5V1(3Olm<2body 6V1(5Olm,2body 6V1($1m 2body 6‘/1(2?11% 2body 6‘/2(101771 2body 5V$?2body
0 -0.2145 -0.2197 -0.2240 -0.2258 -0.2304 -0.2638
1 -0.0062 -0.0127 -0.0178 -0.0200 -0.0255 -0.0633
2 0.0139 0.0076 0.0027 0.0005 -0.0048 -0.0407
3 0.0394 0.0332 0.0283 0.0262 0.0209 -0.0143
4 0.0429 0.0368 0.0320 0.0299 0.0248 -0.0090
5 0.0461 0.0403 0.0356 0.0336 0.0286 -0.0052
6 0.0466 0.0409 0.0363 0.0344 0.0296 -0.0034
7 0.0467 0.0410 0.0364 0.0344 0.0296 -0.0030
8 0.0468 0.0411 0.0366 0.0347 0.0299 -0.0022
9 0.0469 0.0413 0.0367 0.0348 0.0300 -0.0016
m 5V1(:sllm 2body 6V1(511m,2b0dy 6‘/1(711777. 2body 6V1(sllm 2body 5V2(1llm 2body 5V2?2body
0 -0.4165 -0.4194 -0.4217 -0.4227 -0.4252 -0.4425
1 -0.1572 -0.1619 -0.1655 -0.1671 -0.1709 -0.1952
2 -0.0143 -0.0214 -0.0268 -0.0291 -0.0345 -0.0661
3 0.0396 0.0310 0.0242 0.0214 0.0147 -0.0272
4 0.0576 0.0485 0.0415 0.0386 0.0316 -0.0108
5 0.0631 0.0541 0.0470 0.0442 0.0373 -0.0038
6 0.0634 0.0542 0.0471 0.0441 0.0371 -0.0022
7 0.0641 0.0545 0.0474 0.0445 0.0375 -0.0014
8 0.0638 0.0544 0.0473 0.0444 0.0375 -0.0009
9 0.0636 0.0542 0.0471 0.0443 0.0374 -0.0006

and extrapolate [n;|max to infinity (see Eq. 11 in Ref. 36).
Interestingly, this extrapolation is simpler in the spherical ge-
ometry because, unlike the planar geometry, the sums over
intermediate angular momenta are finite. Because of this we
are able, in this work, to provide more accurate values for
677(2%0@ compared to those given in Ref.

The reason for these more accurate values is because the
two-body LL mixing pseudopotential corrections are com-
posed of two terms: one term is relatively standard and con-
sists of a single loop in a Feynman diagram and are called the
ZS, ZS’, and BCS terms, respectively, due to their similarity
with diagrams from Fermi liquid theory. The other term arises
from a careful normal ordering of the three-body term and

does not have a fermion loop, see Ref. 36 for an in depth dis-
cussion. The terms with one loop contain sums over n, n,,
m,,, and m/, while the normal ordering term has only n, and
m, sums. It is more cumbersome to obtain a reliable extrap-
olation for the loop terms, especially in the planar geometry
when all sums are infinite. Furthermore, the loop terms are
an order of magnitude smaller, at least, than the terms from
normal order. Hence in Ref. 36 the n = 1 terms were found
by taking the n = 0 values for the loop terms and using them
with the n = 1 normal order terms. In this work, the finite
nature of the m, and m/, sums makes it easy to produce a
reliable extrapolation.

The convergence of the two-body term from normal order-
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FIG. 6. (Color online) The normal ordered three-body term contri-
bution to 5\/'2(l1_)m’2b0dy (see Ref. 30) versus the truncation of the
Landau level sum [ng]max forn =1land Q@ = 5.5form =0...4.

ing the three-body terms is qualitatively similar to the conver-
gence of the three-body terms, i.e., fast in [n;]max and con-
verged by [nz]max ~ 6 (see Fig. 6 for typical examples). The
term with the fermion loop, however, converges much more

slowly. In Fig. 7 we plot only the loop terms of 61/'2(117)m72b0dy
versus the truncation of the loop LL sum [n]max for @ = 5.5
and m = 0...4. The behavior in this example is typical
of other system sizes qualitatively and semi-quantitatively.
Clearly the convergence of these terms in [n;]max 1S much
slower than the three-body terms or the two-body terms due to
normal ordering of the three-body terms. In fact, convergence
is not achieved until well beyond the inclusion of over 15 LLs
in the sums. In order to determine the convergence in the

[P2]max — oo limit we plot the loop terms of 61/'2(11_)m72b0dy

versus ([N ]max) "t and for [nz]max > 6, at least, in order to
be assured of discounting transient behavior at small [n;]max-

V. MANY-BODY EXACT DIAGONALIZATION:
SPHERICAL VERSUS PLANAR PSEUDOPOTENTIALS

Before concluding we briefly compare the results of many-
body exact diagonalization done using the spherical versus the
infinite planar pseudopotentials as a function of system size.
Specifically we exactly diagonalize Eq. 29 for the 1/3 filled
n = 1 LL in graphene (recall that the n = 0 graphene system
is identical to that of a GaAs heterostructure in the absence
of LL mixing). Our goal here is not to address a particular
physical question, instead, we are estimating the differences
in eigenenergies, and potentially physical observables, when
Eq. 29 is exactly diagonalized using planar or spherical pseu-
dopotentials.

In Fig. 8 we show eigenenergy spectra, i.e., energy (rela-
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FIG. 7. (Color online) The loop terms of 6V2(ll_>m’2b0dy ZS, ZS’,
and BCS diagram, see text and Ref. 36) versus the truncation of the
loop Landau level sum [ng]|max (left panel) and versus ([nm]max)f1
(right panel), respectively, forn = land Q = 5.5 form =0...4.

tive to the ground state) versus total angular momentum L,
for filling factor 1/3 in the n = 1 LL. We set 2] = 3(N — 1)
(corresponding to spherical shift"' for the Laughlin state™™)
projected into the n = 1 Landau level for N = 6 (Q = 6.5),
7 (Q = 8.0), and 8 (Q = 9.5) electrons for zero (k = 0)
and finite LL mixing (k = 0.2), respectively, for illustrative
purposes. (For more details on exact diagonalization in the
spherical geometry please see Refs. 2 and 31.) Table I shows
that the spherical pseudopotentials are uniformly larger than
the planar pseudopotentials at each m, hence, it is expected
that all energy gaps would be larger using the spherical pseu-
dopotentials rather than the planar pseudopotentials and, in-
deed, this is what is observed. In general, the energy spectrum
is qualitatively and quantitatively similar between the spheri-
cal and planar pseudopotentials—this remains with or without
LL mixing. We emphasize that if the energy differences be-
tween competing FQH (or non-FQH) states at constant filling
factor are small, then the the small, but finite, differences in
the eigenenergies found when using planar or spherical pseu-
dopotentials could obscure the physics. As () increases, the
difference between the relative energies decreases as expected
since the spherical pseudopotentials extrapolate to the planar
ones in the ) — oo limit.

Fig. 9 (left panel) displays the energy gap for a far-separated
quasiparticle and quasihole pair for x = 0 versus 1/N. This
energy gap is the difference between the lowest energy at
L = N and the L = 0 ground state (this is also the smallest
energy gap in the spectra for the systems studied). Again we
observe the energy gaps calculated using the spherical pseu-
dopotentials to be higher than that calculated using the planar
pseudopotentials. As N increases, i.e., as the thermodynamic
limit is approached, the difference in the differently calculated
energy gaps decreases. A linear extrapolation to the thermo-
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FIG. 8. (Color online) Energy (measured relative to the ground
state energy) versus total angular L for the 1/3 filled n = 1 LL for
2] = 3(N —1) (this relationship corresponds to the 1/3-filled Laugh-
lin state) for N = 6 (Q = 6.5), 7 (Q = 8.0), and 8 (Q = 9.5). Cir-
cles (squares) represent energies calculated using the spherical (pla-
nar) pseudopotentials. The left panels have zero LL mixing (x = 0)
while the right panels have kK = 0.2. The results for the spheri-
cal pseudopotentials have uniformly larger gaps than those using the
planar pseudopotentials, as expected. As @ (or N) increases, the
differences in the energies decreases.

dynamic limit yields the same energy gap (when including
the standard error) using either pseudopotentials. To obtain
a quantitative understanding of this difference we plot (right
panel of Fig. 9) the ratio between the gaps calculated using
the planar and spherical pseudopotentials. For the smallest
system considered (/N = 6) the ratio between the energy gaps
is ~ 0.86 while for the largest system considered (N = 11)
the ratio is ~ 0.95. Thus, the relative error when exactly diag-
onalizing using spherical versus planar pseudopotentials can
be as large as approximately 15%.

VI. CONCLUSIONS

In this work we have considered the Landau level prob-
lem for massless Dirac fermions in the Haldane spheri-
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FIG. 9. (Color online) Energy gap (left panel) versus 1/N for

N = 6...11 using the spherical pseudopotentials (circles) and pla-
nar pseudopotentials (squares). The energy has been “density cor-
rected” by multiplying each raw energy by \/peo/pn = \/2Qv/N
where po, and pn are the electron densities in the thermodynamic
limit and for the finite system, respectively. The gaps using the
spherical pseudopotentials are uniformly larger than the gaps cal-
culated using the planar pseudopotentials but the difference between
the two decreases with increasing /N. The lines are linear extrapo-
lations to the thermodynamic limit with N = 0 intercepts equal to
0.086 £ 0.004 €2 /elp (planar) and 0.080 = 0.004 2 /elp (sphere),
respectively. The panel shows the ratio of the gaps as a function of
1/N. This ratio is approaching unity with increasing N as expected.

cal geometry commonly used in exact diagonalization stud-
ies of the FQHE. We derived the single-particle eigenstates
and eigenenergies using spherical cyclotron motion operators
S-”. These solutions were then used to do two main things.
One was to calculate the Haldane pseudopotentials for the
graphene FQHE entirely within the spherical geometry. This
result is important because it has been found that various com-
peting FQH states, e.g., various spin and valley polarizations,
are very close in energy and the approach to the thermody-
namic limit must be taken with great care to reduce the chance
of systematic errors. In Sec. V we provided a brief systematic
study analyzing the quantitative differences in the many-body
spectrum calculated using the spherical versus planar pseu-
dopotentials. Second, we fully characterized an effective LL
mixing Hamiltonian for graphene specific to the spherical ge-
ometry. (Incidentally we provided new, more accurate, val-
ues for the planar two-body pseudopotential corrections in
the n = 1 LL, i.e., the thermodynamic limit of the spheri-
cal values.) LL mixing is an extremely important effect for
the FQHE in graphene, since it cannot be suppressed with the
strength of the external magnetic field and must be taken into
account in any theoretical treatment that strives toward exper-
imental connections. We expect our results (single-particle
eigenfunctions and eigenenergies, bare pseudopotentials, and
effect LL mixing Hamiltonian) will stimulate further work on
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Appendix A: Coulomb matrix elements

We provide the explicit formula for the integral for the Coulomb matrix element (Eq. 27), which can be found, for example,
in Ref. 2, but for sake of completeness, is reproduced here. The full form of the monopole harmonics in terms of Haldane spinor
coordinates can be written as

l-m

—m s l- I+ —1—Q—s,l—s—m s m+s

Yoim = Ngim(—1)" (=1 ( SQ> (l _mci 8>vl Q=sy)! atuQtmt (AL)
s=0

with normalization coefficient

(A2)

[ [(2z +1)( m)!(l+m)!]l/2
R N NI '
The Coulomb matrix element is then written as

_ _ 1
<n4m4,n3m3|V|n2m2,n1m1>(Q’") :/dQldQ?yQMMWM(Ql)memmS(Q?)myQﬂhml(92)3)@2”27712(91)
90 +1)2(—1)Qa+Qs—ma—ms 2L Lo _
lo=0m=—Ig
% Qa+ng ly Q2+no Qa+ng lo Qa+no
my M —ma Qs 0 Q@
« Qz+mnz loy Qi+ni| JQs+n3 log Q1+mn (A3)
ms —m  —my —-Qz 0 Q1

where Yonm = Youm [see Eq.(9)], R is the radius of the sphere, |r; — r;| = \/§R|u1v2 — ugv1] is the chord distance between
two points the sphere, the {- - - } are the Wigner 3-j symbols, and @ = (6, ¢) are the spherical coordinates of the electrons. Note
that the physical radius of the sphere is set by the value of the monopole strength through R = [3+/@Q and single-particle angular
momenta [ for such a system is constant for all particles and is set by ) and the LL index n through [ = @ + n. Hence, each
state in the matrix element can have different (); and n; but the combination I; = ); + n; is constant and [; = [ for all i; see
the single-particle eigenstates given in Eq.(23). The integral in the first line of Eq.(A3) can be calculated using various identities
found in Refs. 2 and

Appendix B: Mapping IT to S

Here we provide the derivation of the equalities, RIIy = —S; and RIl4 = S,. The identification of RII, with S5 is trivial.
The differential operators with respect to ¢ and 6 can be written in terms of the Haldane spinor coordinates (and their complex
conjugates) as

9 _1/7.0 .9 _,9..9 (B1)
90 2\ "ou "o You " “ou
0 7 0 0 0 0
%—2(“@‘”31)‘%*“@1}) ' B2



From these it is clear that

0
My = —ih—
R 1) Zﬁae
IS A R )
"2\ ou " "ov  Yon " "ow
1
= 5 (84— 5)
=95
The identification of S; with Iy is more opaque. Starting with
1 0
Iy = —ih——
RIIy Zhsin(@) 39 + cot(0)Ss

L g_ 2_*&_’_*& _|_ tQS
2sinf \“ou  ‘ov  “ou  “ov) TR

we can substitute 1/sin § = cot 6 + tan(#/2) and transform RIIy to

Kua vd ad va> 9 a]
et o — oo S

Rllg = —heot0 |\ 550 * 55, " 380 280) a0 " “aw
u 0 v 0 u 0 0]
—htan(9/2) <28u - 5% - 5% + 2’()) +C0t953

0 h

2

= —cot 0S5 — Ss] + I <; tan(6/2) + cot 9) <Uaav - 5(%) + — tan(6/2) <

The first term vanishes and using cot(6/2)/2 = cot 6 + tan(6/2)/2 we write

h 0 h _0 h _0 h
RH@ = 5 COt(a/Q)’U% — 5 COt(G/Q)’U% + 5 tan(ﬁ/?)u% — 5 tan

Last, we note tan(6/2) = v/ = v/u and cot(6/2) = u/v = u/v to get

completing the derivation.
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