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We examine the structural stability and magnetization for nickel clusters containing up to 500
atoms by performing first-principles calculations based on pseudopotential in real space computed
within density-functional theory. After structural relaxation, Ni clusters in this size range favor ei-
ther face-centered cubic (fcc) structure, which is a crystal structure in bulk, or icosahedral structure,
which is expected for small clusters. The calculated total magnetic moments per atom of energeti-
cally stable clusters agree well with experiment, wherein the moments decrease non-monotonically
toward the bulk value as cluster size increases. We analyze the spatial distribution of the local
magnetic moment, which explains why the magnetic moments of Ni clusters are enhanced compared
to their bulk value.

PACS numbers: 75.50.-y, 75.75.-c, 36.40.Cg, 63.22.Kn

I. INTRODUCTION

Magnetism in 3d transition metals is a central prop-
erty, which has been intensively studied since the in-
vention of quantum mechanics. In particular, ferromag-
netism in 3d transition-metal nanoclusters, which can
be described by the itinerant electron model,1 has at-
tracted interest not only from the viewpoint of funda-
mental physics, but also because of potential technologi-
cal applications such as high-density magnetic data stor-
age.2 Also, transition-metal nanoclusters have been of
great interest as catalysts,3 for example, for carbon nan-
otube growth.4–6

Stern-Gerlach deflection experiments7–9 first estab-
lished that atomic clusters of bulk ferromagnets of iron,
cobalt, and nickel exhibit superparamagnetic behav-
ior10,11, where the cluster can be regarded as a single-
domain ferromagnetic particle. Experiment revealed that
in such clusters the magnetic moments per atom exhibit a
non-monotonic oscillatory decrease as a function of clus-
ter size, converging to corresponding bulk values near
cluster sizes of 500–700 atoms. Compared to the bulk,
atoms on the surface of a cluster have low coordination,
leading to weaker hybridization among 3d orbitals result-
ing in narrow 3d electronic band structures. This results
in an increase of the difference in electron population be-
tween majority (spin-up) and minority (spin-down) elec-
trons and qualitatively accounts for an enhancement of
the magnetic moments observed for these clusters within
this size range. As shown in our previous work on Fe and
Co clusters,12–14 the structural and magnetic properties
of 3d transition-metal clusters depend strongly on their
geometrical structures such as local coordination, surface
morphology, and nucleation site.

Here we focus on Ni clusters. Since Ni prefers face-
centered cubic (fcc) coordination, the size dependence of
structural stability and magnetization of Ni clusters is ex-

pected to be different from those of clusters of Fe and Co,
which favor body-centered cubic (bcc) coordination and
hexagonal close-packed (hcp) coordination, respectively.
For Ni, the existence of icosahedral cluster is suggested
both theoretically15 and experimentally,16 although the
details of the ground-state geometry of a cluster over a
wide range of cluster sizes remains unknown. The con-
vergent behavior of the magnetic moments of Ni clusters
is believed to be slow, approximately attained for clusters
with a minimum of 500–600 atoms.7 Theoretical studies
to date have been limited to specific Ni clusters with less
than a few hundred atoms17–19 owing to the lack of an
accurate, efficient numerical method for calculating the
electronic structures of large clusters.

Here, we employ a first-principles real-space pseudopo-
tential method to predict the structural stability and
magnetization of Ni clusters containing up to 500 atoms.
Our work covers a broad range in size from small clusters,
with atomic-like enhanced magnetic moments, to large
clusters, with magnetization approaching the bulk limit.
We discuss the influence of crystal structure manifolds
on stability and the magnetic moment of Ni clusters. We
carry out an analysis on the evolution of the local mag-
netic moment with respect to the radial distance and
coordination number.

II. COMPUTATIONAL METHODS

We investigate the electronic structure of nickel clus-
ters within the framework of the density-functional the-
ory.20,21 The exchange-correlation term is evaluated us-
ing the generalized gradient approximation (GGA) func-
tional in the parameterized form of Perdew, Burke, and
Ernzerhof,22,23 which has been successfully applied to
moderately correlated systems including transition-metal
clusters.12–14
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The Kohn-Sham equation is solved self-consistently
using the parsec code.24–27 The wave functions and
the potentials are sampled on an uniform grid in real

space. The kinetic term of the Hamiltonian is expanded
by using a high-order finite-differencing.24–26 We use
norm-conserving pseudopotentials, constructed within
the Troullier-Martins formalism28 to describe the inter-
actions between core and valence electrons. We choose
a reference configuration of [Ar]3d84s24p0 and core radii
of rs = 2.18, rp = 2.38, and rd = 2.18 a.u. (1 a.u.

= 0.5292 Å), respectively, and include a partial core-
correction as in our previous work.14 Real space meth-
ods offer advantages over methods that employ an ex-
plicit basis, e.g., they do not require the use of su-
percells for confined systems and like plane waves con-
tain only one convergence parameter– the grid space
size. We adopt a “cluster” boundary condition that re-
quires the wave functions to vanish outside a spherical
domain encompassing cluster of interest. The radius of
the boundary sphere is typically 10 a.u. larger than that
of the nickel cluster. We use periodic boundary condi-
tions27 only for computing bulk quantities. Our grid
spacing was taken to be 0.29 a.u., which gives a total
energy converged to within 0.01 eV/atom. Structural
relaxations are performed using the Broyden-Fletcher-
Goldfarb-Shanno method29–31 with a residual force tol-
erance of 0.01 Ry/a.u.
Solving the Kohn-Sham equation involves construct-

ing a self-consistent field (SCF) solution, which is ob-
tained iteratively. Each SCF iteration requires a diag-
onalization of the Hamiltonian matrix, the most time-
consuming part of computation. We avoid an explicit di-
agonalization by employing Chebyshev-filtered subspace
iteration,32,33 which at most requires one explicit di-
agonalization at the first SCF step and then improves
eigenvectors at and after the second step. This filtering
method, implemented in the current version of parsec,
reduces computational time by at least one order of mag-
nitude with respect to previous versions of the code.34

Moreover, parsec enjoys the benefit of massive paral-
lelization, making it feasible to compute the electronic
structures of magnetic clusters containing hundreds of
atoms.14

III. GEOMETRY

To investigate the role of crystal structure in deter-
mining stability and magnetic properties of Ni clusters,
we consider three archetypical structures: icosahedron,
face-centered cubic (fcc), and body-centered cubic (bcc).
The icosahedral geometry is predicted to be stable up
to 2,000 Ni atoms15 and the photoionization experiment
with time-of-flight mass spectrometry16 suggests the ex-
istence of icosahedral clusters with hundreds of atoms.
We construct an initial icosahedral Ni cluster so that the
nearest-neighbor atomic distance of the cluster interior
is equal to that of bulk fcc Ni. Since Ni favors an fcc

crystal structure in the bulk, we explore two nucleation
centers for fcc Ni clusters: atom-centered clusters and
interstice-centered ones. The former has one Ni atom
at the center of a cluster, and the latter is centered on
the body center (an “interstitial” site) of the fcc unit
cell. The lattice parameter of an fcc Ni cluster at the
initial relaxation step is equal to the bulk value, 3.52 Å.
Some of the fcc clusters possess 8 triangular faces and
6 square faces with cuboctahedral symmetry. While the
fcc phase of Ni is thermodynamically stable at room tem-
perature, the bcc phase has been produced in the form
of thin films on a GaAs substrate.35 In atomic clusters,
the surface area is so large that bcc Ni cluster is ex-
pected to be stabilized under certain growth conditions.
We study atom-centered geometry for bcc clusters with
the initial lattice parameter taken from the experimen-
tal value, 2.82 Å. We examined a total of 61 Ni clusters,
with 490 atoms being the largest one, consisting of 14
icosahedral, 16 atom-centered fcc, 13 interstice-centered
fcc, and 18 bcc clusters.

IV. RESULTS

A. Stability

We carried out structural relaxations for clusters with
up to 309 atoms. The total energies of unrelaxed and
relaxed Ni clusters are plotted in Figs. 1(a) and (b), re-
spectively, as a function of the cluster size. The dashed
curve is a polynomial fit to the result of icosahedral clus-
ters. The total energy of bulk fcc Ni, set as an energy
reference in the plots, is evaluated using the same Ni
pseudopotential and a k-point sampling with 163 grid.
As expected, the total energy of cluster generally de-

creases as cluster grows in size, approaching to the bulk
value. However, the decrease of the total energy is not
monotonic. The oscillatory behavior is associated with
the cluster shape and surface geometry. For example, lo-
cal minima in energy are found for the icosahedral family
at sizes of 55, 147, and 298. These numbers correspond to
perfect (55 and 147) and nearly-perfect (298) icosahedra,
respectively. These icosahedral clusters are stable among
the clusters with similar sizes, being consistent with the
experimental observations.16 The relatively high stability
of perfect and nearly-perfect icosahedra was also found in
our work on Co clusters.14 Since the icosahedral cluster
has an fcc coordination in each triangular face, icosa-
hedral and fcc clusters are energetically competing with
each other in the size range of our work. In contrast, bcc
clusters tend to be higher in energy than icosahedral and
fcc ones. This trend is remarkable for geometry-relaxed
clusters, for energy gain due to structural relaxation is
larger in icosahedral clusters than in bcc ones. By in-
specting the total energies of relaxed clusters, we can
extract energetically stable clusters from four structural
families: icosahedron with 55, 135, 147, 237, and 297
atoms; atom-centered fcc with 43, 79, and 201 atoms;
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FIG. 1: Total energies of (a) unrelaxed and (b) relaxed Ni
clusters as a function of cluster size. Energy is measured
from that of bulk fcc Ni.

and interstice-centered fcc with 38 and 116 atoms. The
results of unrelaxed clusters indicate the dominance of fcc
structures for large clusters with more than 400 atoms.

B. Total Magnetic Moments

First, we examine the energetic order of paramagnetic
and ferromagnetic systems for four representative Ni
clusters: 55-atoms icosahedron, atom-centered fcc with
43 atoms, interstice-centered fcc with 38 atoms, and bcc
with 51 atoms. We find that in all cases the ferromagnetic
configuration is lower in energy than the paramagnetic
one, indicating that the present pseudopotential method
with the GGA-PBE functional is capable of describing
the ferromagnetic behavior of Ni clusters.
Spin imbalance between majority and minority spins

results in a magnetic moment, 〈Sz〉, which dominates the
net magnetic moment in transition-metal clusters. In
addition, spin-orbit coupling produces an orbital mag-
netic moment, 〈Lz〉, which makes an additive, posi-
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FIG. 2: Size dependence of the total magnetic moment per
atom of various Ni clusters: (a) atom-centered and interstice-
centered fcc clusters, (b) icosahedral and bcc clusters, and (c)
energetically stable clusters (see text). The calculated mo-
ments, with filled (open) symbols for geometry-relaxed (un-
relaxed) clusters, are compared to the experimental data7,9.
The shaded region covers the range of the error bars. The
dashed line indicates the total magnetic moment per atom of
bulk fcc Ni (0.606 µB/atom).
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tive contribution. The total magnetic moment, M , is
given by a sum of the spin and orbital moments, M =
[gs〈Sz〉 + 〈Lz〉]µB, with gs = 2 being the electron gyro-
magnetic ratio and µB the Bohr magneton. In bulk fcc
Ni, orbital effects result in an effective gyromagnetic ra-
tio of geff = M/〈Sz〉 = 2.18µB. In this work, we consider
the spin moment only and neglect the orbital moment
for the sake of simplicity. We note that the present real-
space pseudopotential calculation gives the spin moment
of 0.58 µB for bulk fcc Ni, which is only slightly smaller
than the experimental moment (0.606 µB).

Structural relaxation induces a slight alteration of the
bond length of Ni atoms mainly near the surface of a clus-
ter. This alteration leads to a weakening or strengthening
hybridization of 3d orbitals, resulting in change of popu-
lations of the majority and minority spins. The change in
the spin moment after structural relaxation ranges from a
∼2% decrease to an ∼2% increase compared to the value
of the unrelaxed structure.

The size dependences of the total magnetic moment
per atom for various Ni clusters are shown in Figs. 2(a)–
(c), where the calculated moments are compared to the
experimental data for clusters with up to 500 atoms.
Filled (open) symbols represent the results of geometry-
relaxed (unrelaxed) clusters. The discontinuity in the
experimental data of Ref. 9 comes from two sets of mea-
surements that were performed at different temperatures.
The discrepancy of the measured moments between the
two experiments may be attributed partly to the different
temperatures as well as estimation of the cluster temper-
ature, which is used to evaluate the effective magnetic
moment through the Langevin function.

We find that the four structural families have two com-
mon features: (i) the total magnetic moment of clusters
containing tens of atoms is significantly enhanced; (ii) As
cluster grows in size, there is a gradual, non-monotonic
decrease of the total magnetic moments, which is in over-
all agreement with the measured behaviors. A similar
trend has been obtained experimentally and theoretically
for clusters of Fe and Co.7,12,14

The total magnetic moments calculated for two fami-
lies of fcc clusters are plotted in Fig. 2(a). For the clusters
with more than 100 atoms, the calculated moments are in
between the two experimental data. Two fcc families ex-
hibit the local minimum (maximum) of the moment; its
location depends on the nucleation center. For clusters
containing more than 300 atoms, where the number of
surface atoms per bulk atoms is noticeably reduced, the
total magnetic moments of two fcc families essentially
converge.

In Fig. 2(b), we compare the calculated total magnetic
moments of the icosahedral family to experimental data.
The calculated moments of the 55- and 147-atom icosahe-
dral clusters agree well with the previous spin-polarized
DFT calculation.18 The local minimum and maximum
moments are obtained at around sizes of 50 and 70, re-
spectively, both of which agree qualitatively with experi-
ment. The icosahedral clusters in the 80–300 atom range

have moments in quantitative agreement with the mea-
sured moments of Ref. 7, while the large icosahedral clus-
ters reproduce the measured ones of Ref. 9.
As shown in Fig. 2(b), bcc Ni clusters are predicted to

have smaller total magnetic moment compared to fcc and
icosahedral clusters. In bcc Ni clusters, the number of
first nearest neighbors is reduced and the distance of first
nearest-neighbor atoms is smaller than that of fcc ones.
This leads to a stronger delocalization of the 3d orbitals,
resulting in a reduction of the spin moment in the bcc Ni
clusters. Although the bcc Ni cluster is predicted to be
less stable according to our total-energy study, the bcc
family unexpectedly reproduces the measured moments7

for the size range of 90–340 including the pronounced dip
in moments near a size of 170.
In Fig. 2(c), we summarize the total magnetic moments

for the energetically stable clusters. Overall, the size de-
pendence of the calculated moments agree with the ex-
perimental trend of Billas et al.7 There is, however, a
systematic underestimation for clusters containing less
than ∼100 atoms. We speculate that this is due to omit-
ting the orbital moment which arises from the spin-orbit
coupling. In atomic cluster, the influence of the spin-
orbit coupling on the orbital magnetization is expected
to be different from that of bulk due to the presence
of the surface. Considering that the present real-space
pseudopotential calculation yields the spin moment that
approximates to the experimental total moment for bulk
fcc phase, and also for large clusters, our results suggest
that the orbital moment could make a substantial contri-
bution to the net magnetic moment in small Ni clusters.

C. Local Magnetic Moments

In order to analyze the local magnetic contributions
to net magnetic moment of Ni clusters and their spa-
tial distribution, we approximate a measure of the local
magnetic moment as

mj =

∫

Ωj

[

ρ↑(~r )− ρ↓(~r )
]

d3~r .

Here, ρ↑(↓) denotes the electron density of the majority
(minority) spin and Ωj is a spherical domain centered
on an atom labelled j. By definition, the local magnetic
moment is a function of the distance from the cluster
center, namely, mj = m(rj). The radius of the sphere is
chosen to be half of the minimum inter-atomic bond in
the cluster. We confirm that the sum of the local mag-
netic moments (Σjmj) approximates to the total mag-
netic moment (M) with a error less than ∼5%.
Fig. 3(a) shows the evolution of the local magnetic mo-

ment per atom of our four representative clusters, where
the averaged local magnetic moment is plotted as a func-
tion of the radial distance. The local magnetic moment in
the inner region of the icosahedral cluster is practically
constant, with a bulk-like value, indicating that bulk-
like environment is realized at deep inside of the cluster.
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FIG. 3: Evolution of the local magnetic moment per atom as
a function of (a) the distance from the cluster center and (b)
the coordination number. The dashed line indicates the total
magnetic moment per atom of bulk fcc Ni (0.606 µB/atom).

The icosahedral cluster shows strong growth of the local
magnetic moment in the vicinity of surface, with a value
comparable to the total magnetic moment per atom of
the clusters containing tens of atoms. The increase of
the local magnetic moments at the surface area of the
bcc cluster is comparable to that of the icosahedral one,
while the local magnetic moments of the interior region is
suppressed. This explains why the calculated total mag-
netic moment of bcc clusters are smaller than those of
icosahedral ones with similar sizes. The local magnetic
moment of a smaller 55-atom fcc cluster is larger than
that of the 201-atom cluster in the entire range of a ra-

dial distance from 4 a.u. to 10 a.u. This accounts for the
enhancement of the net magnetic moment in small fcc
clusters. This trend holds for small clusters with icosa-
hedral and bcc structures.
In Fig. 3(b), we plot the local magnetic moment as a

function of the coordination number. The plotted value is
an average of several of the local magnetic moments (mj)
at various radial distances. Three representative clusters
show a steady increase of the local magnetic moment as
the coordination number decreases. The local magnetic
moment of fcc cluster at a coordination number of 12 is
slightly larger than that of bulk fcc Ni, indicating that the
cluster interior is bulk-like, but the screening is likely in-
complete owing to the presence of the surface. Although
the growth rate of bcc cluster is virtually the same as
that of icosahedral cluster, the local magnetic moment
of bcc cluster is smaller at a specific coordination num-
ber. Moreover, the local magnetic moment of bcc cluster
at a coordination number of eight converges to the value
of bulk fcc Ni. This behavior reflects the smaller total
magnetic moments that are predicted for bcc Ni clusters.

V. SUMMARY

We have studied the structural and magnetic prop-
erties of Ni clusters using the density-functional theory
combined with real-space pseudopotentials. By examin-
ing the influence of cluster geometry on stability, we find
that the icosahedral and fcc clusters are plausible struc-
tures for cluster sizes of up to 500 atoms. The overall size
dependence of the total magnetic moments of the ener-
getically stable clusters are consistent with the experi-
ment. In particular, the stable clusters with hundreds of
atoms are predicted to have the total magnetic moments
that are within the range of the measured values. We
have also provided an analysis on the evolution of the
local magnetic moment with respect to a radial distance
and coordination number, which explains the variation
in the calculated magnetic moment.
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