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The Schwinger-boson theory of the frustrated square lattice antiferromagnet yields a sta-

ble, gapped Z2 spin liquid ground state with time-reversal symmetry, incommensurate spin

correlations and long-range Ising-nematic order. We obtain an equivalent description of this

state using fermionic spinons (the fermionic spinons can be considered to be bound states of

the bosonic spinons and the visons). Upon doping, the Z2 spin liquid can lead to a FL* metal

with small Fermi pockets of electron-like quasiparticles, while preserving the Z2 topological

and Ising-nematic orders. We describe a Higgs transition out of this deconfined metallic state

into a confining superconducting state which is almost always of the Fulde-Ferrell-Larkin-

Ovchinnikov type, with spatial modulation of the superconducting order.



2

CONTENTS

I. Introduction 3

II. Mapping between bosonic and fermionic spin liquids on the rectangular lattice via

symmetry fractionalization 5

A. Symmetries of the spin liquid 7

B. PSG for bSR 8

1. Schwinger boson ansatz 8

2. Gauge freedom, PSG and algebraic constraints 8

3. Solutions to the algebraic PSG 10

4. PSG solutions for the nematic spin liquid ansatz for the J1-J2-J3 model on the

square lattice 10

C. Vison PSG 10

D. PSG for fSR 12

1. Schwinger fermion ansatz 12

2. Gauge freedom, PSG and algebraic constraints 12

3. Solutions to the algebraic PSG 13

E. Fusion rules 14

F. Fermionic ansatz 15

1. General relation between bosonic and fermionic PSGs for rectangular lattice 15

2. Specific fermionic ansatz 16

III. Superconducting transition of the FL* 18

A. Possible confined phases 19

1. T -invariant PDW 22

2. Translationally invariant SC with broken T 23

3. Commensurate PDW with broken T 23

4. Incommensurate PDW with broken T 24

IV. Conclusions 25

Acknowledgments 26

A. Derivation of the bosonic PSG 27



3

B. PSG corresponding to the nematic bosonic ansatz 29

C. Alternate derivation of the vison PSG 30

D. Derivation of the fermionic PSG 34

E. Trivial and non-trivial fusion rules 35

F. Solution for the fermionic ansatz 38

G. Alternative derivation of the specific fermionic PSG 40

H. PSG for the site bosons and constraints on HB 41

References 42

I. INTRODUCTION

The Z2 spin liquid is the simplest gapped quantum state with time-reversal symmetry and

bulk anyon excitations1–8. For application to the cuprate superconductors, an attractive parent

Mott insulating state is a Z2 spin liquid obtained in the Schwinger boson mean field theory of the

square lattice antiferromagnet with first, second, and third neighbor exchange interactions1,9,10.

This is a fully gapped state with incommensurate spin correlations, spinon excitations which carry

spin S = 1/2, vison excitations which carry Z2 magnetic flux, and long-range Ising nematic order

associated with a breaking of square lattice rotation symmetry. Upon doping away from such

an insulator with a density of p holes, we can obtain a FL* metallic state which inherits the

topological order of the Z2 spin liquid, and acquires a Fermi surface of electron-like quasiparticles

enclosing a volume associated with a density of p fermions11–22. It was also noted13 that a Z2-FL*

metal can undergo a transition into a superconducting state which is concomitant with confinement

and the loss of Z2 topological order (while preserving the Ising-nematic order). Given the recent

experimental evidence for a Fermi-liquid-like metallic state in the underdoped cuprates with a

density of p positively charged carriers23–25, the present paper will investigate the structure of the

confining superconducting state which descends from the Z2-FL* state associated with Schwinger

boson mean field theory of the square lattice1,9,10.

For insulating Z2 spin liquids, the spectrum can be classified by 4 separate ‘topological’ or

‘superselection’ sectors, which are conventionally labeled 1, e, m, and ε7. In the Schwinger boson
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theory, the Schwinger boson itself becomes a bosonic, S = 1/2 spinon excitation which we identify

as belonging to the e sector. The vison, carrying Z2 magnetic flux, is spinless, and we label

this as belonging to the m sector. A fusion of the bosonic spinon and a vison then leads to a

fermionic spinon26, which belongs to the ε sector. We summarize these, and other, characteristics

of insulating Z2 spin liquids in Table I.

1 e m ε 1c ec mc εc

S 0 1/2 0 1/2 1/2 0 1/2 0

Statistics boson boson boson fermion fermion fermion fermion boson

Mutual semions − m, ε, mc, εc e, ε, ec, εc e, m, ec, mc − m, ε, mc, εc e, ε, ec, εc e, m, ec, mc

Q 0 0 0 0 1 1 1 1

Field operator − b φ f c − − B

TABLE I. Table of characteristics of sectors of the spectrum of the Z2-FL* state. The first 4 columns are the

familiar sectors of an insulating spin liquid. The value of S indicates integer or half-integer representations

of the SU(2) spin-rotation symmetry. The “mutual semion” row lists the particles which have mutual

seminionic statistics with the particle labelling the column. The electromagnetic charge is Q. The last

4 columns represent Q = 1 sectors present in Z2-FL*, and these are obtained by adding an electron-like

quasiparticle, 1c, to the first four sectors. The bottom row denotes the fields operators used in the present

paper to annihilate/create particles in the sectors.

For a metallic Z2-FL* state, it is convenient to augment the insulating classification by counting

the charge, Q, of fermionic electron-like quasiparticles: we simply add a spectator electron, c, to

each insulator sector, and label the resulting states as 1c, ec, mc, and εc, as shown in Table I. It is

a dynamical question of whether the c particle will actually form a bound state with the e, m, or

ε particle, and this needs to be addressed specifically for each Hamiltonian of interest.

Now let us consider a confining phase transition in which the Z2 topological order is destroyed.

This can happen by the condensation of one of the non-trivial bosonic particles of the Z2-FL*

state. From Table I, we observe that there are 3 distinct possibilities:

1. Condensation of m: this was initially discussed in Refs. 2 and 4. For the case of insulating

antiferromagnets with an odd number of S = 1/2 spins per unit cell, the non-trivial space

group transformations of the m particle lead to bond density wave order in the confining

phase. The generalization to the metallic Z2-FL* state was presented recently in Ref. 27.

2. Condensation of e: now we are condensing a boson with S = 1/2, and this leads to long-range

antiferromagnetic order28–32.
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3. Condensation of εc: this is a boson which carries electromagnetic charge, and so the confining

state is a superconductor13.

This paper will focus on the third possibility listed above: condensation of εc, the bosonic

“chargon”. Our specific interest is in the Schwinger boson Z2 spin liquid of Refs. 1, 9, and 10.

To study the εc states in this model, we need to consider the fusion of the ε quasiparticle and the

electron (which is in the 1c sector). Thus a key ingredient needed for our analysis will be the pro-

jective transformations of the ε particle under the symmetry group of the underlying square lattice

antiferromagnet. These transformations are not directly available from the Schwinger boson mean-

field theory, which is expressed in terms of the e boson. However, remarkable recent advances33–39

have shown how the projective symmetry group (PSG) of the ε particle can be computed from a

knowledge of the PSG of the e and m particles.

Section II describes in detail our computation of the PSG of the ε excitations of the square

lattice Schwinger boson Z2 spin liquid state. These results are then applied in Section III to

deduce the structure of the superconductor obtained by condensing εc.

II. MAPPING BETWEEN BOSONIC AND FERMIONIC SPIN LIQUIDS ON THE

RECTANGULAR LATTICE VIA SYMMETRY FRACTIONALIZATION

The Schwinger boson mean-field Z2 spin-liquid described in Refs. 1, 9, and 10 spontaneously

breaks the C4 rotation symmetry of the square lattice, and this nematic order persists in the

Z2-FL*. Therefore, we identify the space-group symmetries of the rectangular lattice along with

time reversal T as the symmetries that act projectively on the e and m particles (bosonic spinons

and visons respectively) in the above ansatz in the Schwinger boson representation (bSR). Be-

low, we briefly describe the idea of symmetry fractionalization33–39, which enables us to find the

projective actions of the same symmetries on the ε particles, or equivalently the spinons in the

Abrikosov fermion representation (fSR). We only provide a quick summary, and refer the reader

to the references above for detailed discussions.

The key idea behind symmetry fractionalization is that the action of any symmetry on a physical

state (which must necessarily contain an even number of any anyon in a Z2 spin liquid) can be

factorized into local symmetry operations on each of these anyons. For concreteness, consider the

translation operator Tx (Ty), which translates the wave-function by one unit in the x̂ (ŷ) direction,

and a physical state |ψ〉 that contains two e particles at r and r′. We assume that this operation
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can be factorized as:

Tx |ψ〉 = T ex(r)T ex(r′) |ψ〉 (1)

Since the e particle is coupled to emergent gauge fields, T ex(r) is not invariant under gauge trans-

formations. But if we consider a set of operations that combine to the identity, T exT
e
y (T ex)−1(T ey )−1

for example, then the combined phase that the e particle picks up is gauge-invariant. In a gapped

Z2 spin liquid, this phase must be ±1. This can be seen by fusing two e particles, which is a local

excitation and therefore can only pick up a trivial phase +1. This also implies that this phase is

independent of location of the e particle as long as translation symmetry is preserved by the spin

liquid. Although we chose the e particle for illustration, an analogous picture holds for m and ε

particles as well.

Generalizing this to other symmetries including internal ones like time-reveral T , we can find

a quantized gauge invariant phase of ±1 for each series of symmetry operations that combine to

identity on the physical wave-function. This phase is fixed for a given anyon in a particular spin

liquid, and is also referred to as the symmetry fractionalization quantum number. These quantum

numbers are universal features of Z2 spin liquids, and provide a way to characterize topological

order without parton constructions. However, given a particular parton construction (either in

terms of bosons or fermions), we can determine these quantum numbers — we shall illustrate how

to so for the particular bosonic Z2 spin liquid we are interested in. Also, given a set of quantum

numbers we can attempt to find a corresponding spin liquid ansatz — we again explicitly describe

this later when we find a fermionic mean-field ansatz. But first, we outline how we find these

quantum numbers for the fermions from those of the bosons and the visons.

In a Z2 spin liquid, the e and m particle satisfy the following fusion rule7:

e×m = ε (2)

In other words, we can think of the fermionic spinon (ε) as a bound state of the bosonic spinon

(e) and the vison (m). Therefore, in most cases, for a set of symmetry operations O combining to

identity, the phase factor picked up by the fermionic spinon σεO is just the product of the phase

σeO picked up by the bosonic spinon and the phase σmO picked up by the vison. These have been

referred to as the trivial fusion rules in Ref. 34. In certain cases, there is an additional factor of −1

coming from the non-trivial mutual statistics between the spinon and the vison, and these fusion

rules are called non-trivial. Once these fusion rules are known, the symmetry fractionalization

quantum numbers for the ε can be calculated from those of e and m.
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With this preamble, we now outline the procedure to derive the fermionic spin liquid ansatz

corresponding to the bosonic Z2 spin liquid obtained from the J1-J2-J3 antiferromagnetic Hamil-

tonian on the square lattice1,9. We first describe the symmetries of the spin liquid, and list the

elementary combinations for which we need to calculate the symmetry fractionalization quantum

numbers. Then we discuss the idea of PSG for the Schwinger boson spin liquids in general40,

and use it to calculate the afore-mentioned quantum numbers for our bosonic ansatz. We proceed

with analogous derivations of the quantum numbers for the visons41,42 and fermions3,43–45 using

PSG techniques. We then derive the non-trivial fusion rules, and use these to relate the bosonic

and fermionic symmetry quantum numbers of time-reversal preserving mean-field spin liquids on

the rectangular lattice. Finally, we find the specific set of quantum numbers for the fermionic

spin liquid of our interest, and find an ansatz consistent with this particular pattern of symmetry

fractionalization.

A. Symmetries of the spin liquid

Consider a mean-field Hamiltonian with the following symmetries: global spin-rotations, action

of the rectangular lattice space group and time-reveral T . Since a mean-field spin liquid ansatz

is explicitly invariant under global SU(2) spin-rotations, we only need to consider the projective

actions of the other symmetries. Let us define the lattice points r = x x̂ + y ŷ = (x, y) in a

rectangular coordinate system with unit vectors x̂ and ŷ. The space group of the rectangular

lattice is then generated by the translations and reflections ∈ {Tx, Ty, Px, Py}, defined as follows:

Tx :(x, y)→ (x+ 1, y) (3a)

Ty :(x, y)→ (x, y + 1) (3b)

Px : (x, y)→ (−x, y) (3c)

Py : (x, y)→ (x,−y) (3d)

There are algebraic constraints which relate these generators. Below, we present the finite set of

elementary combinations of these generators that are equivalent to the identity operator on any

physical wave-function.

T−1
x T−1

y TxTy, P
2
x , P

2
y , P

−1
x TxPxTx, P

−1
x T−1

y PxTy, P
−1
y T−1

x PyTx, P
−1
y TyPyTy and P−1

x P−1
y PxPy

(4a)
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When we include time-reversal T , we also have to consider the following additional operators:

T 2, T−1
x T −1TxT , T−1

y T −1TyT , P−1
x T −1PxT and P−1

y T −1PyT (4b)

These are the combinations for which we need to calculate the symmetry fractionalization quantum

numbers, and all other combinations that lead to identities can be expressed as products of these

elementary combinations.

B. PSG for bSR

1. Schwinger boson ansatz

The spin operator can be represented in terms of Schwinger bosons operators brα as

~Sr =
1

2
b†rα~σαβbrβ (5)

where α =↑, ↓. The mean field Hamiltonian is

Hb
MF = −

∑
rr′

(Qrr′εαβb
†
rαb
†
r′α + h.c.) +

∑
r

λr(b
†
rαbrα − 1) (6)

where λr is a Lagrange multiplier that enforces the single occupancy constraint
∑

α b
†
rαbrα = 1 on an

average and the Qrr′ = 〈εαβbrαbr′β〉 are mean-field pairing link variables that satisfy Qrr′ = −Qr′r.

The Schwinger boson SL wavefunction is

|Ψb〉 = PG exp

[∑
rr′

ξrr′εαβb
†
rαb
†
r′β

]
|0〉 (7)

where PG projects onto states with a single spin, and ξrr′ = −ξr′r is obtained by diagonalizing

Hb
MF via a Bogoliubov transformation.

2. Gauge freedom, PSG and algebraic constraints

Here, we formally introduce the PSG in the context of the Schwinger bosons, and describe

its relation to the symmetry fractionalization quantum numbers. This discussion closely follows

Ref. 40. In the bSR, consider the following local U(1) transformation of the bosons:

brα → eiφ(r)brα (8)

This leaves all the physical observables unchanged, but the mean field ansatz undergoes the fol-

lowing transformation to leave the Hamiltonian invariant:

Qrr′ → eiφ(r)+iφ(r′)Qrr′ (9)
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Any two mean field ansatz that are related by a local U(1) transformation as described above

correspond to the same physical wave function after projection to single spin-occupancy per site.

Therefore, a spin liquid state has a particular symmetry X if the corresponding mean field ansatz

is invariant under the symmetry action of X followed by an additional local gauge transformation

GX .

GX : brα → eiφX(r)brα

GXX : Qrr′ → exp
[
i(φX [X(r)] + φX [X(r′)])

]
QX(r)X(r′) (10)

The set of all such transformations {GXX} that leave the ansatz invariant form the PSG. Ideally,

each PSG element should reflect a physical symmetry of the ansatz. But it turns out that there are

certain transformations in the PSG that are not associated with any physical symmetry, but still

leave the ansatz invariant. In other words, these are purely local transformations, and correspond

to the identity operation X = I. They form a subgroup of the PSG, called the invariant gauge

group (IGG)3. It is natural to associate these members of the PSG with the emergent gauge field

in the spin liquid. For Z2 spin liquids, the IGG is therefore Z2, generated by −1.

One can now ask: how is the IGG related to the Z2 symmetry fractionalization quantum

numbers? To answer this question, note that elements of the IGG correspond to identity trans-

formations on the ansatz, and therefore on the physical wave-function as well (assuming that the

mean-field state survives projection). Therefore, for any series of operations that combine to the

identity, the corresponding projective operation should be an element of the IGG (for example, for

T−1
x TyTxT

−1
y = I, we have (GTxTx)−1(GTyTy)(GTxTx)(GTY Ty)

−1 = ±1). At the same time, note

from Eqs. (8) and (10) that this projective operation describes the gauge-invariant phase that a

single e particle picks up under this set of transformations. Therefore, the element of the IGG

which we choose for a spin liquid ansatz is precisely the symmetry fractionalization Z2 quantum

number for this set of operations. In other words, the symmetry fractionalization quantum num-

bers determine the particular extension of the physical symmetry group by the IGG that is realized

by a given spin liquid.

The algebraic relations between the spatial symmetry operations in a group strongly constrain

the possible choices of gauge transformations GX associated with symmetry operations X. Without

referring to a particular ansatz, we can use these relations to find all possible PSGs for a set of

symmetries. Below, we find the most general phases φX consistent with the algebraic constraints

on a rectangular lattice with time-reversal symmetry.
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3. Solutions to the algebraic PSG

We just state the solutions here, and present the derivation in Appendix A. The solutions for

the phases φX (modulo 2π), as defined in Eq. (10) can be written down in terms of integers {pi}

defined modulo 2, which are precisely the symmetry fractionalization quantum numbers for the e

particles in the spin liquid.

φTx(x, y) = 0 (11a)

φTy(x, y) = p1πx (11b)

φPx(x, y) = p2πx+ p4πy +
p6

2
π (11c)

φPy(x, y) = p3πx+ p5πy +
p7

2
π (11d)

φT (x, y) = p8πx+ p9πy (11e)

4. PSG solutions for the nematic spin liquid ansatz for the J1-J2-J3 model on the square lattice

We need to find the quantum numbers for the Schwinger boson mean-field ansatz of our interest,

which is given by9,10:

Qi,i+x̂ 6= Qi,i+ŷ 6= 0, Qi,i+x̂+ŷ = Qi,i−x̂+ŷ 6= 0, Qi,i+2x̂ 6= 0, Qi,i+2ŷ = 0 (12)

All the mean-field variables are real in a particular gauge choice, so time-reversal symmetry is

preserved. This state has nematic order, as the following gauge-invariant observable I = |Qi,i+x̂|2−

|Qi,i+ŷ|2 6= 0. This state has the following solution for {pi}, which we can derive (as shown in

Appendix B) by using the transformation of the ansatz under the symmetry operation X to fix the

phases φX (or correspondingly, the integers pi):

p1 = 0, p2 = 0, p3 = 0, p4 = 1, p5 = 1, p6 = 1, p7 = 0, p8 = 0, p9 = 0 (13)

C. Vison PSG

In this section, we shall derive the vison PSG for the rectangular lattice. To do so, we shall

resort to a description of the visons by the fully frustrated transverse field Ising model on the dual

lattice46. Denoting the points on the dual lattice by R, the vison Hamiltonian is given by

H =
∑
RR′

JRR′ τ zRτ
z
R′ −

∑
R

hR τ
x
R (14)
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where the product of bonds around each elementary plaquette (2) is negative, given by∏
2

sgn(JRR′) = −1 (15)

Note that this Hamiltonian is invariant under the gauge transformation

τ zR → ηR τ
z
r , JRR′ → ηR ηR′ JRR′ , ηR ∈ {±1} = Z2 (16)

For calculating the vison PSG, we make the following gauge choice (depicted in Fig. 1):

JR,R+x̂ = (−1)x+y = JR+x̂,R and JR,R+ŷ = 1 = JR+ŷ,R (17)

FIG. 1. (Color online) The gauge choice for JRR′ on the rectangular lattice. The dark and light bonds

respectively represent links with JRR′ = −1 and JRR′ = 1. The unit cell is denoted by the blue box, and

the sub lattice indices by 1 and 2. Dotted blue lines form the original lattice.

Let us consider the spatial symmetry generators first. Since the Hamiltonian is invariant un-

der symmetry transformations only upto a gauge transformation, we identify, for each symmetry

generator X in the space group of the rectangular lattice, an element GX ∈ Z2 such that

GXX[JRR′ ] = JX[R]X[R′]GX [X(R)]GX [X(R′)] = JRR′ (18)

Note that all operations are defined w.r.t. the original lattice. From Fig. 1, we can immediately

see what the required gauge transformations are. Since the x bonds change sign under Tx, Ty and
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Py, whereas the y bonds are invariant, we must have GTx = GTy = GPy = (−1)X . Further, Px acts

trivially on both the x and y bonds, so GPx = 1. Now, consider time-reversal T . Since the Ising

couplings JRR′ = ±1 are real, these are invariant under T , so GT = 1 as well. With this knowledge

of additional phases under lattice transformations, we can calculate the symmetry fractionalization

quantum numbers of the visons in a manner analogous to the bosons — we list these in Table II

under the column σmO .

We comment that these are exactly the quantum numbers one would obtain by thinking of

the vison acquiring an extra phase of −1 when it is transported adiabatically with π-flux per unit

cell, corresponding to an odd number of spinons. The results are also consistent with another

calculation from a soft-spin formulation of the visons, which we present in Appendix C.

D. PSG for fSR

1. Schwinger fermion ansatz

In terms of fermion operators, the spin operator Sr can be written as

Sr =
1

2
f †rα~σαβfrβ (19)

We write down the Hamiltonian in terms of two different mean fields as follows44:

Hf
MF =

∑
rr′

3

8
Jrr′

[
χrr′f

†
r,αfr′,α + ∆f

rr′εαβf
†
r,αf

†
r′,β + h.c− |χrr′ |2 − |∆f

rr′ |
2
]

+
∑
r

a3
0(f †rαfrα − 1) + [(a1

0 + ia2
0)εαβf

†
rαf
†
rβ + h.c] (20)

where we have defined the spinon hopping amplitude χrr′δαβ and the spinon-pairing amplitude

∆f
rr′εαβ, both spin-rotation invariant (and non-zero in general), as follows:

∆f
rr′εαβ = −2〈frαfr′β〉, ∆f

rr′ = ∆f
r′r (21)

χrr′δαβ = 2〈f †rαfr′β〉, χrr′ = χ∗r′r (22)

and we have also introduced Lagrange multipliers ai0 to enforce single occupancy per site on average.

2. Gauge freedom, PSG and algebraic constraints

In order to see the local SU(2) symmetry of the Hamiltonian, let us introduce

ψr =

ψ1r

ψ2r

 =

fr↑
f †r↓

 (23)
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We also define a mean-field matrix Urr′ as follows:

Urr′ =

χ∗rr′ ∆rr′

∆∗rr′ −χrr′

 = U †r′r (24)

In terms of the ψ fermions, the single occupancy constraints reduce to 〈ψ†rτ lψr〉 = 0, so the mean

field Hamiltonian can now be written as

Hf
MF =

∑
rr′

3

8
Jrr′

[
1

2
Tr(U †rr′Urr′)− ψ†rUrr′ψr + h.c)

]
+
∑
r

al0(r)ψ†rτ
lψr (25)

Note that Urr′ is not a member of SU(2) as det(U) < 0, but iUrr′ ∈ SU(2) up to a normalization

constant. Hf
MF has is explicitly invariant under a local SU(2) gauge transformation W (r):

ψr →W (r)ψ (26a)

Urr′ →W (r)Urr′W
†(r′) (26b)

In general, dynamical SU(2) gauge fluctuations can reduce the gauge group. In particular, in

presence of non-collinear SU(2) flux, the SU(2) gauge bosons become massive and the only the Z2

gauge structure is unbroken at low energies3,44. In the following sections, we shall only consider

Z2 as the IGG, generated by −τ0.

Analogous to the bosonic case, we define the PSG as the set of all transformations (symmetry

transformations followed by gauge transformations) that leave the ansatz Urr′ invariant (this will

also leave the al0s invariant as these are self-consistently determined by the Urr′s). Pure gauge

fluctuations, corresponding to the identity element in the physical symmetry group, make up the

IGG. Hence operators in the symmetry group that combine to the identity in the physical group,

can only be ±τ0 ∈ IGG in the projective representation. Similar to the bosonic case, this element

η = ±I will determine the symmetry fractionalization quantum number for the corresponding series

of operations.

3. Solutions to the algebraic PSG

Algebraic relations between the symmetry group [4] elements will lead to a series of conditions

for the gauge transformations GX [r], which are now SU(2) valued. The general solutions (without

referring to any ansatz) are given below in terms of Z2 valued variables {η}, and derived the
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Appendix D.

GTx(x, y) = τ0 (27a)

GTy(x, y) = (ηTxTy)
xτ0 (27b)

GPx(x, y) = (ηPxTx)x(ηPxTy)
ygPx , gPx ∈ SU(2), g2

Px = ηPxτ
0 (27c)

GPy(x, y) = (ηPyTx)x(ηPyTy)
ygPy , gPy ∈ SU(2), g2

Py = ηPyτ
0 (27d)

GT (x, y) = (ηT Tx)x(ηT Ty)
ygT , gT ∈ SU(2), g2

T = ηT τ
0 (27e)

where the SU(2) matrices are bound by the following constraints

gPxgT g
−1
Px
g−1
T = ηT Pxτ

0, gPygT g
−1
Py
g−1
T = ηT Pyτ

0, gPxgPyg
−1
Px
g−1
Py

= ηPxPyτ
0 (28)

E. Fusion rules

We provide a table for trivial and non-trivial fusion rules for Z2 spin liquids on the rectangular

lattice with time reversal symmetry T , and provide proofs/arguments in the Appendix E.

Commutation relation Fusion rule

T−1
x T−1

y TxTy Trivial

P 2
x Non-trivial

P 2
y Non-trivial

P−1
x TxPxTx Trivial

P−1
x T−1

y PxTy Trivial

P−1
y T−1

x PyTx Trivial

P−1
y TyPyTy Trivial

P−1
x P−1

y PxPy Non-trivial

T 2 Trivial

T−1
x T −1TxT Trivial

T−1
y T −1TyT Trivial

P−1
x T −1PxT Non-trivial

P−1
y T −1PyT Non-trivial

(29)
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F. Fermionic ansatz

1. General relation between bosonic and fermionic PSGs for rectangular lattice

In the table below, we use the anyon fusion rules to relate bosonic symmetry fractionalization

quantum number σeO with the fermionic one σεO for Z2 spin liquids. These are related as follows:

σεO = σtOσ
e
Oσ

m
O (30)

where we have used the knowledge of the vison quantum number σmO , and the twist factor σtO which

is −1 for non-trivial fusion rules and +1 otherwise.

Commutation relation σeO σεO σmO σtO Relation

T−1x T−1y TxTy (−1)p1 ηTxTy -1 1 (−1)p1+1 = ηTxTy

P−1x TxPxTx (−1)p2 ηPxTy 1 1 (−1)p2 = ηPxTx

P−1y T−1x PyTx (−1)p3 ηPyTx
-1 1 (−1)p3+1 = ηPyTx

P−1x T−1y PxTy (−1)p4 ηPxTy
-1 1 (−1)p4+1 = ηPxTy

P−1y TyPyTy (−1)p5 ηPyTy
1 1 (−1)p5 = ηPyTy

P 2
x (−1)p6 ηPx

1 -1 (−1)p6+1 = ηPx

P 2
y (−1)p7 ηPy

1 -1 (−1)p7+1 = ηPy

P−1x P−1y PxPy 1 ηPxPy -1 -1 1 = ηPxPy

T 2 -1 -1 1 1 1 = 1

T−1x T −1TxT (−1)p8 ηT Tx
1 1 (−1)p8 = ηT Tx

T−1y T −1TyT (−1)p9 ηT Ty
1 1 (−1)p9 = ηT Ty

P−1x T −1PxT (−1)p6 ηT Px
1 -1 (−1)p6+1 = ηT Px

P−1y T −1PyT (−1)p7 ηT Py
1 -1 (−1)p7+1 = ηT Py

TABLE II. Correspondence between bosonic and fermionic Z2 spin liquids on a rectangular lattice with

time-reversal symmetry T
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2. Specific fermionic ansatz

Plugging in the values of {pi} for the bosonic ansatz in Table II, we can find the desired values

of ηXY s for the fermionic ansatz. Doing so and solving the matrix equations (details in Appendix

F), we find the following solutions for the GXs.

GTx(x, y) = τ0 (31a)

GTy(x, y) = (−1)xτ0 (31b)

GPx(x, y) = τ0 (31c)

GPy(x, y) = (−1)x+yiτ3 (31d)

GT (x, y) = iτ2 (31e)

Now we solve for the allowed NN, NNN and NNNN bonds demanding GXX(Urr′) = Urr′ for each

bond. The solution is an ansatz with π-flux through elementary plaquettes, with real pairing on

the NN and NNN bonds, and real hopping on the NNNN bonds:

Ur,r+x̂ = (−1)y∆1x τ
1 (32a)

Ur,r+ŷ = ∆1y τ
1 (32b)

Ur,r+x̂+ŷ = Ur,r−x̂+ŷ = (−1)y∆2 τ
1 (32c)

Ur,r+2x̂ = −t2xτ3 (32d)

Ur,r+2ŷ = −t2yτ3 (32e)

We note that this PSG also allows for an on-site chemical potential of the form a3
0τ

3, so that the

density of fermions can be adjusted. An alternate derivation of the PSG of this fermionic ansatz,

based on mapping of projected mean-field wave-functions is presented in Appendix G and serves

as a consistency check for our results.

We can diagonalize the mean-field Hamiltonian corresponding to this using a two-site unit cell

in the y-direction. Let A and B be the sublattice indices for y even and odd respectively, and

the reduced BZ be given by −π < kx ≤ π,−π/2 < ky ≤ π/2. Since the up-spin and down-spin

sectors decouple, we get a pair of degenerate bands. The Hamiltonian can be written in terms of

a four-component Nambu-spinor Ψk as H =
∑

k∈BZ Ψ†k h(k) Ψk, where

Ψk =


fkA↑

fkB↑

f †−kA↓

f †−kB↓

 , and h(k) is the 4 × 4 matrix given below in terms of ε2k = −2t2xcos(2kx)− 2t2ycos(2ky)
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

ε2k 0 2∆1xcos(kx) 2∆1ycos(ky)

+4i∆2 cos(kx)sin(ky)

0 ε2k 2∆1ycos(ky) −2∆1xcos(kx)

−4i∆2 cos(kx)sin(ky)

2∆1xcos(kx) 2∆1ycos(ky) −ε2k 0

+4i∆2 cos(kx)sin(ky)

2∆1ycos(ky) −2∆1xcos(kx) 0 −ε2k

−4i∆2 cos(kx)sin(ky)


(33)

Diagonalizing this matrix gives us the spinon dispersion, with two doubly degenerate bands

E±k = ±
√

(2t2xcos(2kx) + 2t2ycos(2ky))
2 + 4 (∆1xcos2(kx) + ∆1ycos2(ky)) + 16∆2

2cos2(kx)sin2(ky)

(34)

Both these bands are fully gapped, with the mininum gap occuring at (kx, ky) = (±π/2,±π/2)

for ∆1x,∆1y � ∆2 � t2x, t2y. E
+
k for typical parameter values is plotted in Fig. 2.

FIG. 2. (Color online) Mean field dispersion E+(k) of the fermionic spinons for the parameters

(∆1x,∆1y,∆2, t2x, t2y) = (0.9, 1, 0.4, 0.2, 0.2). The other band is not shown for clarity.



18

We comment that this fermionic spin liquid and hence the associated Z2-FL* phase has not been

studied previously in the literature. Previous PSG studies have investigated fermionic spin liquids

with space group symmetries of the square3,44, triangular and kagome43,45 lattices, whereas we

focus on the rectangular lattice. Ref. 47 discusses projected mean-field wave-functions of nematic

spin liquids on the square lattice and their corresponding fermionic versions, but our initial bosonic

state does not correspond to any of these states (as one can check by calculating fluxes through

triangular plaquettes). We discuss the connection of their results with our work in greater detail

in Appendix G.

III. SUPERCONDUCTING TRANSITION OF THE FL*

So far, we have described the fermionic spinon excitations of the Z2 spin liquid. These corre-

spond to states in the ε sector of Table I. The Z2 FL* state has in addition fermionic electron-like

gauge-neutral excitations which belong the 1c sector of Table I. These can be described by some

convenient dispersion for electron-like operators ckσ. In the recent analysis of Ref. 21, the ckσ

states were built out of electron orbitals which were centered on the bonds of the square lattice;

on the other hand in Ref. 17, the ckσ were obtained from electron-like states on the sites of the

square lattice. The details of the dispersion and Fermi surface structure of the ckσ quasiparticles

of the Z2-FL* will not be important here, and so we simply assume they are characterized by some

generic dispersion ξk, and can be Fourier-transformed to operators crσ on the sites of the square

lattice. Furthermore, the crσ, being gauge-neutral, must have a trivial PSG.

Now we are interested in undergoing a confinement transition in which a boson, B, from the

εc sector of Table I condenses. Such a boson is obtained by the fusion of the ε and 1c states of

Table I. So we introduce two Bose operators on the sites of the square lattice transforming as

B1r ∼ c†rσfrσ , B2r ∼ εσσ′crσfrσ′ . (35)

Each of these bosonic operators carry a Z2 gauge charge of the f fermions, and a U(1) charge

corresponding to the c fermions. We can then write down an effective Hamiltonian for the interplay

between the ε, 1c, and εc sectors of Table I:

H = Hc +HMF
f − JK

4

∑
r,r′

B†1rc
†
rσfrσ +B†2rεσσ′crσfrσ′ + h.c, where

Hc =
∑
k,σ

ξkc
†
kσckσ , and HMF

f =
∑
rr′,σ

χrr′f
†
rσfr′σ +

∑
rr′,αβ

∆f
rr′εαβf

†
rαf
†
r′β + h.c., (36)
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where JK is the allowed ‘Kondo’ coupling linking the sectors of Z2 FL* together. A large N

approach, based on generalization of SU(2) to SU(N) yields only the term involving B1r
48,49,

but we consider a more simplistic mean-field approach where both bosons are present. At the

transition, both these bosons condense together13, and this leads to confinement. In the mean-field

approximation, we replace Bir = 〈Bir〉 which is non-zero in the confined phase. The confinement

transition out of this FL* state leads to a superconducting state13, because a pairing between the

spinons f induces a pairing between the physical c fermions when 〈Bir〉 6= 0. Further suppression

of this superconductivity (by doping/magnetic field) will lead to a normal Fermi liquid state. Since

the spin liquid ansatz breaks lattice symmetries, the confined states can also exhibit a density wave

order. In the following subsection, we first detail the possible superconducting phases and describe

how we obtain them from an effective bosonic Hamiltonian.

A. Possible confined phases

On transition out of the FL*, we typically find that the superconducting phase is of the Fulde-

Ferrell-Larkin-Ovchinnikov (FFLO) type50,51. This is a novel superconductor with fermion pairing

only at finite momentum Q, i.e, with spatial modulation of the order parameter ∆c(r) ∼ eiQ·r.

It has also been referred to in the literature as a pair-density wave (PDW) state52–57. A PDW is

distinct from a state with co-existing superconductivity and charge density wave (CDW) order. In

particular, the superconducting order parameter has no uniform component, i.e, ∆Q=0 = 0; the

Cooper pairs always carry a net momentum Q.

In principle we can also have translation symmetry breaking in the particle-hole channel, leading

to a generalized charge density wave order, often leading to oscillations of charge density on the

bonds (a bond density wave). Following Ref. 58, let us define a generalized density wave order

parameter PQl
(k) as

〈c†rσcr′σ〉 =
∑
Ql

(∫
d2k

4π2
PQl

(k)eik·(r−r
′)

)
eiQl·(r+r′)/2 (37)

When PQl
(k) is independent of k, then the order parameter refers to on-site charge density oscil-

lations at momentum Ql. When PQl
(k) depends on k, then it denotes charge density oscillations

on the bonds, which is also often called a bond density wave58.

Note that a PDW at momentum Q typically leads to a CDW at momentum K = 2Q52. This

can be seen from a Landau-Ginzburg effective Hamiltonian, where a linear term in the CDW order

paramater P2Q, of the form of γ∆(∆∗Q∆−QP2Q + c.c) is allowed by symmetry. Therefore, in the
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phase where ∆Q is condensed, the system can always lower its energy by choosing a non-zero value

of P2Q. Explicit computations later will show that boson condensation at finite momenta can lead

to density wave states which have momenta different from 2QPDW . These are therefore states

where a PDW co-exists along with additional density wave order(s).

To figure out the details of this transition at the level of mean-field theory, we first write down

an effective Hamiltonian for the bosons HB. This is determined by the PSG of the f fermions,

as described in Eq. (31). Once we write down the effective Hamiltonian based on the PSG, we

can find the minima of the boson dispersion at a set of momenta {Qi}, at which the boson will

condense on tuning to the phase transition. Across the transition, we can replace Bir by the value

of the condensate. The spinon-pairing ∆f
rr′ induces a pairing ∆c

rr′ between the c fermions, which

is given in terms of the boson condensate by (perturbatively, to lowest non-zero order in Bir):

εαβ∆c
rr′ = 〈εαβcrαcr′β〉 ∼ (B1rB1r′ +B2rB2r′)〈εαβfrαfr′β〉 = (B1rB1r′ +B2rB2r′)εαβ∆f

rr′ (38)

We also want to study if there is some density wave order, present on top of superconductivity

or a PDW state. Therefore, in the confined phase we evaluate the order parameter PQ(k) by noting

that

〈c†rσcr′σ〉 ∼ (B∗1rB1r′ +B∗2rB2r′)〈f †rσfr′σ〉 (39)

Since each boson is a spin-singlet bound state of the c and f spinon, it has the same spatial

symmetry fractionalization quantum numbers as the f fermions. Time-reversal T interchanges B1r

and B2r because of extra gauge transformation Gτ associated with the f spinon. To deal with both

bosons in a compact way, let us define a two-component spinor as follows:

Br =

B1r

B2r

 (40)

The action of the symmetry operations on Br is derived in Appendix H, here we just state the main

results. Under any spatial symmetry operation Xs, this column vector just picks up an overall U(1)

phase, because the gauge transformations GXs for the f fermions are all diagonal.

GXsXs [Br] = eiφXs [Xs(r)]BXs[r], with φTx = 0, φTy = πx, φPx = 0, φPy = π

(
x+ y +

1

2

)
(41)

However, time-reversal T mixes the up and down spinon operators, and imposes extra constraints.

We demand GXX(HB) = HB for all symmetry operations X. Based on this, we can write down an

effective Hamiltonian for the bosons as follows consistent with the PSG. For simplicity, we include
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only a 2× 2 hopping matrix Trr′ upto next next nearest neighbors (we neglect pairing of bosons).

We find that

Hb =
∑
rr′

B†r Trr′Br′ + h.c., where Trr′ = T drr′τ
0 + T odrr′τ

1 (42)

where T d and T od are the diagonal (B1 → B1 or B2 → B2) and off-diagonal (B1 ↔ B2) hopping

elements, as described in Appendix H. The diagonal hopping amplitudes are given by

T dr,r+x̂ = 0, T dr,r+ŷ = iT dy , T
d
r,r+x̂+ŷ = T dr,r−x̂+ŷ = iT dx+y(−1)y, T dr,r+2x̂ = T d2x, T

d
r,r+2ŷ = T d2y (43)

where all the T dα are real. The off-diagonal hopping is also exactly analogous, as the projective

U(1) phases for both the B1 and B2 bosons are identical. However the overall coefficients T odα are

not fixed by the PSG and generically different from T dα .

For simplicity, we first set the off-diagonal components T odα to zero by hand, which implies that

we need to study only one boson - let us call that Br. We shall later argue that the resulting

superconducting phases are essentially unchanged when one includes the off-diagonal components

as well. Translational symmetry breaking in this gauge choice leads to an enlarged two-site unit

cell in the ŷ direction. Letting A,B be the sublattice indices (for even/odd y), we define the Fourier

transformed operators as

Brα =
1√
Nc

∑
k

eik·rαBkα, α = A,B (44)

where Nc is the number of unit cells, and −π < kx ≤ π,−π/2 < ky ≤ π/2 defines the reduced BZ.

Let us define Ψ†k = (B†kA,B
†
kB), then we can write HB = Ψ†khB(k)Ψk, where

hB(k) =

 ε(k) ξ(k)

ξ∗(k) ε(k)

 , ε(k) = T2x cos(2kx) + T2y cos(2ky)

ξ(k) = −2Ty sin(ky) + 4iTx+y cos(kx)cos(ky) (45)

The two bands are therefore given by

E±(k) = ε(k)± |ξ(k)| = T2x cos(2kx) + T2y cos(2ky)± 2
√
T 2
y sin2(ky) + 4T 2

x+ycos2(kx)cos2(ky)

(46)

In general, the minima of E−(k), which corresponds to the momentum at which the boson con-

denses, will lie at some incommensurate point. In Fig. 3, we present an approximate phase diagram

and look in more details into the different kinds of superconducting phases obtained by condensing

the boson. All but one of these phases break time reversal symmetry T .
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Incommensurate PDW (4)
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FIG. 3. (Color online) Phases of the superconductor - phase boundaries are approximate. T2x, T2y are

assumed small but non-zero. The number in brackets denotes the subsection in which the phase is discussed.

The red dot denotes phase (1) — a PDW state with unbroken T . The phases are described in detail in the

main text.

1. T -invariant PDW

First, consider the case where we turn off the imaginary hopping terms, i.e, Ty = Tx+y = 0.

In this case, the boson hoppings are translationally invariant, and the minima corresponds to

Q = (0, 0). Let the boson condensate at Q = (0, 0) be B(r) = Bo, we find that the nearest

neighbor c-fermion pairing amplitude is given by

∆c
r,r+x̂ = B2

o(−1)y∆1x

∆c
r,r+ŷ = B2

o ∆1y (47)

The superconducting phase breaks translation symmetry, therefore we have a PDW state with

QPDW = (0, π). Since the bosons condense at zero momentum, the density wave order parameter

can only pick up a non-zero expectation value if the f spinon hoppings themselves break translation

symmetry. This is not the case for our fermionic ansatz [described by Eq. (32)], and therefore

we expect no density wave order in this phase. In fact, one can perturbatively evaluate the

renormalizations of the c fermion hoppings (over and above the ones which are present in Hc)
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as follows:

〈c†rcr+2x̂〉 = B2
o(−t2x)

〈c†rcr+2ŷ〉 = B2
o(−t2y) (48)

These are both translation invariant.

2. Translationally invariant SC with broken T

Q = (0, 0) is also the position of the minima when Ty < Tx+y. However, any non-zero Tx+y will

enlarge the unit cell. The value of the boson condensate is therefore given by

B(r) =

BA(r)

BB(r)

 = Bo

1

i

 (49)

From the boson condensate at Q = (0, 0), we find that the nearest neighbor c-fermion pairing

amplitude is given by

∆c
r,r+x̂ = B2

o(−1)y∆1x, for r ∈ A

∆c
r,r+x̂ = (iBo)2(−1)y∆1x = −B2

o(−1)y∆1x, for r ∈ B, and

∆c
r,r+ŷ = iB2

o∆1y (50)

Noting that there is the A/B sublattices are defined by even/odd y coordinates, this implies that

∆c
r,r+x̂ = B2

o∆1x. Thus, this superconductor does not break translation symmetry. However, it

will break necessarily time-reversal symmetry because there is a relative i between the pairing

amplitudes along x̂ and ŷ, and the pairing is of the s+ idx2−y2 type. This state does not have an

associated density wave order.

Depending on the relative signs of the hoppings, a condensate at Q = (π, 0) is also possible,

and gives a superconducting state with identical features.

3. Commensurate PDW with broken T

Next, let us consider the case where the nearest neighbor hopping dominates, i.e, Ty �

Tx+y, T2x, T2y. In this case, there is a regime where the minima of the boson dispersion lies ap-

proximately at ±Q = (0,±π/2). The boson condensate is given by

B(r) =

BA(r)

BB(r)

 = B+

eiQ·rA
eiQ·rB

+ B−

e−iQ·rA
e−iQ·rB

 = B+

1

i

 eiQ·rA + B−

 1

−i

 e−iQ·rA(51)



24

Using the previously outlined procedure to calculate the superconducting order parameter, we find

∆c
r,r+x̂ =

[
(B2

+ + B2
−) + (−1)y2B+B−

]
∆1x

∆c
r,r+ŷ = i

(
B2

+ − B2
−
)

(−1)y∆1y (52)

Both translation symmetry and time-reversal symmetry are explicitly broken by the superconduc-

tor, and we have a PDW at QPDW = (0, π) with s+ idx2−y2 pairing.

Analogous to the first PDW phase with unbroken T , we can evaluate the renormalization of

the c fermion hopping amplitudes (suppressing spin indices for simplicity):

〈c†rcr+2x̂〉 =
[
|B+|2 + |B−|2 + (−1)y(B+B∗− + B−B∗+)

]
(−t2x)

〈c†rcr+2ŷ〉 =
[
(|B+|2 + |B−|2)(−1)y + (B+B∗− + B−B∗+)

]
(−t2y) (53)

The spatially constant parts of the induced hopping amplitudes will just renormalize the bare

hopping of the c fermions, but the terms at QCDW = QPDW = (0, π) correspond to a density

wave with form factor PQCDW
(k) = c1 cos(2kx) + c2 cos(2ky), which is of the s′ + d type. This is

therefore an example of a state where PDW co-exists with bond density wave order.

4. Incommensurate PDW with broken T

Away from the previous two parameter regimes, the boson b(r) will condense at some generic

incommensurate momentum Q = (Qx, Qy). One can carry out an analogous calculation to find

out the relevant order parameters. Note that the boson dispersion is symmetric under k → −k,

which implies that there are necessarily a couple of minima at Q and −Q. Assuming no other

degenerate minima, the boson condensate is given by:

B(r) =

BA+e
iQ·rA

BB+e
iQ·rB

+

BA−eiQ·rA
BB−eiQ·rB

 (54)

This leads to a PDW at momentum 2Q + (0, π) as well as (0, π) for the c-fermions, the latter

coming from the inherent translation symmetry breaking of the spinon pairing ansatz:

∆c
r,r+x̂ =

[
B2
A+ e

i(2Q·r+Qx) + 4BA+BA−cos(Qx) + B2
A− e

−i(2Q·r+Qx)
]

(−1)y∆1x, r ∈ A

=
[
B2
B+ e

i(2Q·r+Qx) + 4BB+BB−cos(Qx) + B2
B− e

−i(2Q·r+Qx)
]

(−1)y∆1x, r ∈ B

∆c
r,r+ŷ =

[
BA+BB+ e

i(2Q·r+Qy) + BA−BB+ e
iQy + BA+BB− e−iQy + BA−BB− e−i(2Q·r+Qy)

]
∆1y

(55)
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An analogous calculation of the density wave order parameter shows that there is an oscillation of

charge density on the bonds at momenta QCDW = 2Q.

〈c†rcr+2x̂〉 ∼ B2
A/Be

2iQ·r(−t2x), r ∈ A/B

〈c†rcr+2ŷ〉 ∼ B2
A/Be

2iQ·r(−t2y), r ∈ A/B (56)

Therefore, we have an incommensurate PDW co-existing with bond density wave.

More generally, boson condensation at two different momenta Q and Q′ will lead to a PDW order

at KPDW = Q+Q′+(0, π) and (0, π), and a bond density wave order at momenta KCDW = Q±Q′

for our fermionic ansatz. These are all states with co-existing PDW and density wave order. Note

that a density wave at a different momentum QDW = Q + Q′ + K1 is also possible if there is a

spinon-hopping term which breaks translation symmetry with momentum K1. In our fermionic

ansatz for the f spin liquid, such a term is absent (upto NNNN) and therefore such a density wave

does not exist.

We now argue that inclusion of T odα do not change these phases, although it enlarges the phase

space and therefore can change where these show up in the phase space. This can be explicitly

seen from the eigenvalues of the 4 × 4 matrix h(k) in momentum space, which are now given by

(assuming T
d/od
2x = T

d/od
2y = T

d/od
2 to avoid clutter of notation):

E+
k,± = 2[cos(2kx) + cos(2ky)](T

d
2 − T od2 )± 2

√
(T dy − T ody )2sin2(ky) + 4(T dx+y − T odx+y)

2cos2(kx)cos2(ky)

E−k,± = 2[cos(2kx) + cos(2ky)](T
d
2 + T od2 )± 2

√
(T dy + T ody )2sin2(ky) + 4(T dx+y + T odx+y)

2cos2(kx)cos2(ky)

(57)

These are essentially identical to the previous dispersion in Eq. (46), with a renormalization of

hopping parameters. Therefore, condensates again occur at the same values of Q as described

previously, and lead to the same phases.

IV. CONCLUSIONS

While several recent experiments23,24 have been consistent with a FL* model for the pseudogap

metal at higher temperatures, the most recent Hall effect measurements25 indicate that the FL*

model may well extend down to low temperatures just below optimal doping.

In the light of this, it is useful to catalog the confinement instabilities of the simplest FL*

state, the Z2-FL*. The excitations of this state invariably transform non-trivially under global

symmetries of the model, and so the confinement transition is then simultaneous with some pattern
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of symmetry breaking. From Table I, we observe that the Z2-FL* state has three categories of

bosonic excitations, and each can then give rise to a distinct confinement transition. The most

familiar is the condensation of the bosonic spinons (column e in Table I), and this leads to spin-

density-wave order, which is observed in most cuprates at low doping. The second possibility is

the condensation of visons (column m in Table I): this was examined recently27, and it was found

that bond-density-waves similar to recent observations59–61 are a possible outcome. The final class

of confinement transitions out the Z2-FL* state was considered in the present paper: this is the

condensation of bosonic chargons (column εc in Table I).

Our main technical challenge in this paper was to compute the projective symmetry group

of the fermionic spinons (column ε in Table I) for a favorable Z2 spin liquid state described by

an ansatz for bosonic spinons1,9,10. An important feature of the PSG for the fermionic spinons

obtained was that translational symmetry was realized projectively, with TxTy = −TyTx. After

obtaining this PSG, we could then deduce the PSG for the bosonic chargons by fusing the fermionic

spinons to the electron, which has a trivial PSG. The PSG for the bosonic chargons also had

TxTy = −TyTx, and this almost always means that the confinement state with condensed chargons

will break translational symmetry. Combined with the pairing of fermionic spinons invariably

present in the Z2-FL* state, such analyses led to the appearance of FFLO, or pair density wave

(PDW), superconductivity. And it is worthwhile to note here the recent observation of modulated

superconductivity, albeit on a much larger background of uniform superconductivity62.

In conclusion, we highlight the remarkable fact that the three categories of confinement tran-

sitions out of Z2-FL* allowed by Table I (corresponding to the three columns with bosonic self-

statistics) correspond closely to features of the phase diagrams of the cuprates: (i) the condensation

of m can lead to metals with density wave order similar to observations, as discussed recently in

Ref. 27; (ii) the condensation of e leads to incommensurate magnetic order found at low dop-

ing; (iii) the present paper showed show the condensation of εc can lead to superconductors with

co-existing density wave order, a state observed in recent experiments63.

ACKNOWLEDGMENTS

We acknowledge helpful conversations with Y. M. Lu and F. Wang. This research was supported

by the NSF under Grant DMR-1360789. J. S. was supported by the National Science Foundation

Graduate Research Fellowship under Grant No. DGE1144152. Research at Perimeter Institute is

supported by the Government of Canada through Industry Canada and by the Province of Ontario



27

through the Ministry of Research and Innovation.

Appendix A: Derivation of the bosonic PSG

To derive the solution, we note a few things. First, if we apply a gauge transformation G to the

ansatz, then the gauge transformed ansatz is invariant under

GGXXG
−1 = GGXXG

−1X−1X =⇒ GX → GGXXG
−1X−1 (A1)

This implies that the phase φX under a gauge transformation transforms as (except when X is the

anti-unitary time-reversal operator)

φX(r)→ φG(r) + φX(r)− φG[X−1(r)] (A2)

Since we can choose a particular gauge to work in, we shall use this to later simplify our PSG

classification.

Let us find the constraints imposed by the structure of the rectangular lattice symmetry group.

Consider a string of space group operators which combine to identity in the lattice symmetry

group. Then in the PSG, these must combine to an element of the IGG Z2, which means it is ±1.

Therefore, for each such string, we shall define an integer pn (defined modulo 2) which will denote

how the symmetry fractionalizes in the PSG. It is sufficient to consider the strings in Eqs. (4a),

because any other string can be reduced to one such string by normal ordering the strings using the

same commutation/anticommutation relations. We can then use these constraints to find the gauge

operations GX , or equivalently, their phases φX(r), in terms of the pn’s. Note that all the following

equations for the phases are true modulo 2π. For notational convenience, we also introduce discrete

lattice derivatives ∆xφX = φX(x+ 1, y)− φX(x, y), and ∆yφX = φX(x, y + 1)− φX(x, y).

Let us start by looking the commutation relation between the translations. We have, from

Eq. (4)

(GTxTx)−1(GTyTy)(GTxTx)(GTY Ty)
−1 = (T−1

x GTxTx)(T−1
x GTyTx)(T−1

x TyGTxT
−1
y Tx)(G−1

Ty) = ±1 = (−1)p1

(A3)

Since Y −1GXY : φX(r)→ φX [Y (r)], we have the following constraint equation for φTx and φTy

− φTx [Tx(x, y)] + φTy [Tx(x, y)] + φTx
[
T−1
y Tx(x, y)

]
− φTy(x, y) = p1π (A4)

Now we assume we are defining the system on open boundary conditions, so that we can use the

gauge freedom in Eq. (A2) to set φTx(x, y) = 0. We also assume, following Ref. 40 that we can set



28

φTy(0, y) = 0. Then we can write down the solution as

∆xφTy(x, y) = p1π =⇒ φTy(x, y) = p1πx+ φTy(0, y) = p1πx (A5)

Now we consider Px and its commutations with Tx and Ty. From GTxTxP
−1
x G−1

Px
GTxTxGPxPx =

±1 = (−1)p2 , we get

φPx(x, y)− φPx [TxPx(x, y)] + φTx [Px(x, y)] + φPx [Px(x, y)] = p2π =⇒ ∆xφPx = p2π

From G−1
Ty
TyP

−1
x G−1

Px
GTyTyGPxPx = ±1 = (−1)p4 , we get

−φTy [Ty(x, y)]− φPx [PxTy(x, y)] + φTy [TyPx(x, y)] + φPx [Px(x, y)] = p4π

=⇒ ∆yφPx − p1π(−x) + p1π(−x) = p4π =⇒ ∆yφPx = p4π (A6)

Using the above two equations, we can write down

φPx(x, y) = p2πx+ p4πy + φPx(0, 0) (A7)

φPx(0, 0) is now found out using (GPxPx)2 = ±1 = (−1)p6 , which implies 2φPx(0, 0) = p6π

φPx(x, y) = p2πx+ p4πy +
p6

2
π (A8)

In an exactly analogous way, we find that

φPy(x, y) = p3πx+ p5πy +
p7

2
π (A9)

Finally, let us consider time-reversal T . From the commutations of T with Tx and Ty, we find the

following two equations

∆xφT = p8π, ∆yφT = p9π (A10)

Solving the above gives us φT (x, y) = p8πx + p9πy + φT (0, 0). The commutations with Px and

Py do not yield any new relation. Finally, we note that under a global gauge transformation

G : brσ → eiθbrσ, due to the anti-unitary nature of T we have φT (x, y) → φT (x, y) + 2θ. We can

use this freedom to set θ = −φT (0, 0)/2, and we therefore have

φT (x, y) = p8πx+ p9πy (A11)

Note that this gauge transformation does not affect the φX corresponding to a spatial symmetry

X, as these are unitary and follow Eq. (A2).
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Appendix B: PSG corresponding to the nematic bosonic ansatz

The phases φX corresponding to the symmetry operations X can be fixed by demanding that

the ansatz remain invariant under GXX.

First, we note that the ansatz itself is translation invariant, so both GTx and GTy must be

trivial. This implies that our ansatz is consistent with our trivial gauge choice for GTx , and p1 = 0.

(a) (b) (c)

FIG. 4. (a) The original translation invariant ansatz (b) the ansatz under Px : (x, y) → (−x, y) (c) the

ansatz under Py : (x, y)→ (x,−y). The arrow from r to r′ indicates the orientation for which Qrr′ > 0.

Px Py

Q(x,y)→(x+1,y) → Q(x+1,y)→(x,y) = −Q(x,y)→(x+1,y) Q(x,y)→(x+1,y) → Q(x,y+1)→(x+1,y+1) = Q(x,y)→(x+1,y)

Q(x,y)→(x,y+1) → Q(x+1,y)→(x+1,y+1) = Q(x,y)→(x,y+1) Q(x,y)→(x,y+1) → Q(x,y+1)→(x,y) = −Q(x,y)→(x,y+1)

Q(x,y)→(x+1,y+1) → Q(x+1,y)→(x,y+1) = Q(x,y)→(x+1,y+1) Q(x,y)→(x+1,y+1) → Q(x,y+1)→(x+1,y) = −Q(x,y)→(x+1,y+1)

Q(x+1,y)→(x,y+1) → Q(x,y)→(x+1,y+1) = Q(x+1,y)→(x,y+1) Q(x+1,y)→(x,y+1) → Q(x+1,y+1)→(x,y) = −Q(x+1,y)→(x,y+1)

TABLE III. Transformation of link variables Qrr′

Let us now consider Px. Using translation invariance, we have Px(Qr,r+x̂) = Qr+x̂,r = −Qr,r+x̂.

By definition, GPxPx(Qr,r+x̂) = Qr,r+x̂, and this implies that φPx [Px(r)] + φPx [Px(r + x̂)] = π,

which in turn gives us p2 + p6 = 1. The nearest-neighbor y bond is unaffected by Px, whereas the

diagonal bonds are swapped and effectively not affected as they have the same value in this ansatz.

We get the following equations from demanding that GX acts trivially on these bonds: p4 +p6 = 0,
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and p2 + p4 + p6 = 0. Solving these we find that p2 = 0, p4 = p6 = 1 (modulo 2).

Similarly, acting Py changes the sign on all bonds except the x bonds, and we have the following

equations: p3 + p7 = 0, p5 + p7 = 1, and p3 + p5 + p7 = 1. Solving gives us p3 = p7 = 0, p5 = 1.

Finally, we look at time-reversal. Since all the bond variables are real (which we assume is

consistent with our gauge choice), we have p8 = p9 = 0.

Appendix C: Alternate derivation of the vison PSG

In this section, we present an alternate derivation of the vison PSG, based on the critical modes

of the vison as one approaches vison condensation. We assume a soft spin formulation, which is

reasonable from coarse graining near a critical point. We replace the Ising variables τ zRs in the

vison Hamiltonian by real fields φR ∈ R, and describe the kinetic term by a conjugate momentum

πR to φR and mass m, so that the Hamiltonian becomes

Hsoft =
1

2

∑
R

(
π2
R +m2φ2

R

)
+
∑
RR′

JRR′ φR φR′ (C1)

In our gauge choice (recall Fig. 1), we have a two-site unit cell with primitive vectors a1 = x̂+ ŷ

and a2 = 2ŷ (setting lattice spacings = 1). Neglecting the kinetic term (which is inessential to

the study of vison condensation transitions), the Hamiltonian in the momentum space for this

extended unit cell is given by

Hsoft =
∑
k

H(k), with H(k) = 2

 0 cosky + i sinkx

cosky − i sinkx 0

 (C2)

Diagonalizing this leads to the following two bands

ω±(k) = ±2
√

cos2ky + sin2kx (C3)

The inequivalent minima of this band structure lie at Q1,2 = ±(π/2, 0) in the reduced BZ, and the

corresponding eigenvectors are v1 = (−eiπ/4, 1)T and v2 = (−e−iπ/4, 1)T , where the superscript T

indicates transposition. Later, we shall write out the vison field in terms of these soft modes.

Now, we analyze the PSG of the visons. Since the Hamiltonian is invariant under symme-

try transformations only up to a gauge transformation, we identify, for each symmetry gener-

ator X in the space group of the rectangular lattice, an element GX ∈ Z2 such that Jrr′ =

JX[r]X[r′]GX [X(r)]GX [X(r′)]. These symmetry operations for the rectangular lattice, and their

associated gauge transformations are listed below. We denote sublattice s = (1, 2) at the unit cell
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r = ma1 + na2 by (m,n)s.

Tx :


(m,n)1 → (m+ 1, n− 1)2

(m,n)2 → (m+ 1, n)1

Ty :


(m,n)1 → (m,n)2

(m,n)2 → (m,n+ 1)1

Px :


(m,n)1 → (−m− 1,m+ n)2

(m,n)2 → (−m− 1,m+ n+ 1)1

Py :


(m,n)1 → (m,−n− 1)2

(m,n)2 → (m,−n− 1)1

(C4)

The associated gauge transformations can be found out by figuring out appropriate gauge trans-

formations to leave the Hamiltonian invariant. As discussed in the main text, all operations except

Px exchange the x bonds with different signs, and hence need a gauge transformation which adds

an extra sign to bring the Hamiltonian back to itself. The y bonds are invariant under any of these

operations.

GTx(m,n)s = (−1)m

GTy(m,n)s = (−1)m

GPx(m,n)s = 1

GPy(m,n)s = (−1)m (C5)

Next, we outline to find the general procedure to find the representation of the PSG in the order

parameter space, and subsequently apply it to our situation. We first define the order parameter

by expanding the vison field in terms of the N soft modes as follows:

φs(R) =

N∑
n=1

ψnv
n
s e

iqn·R (C6)

Here, R is the unit cell index, s = (1, 2) is the sub lattice index, N is the number of soft modes

and the complex number ψn is the vison order parameter corresponding to the nth soft mode at

momentum qn with eigenvector vn of Hsoft. Now, we can figure out how the order parameters ψn

transform into each other under different symmetry operations GXX which leave the Hamiltonian

Hsoft invariant. This can be found from solving the following equation, which gives us the desired
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representation in form of the N ×N matrix OX defined below (with (R′, s′) = X(r, s))

GXX[φs(R)] =
N∑
n=1

ψnv
n
s′e

iqn·R′
GX [R′, s′]

=
N∑
n=1

ψ′nv
n
s e

iqn·R

=
N∑
n=1

(
N∑
m=1

OX,mnψn

)
vns e

iqn·R (C7)

With nearest neighbor interactions of the soft spins in the fully frustrated dual Ising model, we

earlier found that there are two minima at Q1,2 = ±Q = (±π/2, 0) with associated eigenvectors

v1 and v2. Since the order parameter φ is real, we can write it (in form of a vector with two sub

lattice indices) φ1

φ2

 = ψ

−eiπ/4
1

 eiQ·R + ψ∗

−e−iπ/4
1

 e−iQ·R (C8)

We work out the results for Tx explicitly, and just quote the other ones. All of these can be obtained

by following the general procedure outlined above. For r = (m,n), we have Q ·R = πm/2, so we

get

φ1(R) = −ψeiπ/4eiπm/2 − ψ∗e−iπ/4e−iπm/2

=⇒ GTxTx[φ1(R)] =
[
ψ(1)eiπ/2(m+1) + ψ∗(1)e−iπ/2(m+1)

]
(−1)m

= ψ eiπ/2e−iπm/2 + ψ∗ e−iπ/2eiπm/2

= −ψ′eiπ/4eiπm/2 − ψ′∗e−iπ/4e−iπm/2 (C9)

Since the above is true for all m, we have ψ′ = −ψ∗e−i3π/4 = eiπ/4ψ∗. Therefore, in the matrix

form, we can write ψ′

ψ′∗

 =

 0 eiπ/4

e−iπ/4 0

 ψ

ψ∗

 (C10)

Thus the matrix representation of OTx in the order parameter space (in our chosen gauge) is given

by

OTx =

 0 eiπ/4

e−iπ/4 0

 (C11)
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The matrix representations of the other operators are worked out identically, here we just list the

results.

OTy =

 0 −e−iπ/4

−eiπ/4 0

 (C12)

OPx =

 0 eiπ/4

e−iπ/4 0

 (C13)

OPy =

 0 −e−iπ/4

−eiπ/4 0

 (C14)

The fractionalization of the commutation relations can now be obtained from these matrices.

OTxOTyO
−1
Tx
O−1
Ty

= −1 (C15a)

OTxOPxOTxO
−1
Px

= 1 (C15b)

OTxOPyO
−1
Tx
O−1
Py

= −1 (C15c)

OTyOPxO
−1
Ty
O−1
Px

= −1 (C15d)

OTyOPyOTyO
−1
Py

= 1 (C15e)

OPxOPx = 1 (C15f)

OPyOPy = 1 (C15g)

OPxOPyO
−1
Px
O−1
Py

= −1 (C15h)

A more complicated analysis including fourth nearest neighbor interactions39 (done on the

square lattice, but works for rectangular lattices as well) also leads to matrix representations of

the operators with identical crystal symmetry fractionalization.

In order to check how the symmetries involving time-reversal fractionalize, we follow Ref. 34.

We look at the edge modes and require that they are not symmetry protected, or, in other words,

we have a gapped boundary. The edge modes of a Z2 spin liquid can always be fermionized with

the same number of right and left movers (branch denoted by index n).

Ledge,0 =
∑
n

iψ†L,n(∂t − v∂x)ψL,n − iψ†R,n(∂t + v∂x)ψR,n (C16)

In general, we would expect a gapped edge due to backscattering terms below, unless these are

forbidden by symmetry.

Ledge,1 =
∑
m,n

ψ†L,mMm,nψR,n + ψ†L,m∆m,nψR,n + h.c (C17)
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The above mass terms correspond to condensing spinons or visons at the edge. Since condensing

spin-half spinons would break SU(2) symmetry, we would need to condense visons to get gapped

edges with all symmetries intact. This can only take place if the vison PSGs allow a vison conden-

sate at the edge. If the symmetries act non-trivially on the vison field φ, then the vison condensate

will break the symmetry. Therefore, if we want to preserve the symmetry at the edge with gapped

edge modes (non-zero mass terms), the symmetries at the edge cannot have a non-trivial action on

φ.

Consider the square lattice on a cylinder with open boundaries parallel to x̂. Then the remaining

symmetries are Tx, Px and time-reversal T . If there are no symmetry-protected gapless edge states

on the boundary, then these symmetries must act trivially on the visons. Hence, we have

O−1
Tx
O−1
T OTxOT = 1, O−1

Px
O−1
T OPxOT = 1 (C18)

We can apply an analogous argument for a cylinder with open boundaries parallel to ŷ, to find

O−1
Ty
O−1
T OTyOT = 1, O−1

Py
O−1
T OPyOT = 1 (C19)

Appendix D: Derivation of the fermionic PSG

To derive the general solutions to the fermionic PSG, we note that the PSGs of two gauge-

transformed ansatz are related (similar to the bosonic case). Recall that the PSG is defined as the

set of all transformations GXX that leave the ansatz unchanged.

GXX(Urr′) = GX
(
UX[r]X[r′]

)
= Urr′ , where GX(Urr′) = GX [r]Urr′G

†
X [r′] (D1)

Under a local gauge transformation Ũrr′ = WrUrr′W
†
r′ , therefore

GX → G̃X = WrGXW
†
X(r) (D2)

We can use this gauge freedom to choose GTx = τ0. Now, consider the commutation of Tx and Ty.

(GTxTx)(GTyTy)(GTxTx)−1(GTyTy)
−1 = ηTxTyτ

0

=⇒ GTy(r− x̂)G−1
Ty

(r) = ηTxTyτ
0 (D3)

In an appropriate gauge, we can choose the solution as GTy(x, y) = (ηTxTy)
xτ0. This choice of

gauge, where both GTx and GTy are proportional τ0, is referred to as the uniform gauge3 as it

preserves the translation invariance of SU(2) flux through any loop.
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Next, consider the commutations of time-reversal T with Tx and Ty. We find that

GT (r− x̂)GT (r)−1 = ηT Txτ
0 , GT (r− ŷ)GT (r)−1 = ηT Tyτ

0 (D4)

Hence we can write the solution as GT (x, y) = (ηT Tx)x(ηT Ty)
ygT , where gT ∈ SU(2). The added

constraint G2
T = ηT τ

0 yields g2
T = ηT τ

0.

Let us consider the commutations of Px with Tx, Ty.

(GPxPx)(GTxTx)(GPxPx)−1(GTxTx) = ηPxTxτ
0 =⇒ GPx(r)GPx(r + x̂)−1 = ηPxTxτ

0

(GPxPx)(GTyTy)(GPxPx)−1(GTyTy)
−1 = ηPxTyτ

0 =⇒ GPx(r)GPx(r− ŷ)−1 = ηPxTyτ
0 (D5)

The solution is GPx(x, y) = (ηPxTx)x(ηPxTy)
ygPx , where gPx ∈ SU(2) satisfies g2

Px
= ηPxτ

0 since

G2
Px

= ηPxτ
0.

Similarly, for Py we find that GPy(x, y) = (ηPyTx)x(ηPyTy)
ygPy , where gPy ∈ SU(2) satisfies

g2
Py

= ηPyτ
0 since G2

Py
= ηPyτ

0.

Finally, we need to look at commutations of Px and Py with time-reversal T , and between

themselves.

(GPxPx)(GT T )(GPxPx)−1(GT T )−1 = ηT Pxτ
0 =⇒ gPxgT g

−1
Px
g−1
T = ηT Pxτ

0

(GPyPy)(GT T )(GPyPy)
−1(GT T )−1 = ηT Pyτ

0 =⇒ gPygT g
−1
Py
g−1
T = ηT Pyτ

0

(GPxPx)(GPyPy)(GPxPx)−1(GPyPy)
−1 = ηPxPyτ

0 =⇒ gPxgPyg
−1
Px
g−1
Py

= ηPxPyτ
0 (D6)

The full fermionic PSG on a rectangular lattice with time-reversal T is thus given by the following

equations, together with the constraints set by Eq. (D6).

GTx(x, y) = τ0 (D7a)

GTy(x, y) = (ηTxTy)
xτ0 (D7b)

GPx(x, y) = (ηPxTx)x(ηPxTy)
ygPx , gPx ∈ SU(2), g2

Px = ηPxτ
0 (D7c)

GPy(x, y) = (ηPyTx)x(ηPyTy)
ygPy , gPy ∈ SU(2), g2

Py = ηPyτ
0 (D7d)

GT (x, y) = (ηT Tx)x(ηT Ty)
ygT , gT ∈ SU(2), g2

T = ηT τ
0 (D7e)

Appendix E: Trivial and non-trivial fusion rules

Consider a unitary symmetry operation X2 = 1 which is realized projectively on the anyons.

To detect the symmetry fractionalization corresponding to X, we follow Ref. 35. We act X once on
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an excited state containing two anyons, whose positions are swapped by X. The symmetry action

on an anyon is accompanied by additional gauge transformations, so we have

X |ar〉 = Ur |aX(r)〉 , X |aX(r)〉 = UX(r) |ar〉 , =⇒ X2 |ar〉 = UrUX(r) |ar〉 (E1)

Then, the phase factor we get on acting X twice is given by UrUX(r), which is nothing but eiφa ,

the phase corresponding to the anyon a.

First, consider acting X on a physical wavefunction |Ψ〉 = f †rf
†
X(r) |G〉, with two fermionic

spinons at r and X(r). Assuming that the ground state |G〉 is symmetric, we have

X |Ψ〉 = (Xf †rX
−1)(Xf †X(r)X

−1) |G〉 = UrUX(r)f
†
X(r)f

†
r |G〉 = −UrUX(r) |Ψ〉 = −eiφf |Ψ〉 (E2)

This extra minus sign comes from reordering of the fermionic spinons under X, which is crucially

dependent on the statistics of the fermion.

Now, the same state can be thought of a pair of bound states of a bosonic spinon and a vison,

i.e,

|Ψ〉 = b†rφ
†
rb
†
X(r)φ

†
X(r) |G〉 (E3)

Applying X on this state, there is no fermion reordering sign, and we get

X |Ψ〉 = eiφbeiφv |Ψ〉 (E4)

Hence, comparing the two relations we find that in such cases, the fusion rule is non-trivial and

carries an extra twist factor of −1, i.e,

eiφbeiφv = −eiφf (E5)

For the rectangular lattice, we want to figure out which symmetry fractionalization quantum

numbers have non-trivial fusion rules. First, consider the reflections Px and Py, and the inversion

I = PxPy. All of these square to identity, implying the relations P 2
x = 1, P 2

y = 1 and (PxPy)
2 = 1

have non-trivial fusion rules. Now we use following the algebraic identity

(PxPy)
2 = (PxPyP

−1
x P−1

y ) · P 2
x · P 2

y (E6)

Since the PSGs associated with P 2
x , P

2
y and (PxPy)

2 have non-trivial fusion rules, the fusion rule

for PxPyP
−1
x P−1

y must be non-trivial as well.

Next, note that the identity P−1
x TxPxTx = 1 can also be written as P−2

x Y 2 = 1, where Y = PxTx.

Now, P 2
x and Y 2 both have non-trivial fusion rules, so the fusion rule for P−1

x TxPxTx = 1 is trivial.

Identical arguments show that P−1
y TyPyTy = 1 has a trivial fusion rule.
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Now consider P−1
x T−1

y PxTy and its counterpart x ↔ y. In this case, it is sufficient to act on

single anyons, and we find that the spinon string has cut the vison string an even number of times

under any of these operations, as illustrated in Fig. 5. Therefore, these commutation relations

have a trivial fusion rule. An analogous argument shows that T−1
x T−1

y TxTy = 1 has a trivial fusion

rule.

�

�

�

FIG. 5. Crossing of spinon (red blob) strings, represented by dashed red lines, and vison (blue cross) strings,

represented by dotted blue lines, under TyPxT
−1
y P−1x

Finally, let us consider time reversal symmetry. We know that both bosonic and fermionic

spinons have half-spin with T 2 = −1, whereas the vison is a spin-singlet with T 2 = 1, so the fusion

rule for T 2 must be trivial.

To derive the fusion rules of R−1T −1RT , where R = Px or Py, we follow Ref. 34. We first

consider the anti-unitary operator squared (T R)2. If we act R2 on a pair of spinons and visons on

the reflection axis, the spinon and vison strings cross. This implies that the phase picked up by a

bosonic spinon relative to the bound state of a fermionic spinon and a vison, is ±i for the single

reflection R. This is offset by the anti-unitary time reversal operator, which complex conjugates

the wave function. Hence, the net relative phase is (±i)∗× (±i) = 1, as illustrated in34. So, (T R)2

has a trivial fusion rule. Now, we use the algebraic identity

(T R)2 = (R−1T −1RT ) · T 2 ·R2 (E7)

Since the PSGs associated with T 2 and (T R)2 have a trivial fusion rule, whereas that of R2 obeys

a non-trivial fusion rule, the PSGs of R−1T −1RT must also have a non-trivial fusion rule.
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Finally, we consider the PSGs of T−1
x T −1TxT . We again consider a similar setup as the previous

case, with two spinons and two visons. Under Tx followed by T−1
x , there is no crossing of the spinon

and vison strings - so there is no phase factor acquired by an indvidual bosonic spinon relative to

the bound state of the fermionic spinon and the vison. Therefore, this commutation relation has a

trivial fusion rule, and so does T−1
y T −1TyT .

Appendix F: Solution for the fermionic ansatz

We need to find an ansatz Urr′ such that GXX(Urr′) = Urr′ for all symmetry operations X,

where the gauge transformation GX corresponding to a symmetry operation X has been derived

from the fusion rules. Note that under time-reversal (slightly modified version as described in Ref.

3), we have T (Urr′) = −Urr′ , so gT must be non-trivial ( 6= τ0) so that GT T (Urr′) = Urr′ , and

therefore we require ηT = −1 for non-zero solutions.

GTx(x, y) = τ0 (F1a)

GTy(x, y) = (−1)xτ0 (F1b)

GPx(x, y) = gPx , g
2
Px = τ0 (F1c)

GPy(x, y) = (−1)x+ygPy , g
2
Py = −τ0 (F1d)

GT (x, y) = gT , g
2
T = −τ0 (F1e)

where the SU(2) matrices gPx , gPy and gT are satisfy the following (anti-)commutation relations.

[gPx , gT ] = {gPy , gT } = [gPx , gPy ] = 0 (F2)

In order to work with real hopping and pairing amplitudes in our ansatz, we follow Ref. 38 and

choose gT = iτ2. Since gPx commutes with both gT and gPy , if gPy is non-trivial, then gPx = τ0.

We assume that this is the case, and choose gPy = iτ3 to get the solutions in Eq. (31), also listed

below.

GTx(x, y) = τ0 (F3a)

GTy(x, y) = (−1)xτ0 (F3b)

GPx(x, y) = τ0 (F3c)

GPy(x, y) = (−1)x+yiτ3 (F3d)

GT (x, y) = iτ2 (F3e)
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Note that gPy = iτ3 is a gauge choice, we could have as well chosen gPy = iτ1, or any properly

normalized linear combination given by gPy = i(cosθ τ3 + sinθ τ1). However, all these choices lead

to gauge-equivalent ansatz. Noting that eiθτ
2
τ1e−iθτ

2
= cos(2θ)τ1 + sin(2θ)τ3, a mean-field matrix

Urr′ proportional to τ1 can be rotated to τ3 by a gauge transformation Wr = eiθτ
2

with θ = π/2.

Therefore, we work with the first choice for convenience.

First, we note from [24] that iUrr′ ∈ SU(2) upto a normalization constant in order to preserve

spin-rotation symmetry, so we can expand in the basis of Pauli matrices as

Urr′ =
3∑

µ=0

αrr′
µ τµ, where iαrr′

0 , αrr′
1,2,3 ∈ R (F4)

GT (Urr′) = −Urr′ =⇒ {Urr′ , τ
2} = 0 =⇒ αrr′

2 = 0 for all bonds 〈rr′〉. Since the ansatz

(not the spin-liquid) must break translational symmetry in y direction due to non-trivial GTy , we

choose the following forms for the ansatz (upto third nearest neighbor).

Ur,r+x̂ = ux(−1)y, Ur,r+ŷ = uy, Ur,r+x̂+ŷ = (−1)yux+y, Ur,r−x̂+ŷ = (−1)yu−x+y, Ur,r+2x̂ = u2x, Ur,r+2ŷ = u2y

(F5)

Now we just apply the parity relations to each of the bonds in ansatz. For the NN bonds

GPxPx(Ur,r+x̂) = Ur,r+x̂ =⇒ u†x = ux, GPyPy(Ur,r+x̂) = Ur,r+x̂ =⇒ τ3uxτ
3 = −ux

GPxPx(Ur,r+ŷ) = Ur,r+ŷ =⇒ uy = uy, GPyPy(Ur,r+ŷ) = Ur,r+ŷ =⇒ τ3u†yτ
3 = −uy (F6)

Together, these imply that ux = ∆1x τ
1 and uy = ∆1y τ

1 where both the pairing amplitudes are

real. Similarly, we find that

GPxPx(Ur,r+x̂+ŷ) = Ur,r+x̂+ŷ =⇒ u−x+y = −ux+y, GPyPy(Ur,r+x̂+ŷ) = Ur,r+x̂+ŷ =⇒ τ3u†−x+yτ
3 = −ux+y

(F7)

Together, these imply that for the next-nearest neighbors

ux+y = u−x+y = ∆2τ
1 (F8)

Analogous calculations show that the next to next nearest neighbors have a hopping term

u2x = −t2xτ3, u2y = −t2yτ3 (F9)

One can also check that an on-site chemical potential term proportional to τ3 is allowed by the

PSG. This ansatz describes a Z2 spin liquid, as it has both hopping and pairing terms for the

fermionic spinons in any choice of gauge.
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Alternately, one can check that the SU(2) fluxes through different loops based at the same

point are non-collinear, which also implies that the effective theory has a gauge group of Z2
3,44.

Explicitly, consider the following two loops based at r, LA : r → r + x̂ + ŷ → r + ŷ → r and

LB : r → ~r + x̂ + ŷ → r − x̂ + ŷ → r. The product of Urr′ on LA is proportional to τ1, whereas

that on LB is proportional to τ3, which clearly point in different directions in SU(2) space.

Appendix G: Alternative derivation of the specific fermionic PSG

In this appendix, we present an alternative derivation of the fermionic PSG, which represents

the same spin liquid state as the bosonic PSG in Eq. (11) and Appendix B. Instead of calculating

the fractional quantum numbers of the fermionic spinon using the ones of the bosonic spinon and

the vison, according to the fusion rules, here we derive this by directly mapping the bosonic mean-

field wave function to a fermionic mean-field wave function, using the method introduced in the

supplemental material of Ref. 47.

We start with the Schwinger-boson wave function in Eq. (7), and we choose the weights to

be ξrr′ = Qrr′ on the nearest-neighbor and next-nearest-neighbor bonds, and ξrr′ = 0 on other

bonds, where the values of Qrr′ are shown in Fig. 4(a). With this choice, the wave function in

Eq. (7) belongs to the phase described by the PSG in Appendix B, because the wave function is

invariant under the transformations in Eq. (11). We notice that although this wave function is

construted using the parameters of the mean field Hamiltonian in Eq. (6), it is not the ground

state of that Hamiltonian. However, it belongs to the same spin liquid phase as the ground state

of that Hamiltonian.

Using the result in the supplemental material of Ref. 47, we can convert the Schwinger-boson

wave function to the following Schwinger-fermion wave function,

|Ψf (s)〉 =
∑
c

sδc
∏

(rr′)∈c

ζrr′f
†
r↑f
†
r′↓|0〉, (G1)

where c runs over all possible nearest-neighbor and second-nearest-neighbor dimer coverings on

the square lattice, ζrr′ = ζr′r are weights of the dimers, δc counts the number of dimer crossings

in the covering, and each crossing contributes an extra weight factor s to the wave function. With

s = −1, the wave function |Ψf (s = −1)〉 exactly reproduces the Schwinger-boson wave function in

Eq. (7), if for every triangular plaquette p, the fermionic weights ζrr′ satisfies

∏
(rr′)∈p

ζrr′ = −
∏

(rr′)∈p

ξrr′ , (G2)
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where on the right hand side, the bonds are oriented in the counterclockwise direction. In other

words, in each triangle, the flux in the fermionic model differs from the one in the bosonic model

by π. One choice of weights satisfying Eq. (G2) is the following,

ζr,r+x̂ = (−1)yQ(0,0)→(1,0), ζr,r+ŷ = Q(0,0)→(0,1), ζr,r+x̂+ŷ = ζr,r−x̂+ŷ = (−1)yQ(0,0)→(1,1).

(G3)

The Schwinger-boson wave function can only be mapped to a wave function with a nontrivial

weight of s = −1 for each pair of crossing bonds, which is different from the ordinary Schwinger-

fermion wave function,

|Ψf (s = +1)〉 =
∑
c

∏
(rr′)∈c

εαβζrr′f
†
rαf
†
r′β|0〉 = PG exp

[∑
rr′

ζrr′εαβf
†
rαf
†
r′β

]
|0〉. (G4)

However, assuming that the two wave functions |Ψf (s = ±1)〉 can be smoothly connected by

varying s from −1 to +1 (along the real axis), the two wave functions belong to the same phase,

and the weights in Eq. (G3) can be used to derive the fermionc PSG that constructs the same

phase as the original bosonic PSG.

In particular, one can check that the wave function constructed using the weights in Eq. (G3)

is invariant under the lattice and time-reversal symmetries, if the fermionic spinon operator fiα

transforms according to the PSG in Eq. (31).

We notice that this alternative derivation is not rigorous, as it depends on the assumption of

the absence of any singularity in |Ψf (s)〉 when s varies between ±1. Nevertheless, this serves as a

consistency check for the results presented in Sec. II, without the explicit usage of the vison PSG

and the fusion rules.

Appendix H: PSG for the site bosons and constraints on HB

We derive the transformation of the boson-tuplet Br under the projective transformations. We

first focus on spatial symmetry operations Xs, which acts linearly (not projectively) on the c

fermion, and therefore all additional projective phase must come from the f spinon. Recall that

the f fermion spinor transforms under a gauge transformation GX(r) as

ψ(r) =

fr↑
f †r↓

→ GX(r)ψ(r) (H1)



42

In our gauge choice, GTx = GPx = τ0, so these will just map Br to itself. GTy(r) = eiπx ≡ e−iπx

implies that GTyBr = eiπxBr. Finally, we have

GPyψr = eiπ(x+y+1/2)τ3ψr = eiπ(x+y+1/2)

1 0

0 −1

fr↑
f †r↓

 = eiπ(x+y+1/2)

 fr↑

−f †r↓

 (H2)

Therefore we see that under GPy , frσ → eiπ(x+y+1/2)frσ, and therefore Br → eiπ(x+y+1/2)Br. We

conclude that the projective transformation under each spatial symmetry operation Xs can be

represented by just a phase φXs on each boson, which we have listed in the main text in Eq. (41).

Finally, we come to time-reversal, which acts non-trivially on both the c and the f fermions.

Because on an additional gauge transformation GT = iτ2, we now have mixing between the two

bosons.

GT T [ψ(r)] =

 0 1

−1 0

 fr↑

−f †r↓

 =

−f †r↓
−fr↑

 (H3)

Therefore, we have fr↑ → −f †r↓, and fr↓ → −f †r↑, under time-reversal T combined with the gauge

transformation GT . For the bosons, we find that

B1r → T (c†r↑)GT T (fr↑) + T (c†r↓)GT T (fr↓)

= c†r↓(−f
†
r↓) + (−c†r↓)(−f

†
r↑)

= εβαf
†
rαc
†
rβ = B†2r (H4)

and similarly, B2r → b†Br. Imposing time-reversal symmetry on our hopping Hamiltonian in

Eq. (42) therefore leads to the following constraints:

T 11
rr′ = T 22

rr′ , T
12
rr′ = T 21

rr′ (H5)

Notably, these constraints do not restrict these hoppings to take real values, and we can thus write

down the hopping matrix as:

Trr′ = T drr′τ
0 + T odrr′τ

1 (H6)

where T d and T od represent the diagonal and off-diagonal hopping matrix elements.
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