
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Classification of magnons in rotated ferromagnetic
Heisenberg model and their competing responses in

transverse fields
Fadi Sun, Jinwu Ye, and Wu-Ming Liu

Phys. Rev. B 94, 024409 — Published  7 July 2016
DOI: 10.1103/PhysRevB.94.024409

http://dx.doi.org/10.1103/PhysRevB.94.024409


Classification of magnons in Rotated Ferromagnetic Heisenberg model and their

competing responses in transverse fields

Fadi Sun1,2, Jinwu Ye1,3,4, and Wu-Ming Liu2
1Department of Physics and Astronomy, Mississippi State University, MS, 39762, USA

2Beijing National Laboratory for Condensed Matter Physics,

Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3Key Laboratory of Terahertz Optoelectronics, Ministry of Education,

Department of Physics, Capital Normal University, Beijing, 100048, China
4 Kavli Institute of Theoretical Physics, University of California, Santa Barbara, Santa Barbara, CA 93106

(Dated: May 31, 2016)

In this paper, we study the Rotated Ferromagnetic Heisenberg model (RFHM) in two different
transverse fields hx and hz which can be intuitively visualized as studying spin-orbit couplings (SOC)
effects in 2d Ising or anisotropic XY model in a transverse field. At a special SOC class, it was
found in our previous work ( Phys.Rev. A.92,043609 ) that the RFHM at a zero field owns an exact
spin-orbit coupled ground state called Y-x state. It supports not only the commensurate magnons
( called C-C0 and C-Cπ ), but also the incommensurate magnons ( called C-IC ). These magnons
are non-relativistic, not embedded in the exact ground state, so need to be thermally excited or
generated by various external probes. Their dramatic response under a longitudinal hy field was
recently worked out by the authors in ArXiv:1502.05338. Here we find they respond very differently
under the two transverse fields. Any hx (hz) introduces quantum fluctuations to the ground state and
changes the collinear Y-x state to a canted co-planar YX-x (YZ-x) state. The C-C0, C-Cπ and C-IC
magnons become relativistic and sneak into the quantum ground state. We determine the competing
boundaries among the C-C0, C-Cπ and C-IC magnons, especially the detailed dispersions of the C-
IC magnons inside the canted phases which can be mapped out by the transverse spin structure
factors. As hx (hz) increases further, the C-C0 magnons always win the competition and emerge as
the seeds to drive a transition from the YX-x ( or YZ-x) to the ferromagnetic along the X ( or Z )
direction called X-FM ( or Z-FM) phase. We show that the transition is in the 3d Ising universality
class and it becomes the 3d XY transition at the two Abelian points. We evaluate these magnons’
contributions to magnetization and specific heat at low temperatures which can be measured by
various established experimental techniques. The nature of the finite temperature transitions are
also studied. Some analogies with quantum fluctuations generated multiple vortices and multiple
landscapes in quantum spin glass are mentioned. The implications to cold atom systems and some
4d or 5d materials with strong SOC are briefly discussed.

PACS numbers: 71.70.Ej, 75.10.Jm

I. INTRODUCTION

A fundamental problem in any branch of physics is on
the nature of the ground state. In strongly correlated
electron systems, competing orders is a general concept
to describe various quantum phases and transitions in
various materials [1–6]. In this work, we focus on com-
peting excitations in a given quantum phase which could
lead to a natural explanation of some competing orders.
It is known a given quantum phase can still support dif-
ferent kinds of excitations with their own characteristics.
These different classes of excitations are generated by
quantum fluctuations inherent in the quantum ground
state, so are intrinsic objects embedded in the ground
state itself. Under various external probes, these exci-
tations compete to emerge to drive the instability of the
system into various other quantum phases through differ-
ent universality classes of quantum phase transitions. So
classifying different classes of excitations of a given phase
and investigating their behaviors under various external
probes could lead to deep understandings not only on
the nature of the ground state itself, but also its broad

connections to various other quantum phases.

A quantum phase is characterized by its symmetry
breaking and excitation spectrum [1–6]. For quantum
spin or bosonic systems, gapless excitations indicate long-
range correlations encoded in the quantum phase. Exter-
nal probes could open a positive gap to the excitation or
induce a “negative” gap which indicates a quantum phase
transition to another phase. While gapped excitations
indicate short-ranged fluctuations encoded in the phase.
The external probes such as magnetic fields, pressures,
electric fields, etc may drive these gapped excitations
near to a QCP, close their gaps and lead to their con-
densations into a new phase through a quantum phase
transition. For fermionic systems [7–13], the quantum
phase supports both fermionic excitation and collective
bosonic excitations. The two sectors may compete to lead
to various other quantum phases under various external
probes. Due to the absence of any symmetry breaking, a
topological phase (such as quantum Hall state, spin liq-
uids, etc) [4, 6, 7] is characterized by its topological orders
and associated fractionalized excitations. The gap clos-
ings of these fractionalized excitations could lead to an-
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other topological phase through a topological phase tran-
sition. In this work, we only focus on quantum phases
without topological orders and with only different kinds
of bosonic excitations.
In a previous work [14], the authors studied interacting

spinor bosons at integer fillings hopping in a square opti-
cal lattice subject to any linear combinations of Rashba
and Dresselhaus spin-orbit coupling (SOC). In the strong
coupling limit, it leads to the Rotated Ferromagnetic
Heisenberg model (RFHM) Eq.1 at a zero Zeeman field
[15–17] which is a new class of quantum spin models to
describe quantum magnetisms in cold atom systems or
some materials with strong SOC. The RFHM [14] with
any spin S at a generic SOC parameters (α, β) in a square

lattice in a Zeeman field ~H is described by:

H = −J
∑

i

[SiRx(2α)Si+x+SiRy(2β)Si+y ]

− ~H ·
∑

i

~S (1)

where J > 0 is the ferromagnetic interaction and the
sum is over a unit cell i in a square lattice, the Rx(2α),
Ry(2β) are the two SO(3) rotation matrices around x̂, ŷ
spin axis by the angle 2α, 2β which are put on the two
bonds x̂, ŷ respectively. As shown in [14], at H = 0,
the Hamiltonian Eq.1 has the time reversal (T ) sym-
metry, translational symmetry and 3 spin-orbital cou-
pled Z2 symmetries Px,Py,Pz: (1) Px symmetry: Sx →
Sx, ky → −ky, S

y → −Sy, Sz → −Sz. (2) Py symme-
try: Sy → Sy, kx → −kx, S

x → −Sx, Sz → −Sz. (3)
Pz symmetry: kx → −kx, S

x → −Sx, ky → −ky, S
y →

−Sy, Sz → Sz which is also equivalent to a joint π ro-
tation of the spin and orbital around ẑ axis. Along the
line (α = π/2, β), it also has the spin-orbital coupled
U(1)soc symmetry [H,

∑

i(−1)ixSy
i ] = 0. Under the local

rotation S̃i = Rx(π)Ry(iyπ)Si followed by the T which is
called Mirror transformation M in [21], β → π/2−β. At
the middle point β = π/4, the Hamiltonian is invariant
under such a Mirror transformation.
At the two Abelian points β = 0, π/2 and H = 0 in

Eq.1, the Hamiltonian has the SU(2) symmetry in the

rotated basis S̃U(2) with S̃i = Rx(ixπ)Si or
˜̃SU(2) with

˜̃
Si = Rx(ixπ)Ry(iyπ)Si respectively. Transferring back
to the original basis, the SU(2) symmetry is generated
by

∑

i S
x
i ,
∑

i(−1)ixSy
i ,
∑

i(−1)ixSz
i at β = 0 and by

∑

i(−1)iySx
i ,

∑

i(−1)ixSy
i ,

∑

i(−1)ix+iySz
i at β = π/2

respectively. Both contains
∑

i(−1)ixSy
i . At any hy

studied in [21], only
∑

i(−1)ixSy
i remains as a conserved

quantity at both β = 0 and β = π/2. In fact, as men-
tioned above [14], the spin-orbital coupled U(1)soc sym-
metry [H,

∑

i(−1)ixSy
i ] = 0 extends along the whole line

(α = π/2, β) at any hy.
At any hx 6= 0, only

∑

i S
x
i and

∑

i(−1)iySx
i re-

mains as a conserved quantity at β = 0 and β = π/2
respectively. At any hz 6= 0, only

∑

i(−1)ixSz
i and

∑

i(−1)ix+iySz
i remains as a conserved quantity at β = 0

and β = π/2 respectively. So the U(1) symmetry at the

two Abelian points β = 0, π/2 at a non-zero hx, hz is very
much different than the U(1)soc symmetry along the line
(α = π/2, β) at hx = 0 or hz = 0 case. This distinction is
important in the following two sections Sec.I and Sec.II.

When expanding [14] the two R matrices in Eq.1,
it leads to a Heisenberg [1, 2] + Ferromagnetic Ki-
taev [18] ( or quantum compass in a square lattice ) +
Dzyaloshinskii-Moriya (DM) interaction [19, 20]. For a
specific SOC class, we identify a new spin-orbital entan-
gled commensurate ground state: the Y-x state shown
at the horizontal axis in Fig.1 and 5. It supports 3
kinds of magnons: commensurate magnons such as C-
C0, C-Cπ and also a new gapped elementary excitation:
incommensurate magnon (C-IC) with its two gap min-
ima continuously tuned by the SOC strength. They are
gapped bosonic excitations taking non-relativistic disper-
sion with anisotropic effective mass mx, my. However,
the Y-x ground state is an exact quantum ground state
with no quantum fluctuations. So the C-C0, C-Cπ, C-IC
magnons in the RFHM are extrinsic, not embedded in
the ground state due to the absence of quantum fluctu-
ations. They need to be excited by thermal fluctuations
or dragged out by various external probes which intro-
duce quantum fluctuations into the ground state. Their
parameters such as the minimum positions (0,±k0y), gap
∆, masses mx, my can only be measured by various char-
acteristics of the transverse structure factor at a finite T :
it is a Gaussian shape, peaked at (0,±k0y) with an expo-

nentially suppressed amplitude e−∆/T , with a tempera-
ture dependent width σx =

√

mx(β)T . The existence of
the C-IC above a commensurate phase is the most strik-
ing feature of the RFHM. An important question to ask
is how to drag out these magnons by various external
probes, closing their gaps and drive into new quantum
phases through the condensation of these magnons ?

In a recent work [21], the authors showed that apply-
ing a uniform longitudinal Zeeman field hy could do the
job very well: the C-C0, C-Cπ, C-IC magnons compete
to emerge under its effects to drive quantum phase tran-
sitions. It turns out that the C-IC always win the com-
petition. Indeed, any infinitesimal small Zeeman field hy

immediately drags out the C-IC magnon, drives the con-
densation of the C-IC at h = hc1 which vanishes as β →
0, π/2, therefore, the Y-x state to non-coplanar incom-
mensurate Skyrmion crystal (IC-SkX) phases through
new universality class of quantum phase transitions.
The IC-SkX phase is strikingly similar to the incom-
mensurate, counter-rotating (in A/B sublattice), non-
coplanar magnetic orders detected on iridates [25–27]
α, β, γ-Li2IrO3.

Because the SOC breaks the spin rotation symmetry,
so the two transverse fields hx, hz may play quite dif-
ferent roles in dragging out the C-IC magnons, therefore
drive into completely different phases and phase transi-
tions than the longitudinal field hy studied in [21]. These
are the goals to be studied in this paper. Following
[14, 21], in this work, we also focus along the solvable
line (α = π/2, β) of the RFHM in a transverse field Eq.2
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and Eq.30. Away from α = π/2 will be briefly men-
tioned in the conclusion section and be presented in a
separate publication. The two models can be considered
as incorporating possible dramatic effects of SOC on well
studied 2d Ising, anisotropic (or isotropic) quantum XY
model in a transverse field[5]. They are also complimen-
tary to the previous study of frustrated Ising model in
a transverse field [22, 23]. Note that the hy field in [21]
keeps the U(1)soc symmetry

∑

i(−1)xSy
i of the Hamil-

tonian at the zero field, but hx, hz breaks it. This fact
alone may lead to dramatic different competition among
the magnons when they are subject to the longitudinal
hy or the two transverse fields hx and hz . Indeed, in the
longitudinal field hy, under the Mirror transformation
[21], (β, hy) → (π/2− β, hy). So β = π/4 still enjoys the
Mirror symmetry. However, because hx and hz explicitly
breaks the U(1) symmetry, so the mirror transformation
does not work anymore in hx and hz case. However, in
the hx case, we will still able to find a generalized mirror
transformation to characterize systematically the compe-
titions among the magnons on the two sides of β = π/4.
Unfortunately, there is even no such a generalized mirror
transformation in the hz case, so the competitions are
more intricate in the hz field than that in hx field. The
main results achieved in the hx and hz case are summa-
rized in the beginning of Sec.II and III. Their relations
to some previous works are given in Sec.IV.
Very recently, there are remarkable experimental real-

ization of 2d Rashba or Dresselhaus SOC or any of their
linear combinations in Fermi gas or spinor BEC [28, 29]
in a square lattice. Various Zeeman fields are naturally
generated by the Raman lasers. The two models Eq.2
and Eq.30 can be realized in these cold atom experi-
ments. The results achieved in this work can be detected
by various techniques such as specific heat [30, 31], In situ
measurement [32] and light or atom Bragg spectroscopy
[33, 34] respectively. They may also shed some lights
to study magnetic orderings in some strongly correlated
SOC materials [7, 21, 25–27] such as α, β, γ-Li2IrO3 with
hx, hz playing the roles of different crystal fields or ex-
ternal applied magnetic fields.

II. TRANSVERSE FIELD hx

In this section, we study the RFHM at (α = π/2, β)
Eq.1 in the hx field:

H=−J
∑

i

[SiRx(π)Si+x+SiRy(2β)Si+y ]−Hx

∑

i

Sx
i

(2)

Any Hx will break all the symmetries of the Hamilto-
nian at Hx = 0 except the Px symmetry. It also keeps
the combined T Py and T Pz symmetries.
The main results to be achieved in this section is sum-

marized as follows: In the hx field, any infinitesimal hx

will change the Y-x state into a canted YX-x state ( Fig.1

). In sharp contrast to the Y-x state which is an ex-
act ground state free of quantum fluctuations, the YX-x
state suffers quantum fluctuations. So at T = 0, these
magnons are quantum fluctuations generated, sneak into
the YX-x state and become important components em-
bedded inside the quantum ground state. They stand for
quantum fluctuations with intrinsic wavelength and fre-
quency, so can be detected by spin structure factor even
at T = 0. We also evaluate their contributions to mag-
netization, specific heat, uniform and staggered longitu-
dinal susceptibilities at a finite temperature. Using the
generalized mirror transformation, we map out the com-
peting boundaries of the commensurate magnons C-C0,
C-Cπ and the incommensurate magnons C-IC inside the
YX-x canted phase shown in Fig.1,2. As hx increases, the
C-C0 magnons emerge from the competitions and drives
the quantum phase transition at a critical field hcx(β)
from the YX-x phase to the ferromagnetic X-FM phase
in Fig.1. By performing symmetry analysis, identifying
a suitable order parameter and contrasting with the spin
wave expansion, we find it is in 3d Ising the universality
class. Due to the enlarged U(1) symmetry mentioned in
the Sec.I, the transition at the Abelian β = π/2 point
is driven by the simultaneous condensations of the C-
C0 and C-Cπ magnons and is in the universality class of
3d XY model. We also work out the finite temperature
phase diagram in Fig.4.

A. X-FM state and excitations in a high field

To map out the phases of Eq.2, it is instructive to start
from the high field limit Hx ≫ J . In this limit, the sys-
tem is in X-FM phase with all the spins fully (classically)
polarized to Sx direction ( Fig.1 ). Obviously, the X-FM
keeps all the symmetries of the Hamiltonian.
Under the global spin rotation (Sx

i , S
y
i , S

z
i ) →

(Sz
i , S

y
i ,−Sx

i ), the Hamiltonian Eq.2 becomes

H = −J
∑

i

[SiRz(π)Si+x + SiRy(2β)Si+y ]−Hx

∑

i

Sz
i

(3)

Introducing the Holstein-Primakoff (HP) bosons [14, 21],

S+ =
√
2S − a†aa, S− = a†

√
2S − a†a, Sz = S − a†a,

the Hamiltonian Eq.(3) can be written in a systematic
1/S expansion in terms of the HP bosons. Up to the
linear spin wave (LSW) order at 1/S, we get:

H2=E0+2JS
∑

k

[

(hx+coskx+cos2β(2−cosky))a
†
kak

+ sin2 β cos ky(aka−k+a†ka
†
−k)/2

]

(4)

where the classical ground state energy E0 =
−2JNS2 cos2 β−HxNS and we have introduced the di-
mensionless field hx = Hx/(2JS). Now the Hamiltonian
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can be diagonalized by a Bogoliubov transformation

H2=E′
0+4JS

∑

k

ωkα
†
kαk (5)

where the ground-state energy at the order of 1/S is E′
0 =

E0 − 2JS
∑

k ωk and the energy spectrum is:

ωk=

√

[hx+coskx+cos2β(2−cosky)]2−sin4β cos2ky (6)

where, for 0 < β < π/2, one can identify that there is a
unique minimum located at k0 = (kx, ky) = (π, 0) with
the energy gap:

∆π = ωk=k0 =
√

hx(hx − 1 + cos 2β) (7)

C-C 0

C-Cπ

C-IC

YX-x canted

Sx

Sy

Y-x state

(π,0)

(π,0)

(π,0)(π,π)

X-FM

hx

0 0.1 0.2 0.3 0.4 0.5

β/π
β

1
β

2

0.5

1.0

1.5

2.0

2.5

(π,0)

FIG. 1. (Color online) Phase diagram of the RFHM in a
transverse field hx. Boundaries between C-C0,C-Cπ ,C-IC are
indicated by white dashed lines. At hx = 0, the boundary
between C-C0 and C-IC is β1 and that between C-Cπ and C-
IC is β2, as shown in Ref.[14]. They are non-relativistic. At
hx = 0, the ground state is the Y-x state which is exact with-
out any quantum fluctuations. So it contains no information
of C-C0, C-Cπ and C-IC. Any hx > 0 introduces quantum
fluctuations and transfer it into the YX-x canted state. The
C-C0, C-Cπ and C-IC sneak into the YX-x ground state and
become relativistic. At the critical field hc(β), the Y X − x
canted state undergoes a quantum phase transition to the
X-FM state. It is in the 3d Ising university class and al-
ways driven by the condensation of C-C0 magnons. The C-IC
and C-Cπ magnons always lose to the C-C0 magnons before
hitting the phase boundary. However, at the Abelian point
β = π/2, C-C0 and C-Cπ magnons condense simultaneously
and lead to a 3d XY class transition to the X-FM. The fine
landscape of the C-IC regime is given in Fig.2 and also dis-
cussed in details in the Appendix B. As shown in [13, 14], the
dispersions of C-C0,C-Cπ ,C-IC magnons can be mapped out
by the transverse spin structure factors.

The gap vanishing condition leads to the critical field
strength hc:

hcx(β) = 1− cos 2β = 2 sin2 β (8)

which is shown in Fig.1. The gap vanishing at k0 =
(kx, ky) = (π, 0) indicate a quantum phase transition into
a spin-orbital correlated state with orbital order (π, 0).
It was known that at hx = 0, the ground state Y −x state
also has the (π, 0) orbital order. That indicates that there
is only one phase transition and the state below hcx could
be just the Y X − x state with a canted angle. As to be
shown in the next subsection, we show that it is indeed
the Y X − x state with the orbital order (π, 0). So near
the QPT, ∆π ∼ (hx − hcx)

1/2.
From Eq.6, we find the excitation spectrum around the

minimum k0 = (π, 0) takes the relativistic form

ωq =
√

∆2
π + v2xq

2
x + v2yq

2
y, k = k0 + q (9)

where

v2x = (2hx − 1 + cos 2β)/2

v2y = [hx + cos 2β(hx − 1 + cos 2β)]/2 (10)

At h = hcx, ∆π = 0, the critical velocities are
v2x,c = v2y,c = sin2 β. As long as β > 0, we obtain a non-
zero critical velocity, which indicate a relativistic critical
behavior with the dynamic exponent z = 1.
Before starting the next subsection, we discuss a little

bit further the enlarged symmetry and its consequences
at the two Abelian points β = 0, π/2 in Fig.1.
1. The U(1) symmetry at the two Abelian points β =

0, π/2 at a non-zero field hx.
At the two Abelian points β = 0, π/2 and hx =

0, the system has a SU(2) symmetry in the rotated

basis S̃U(2) with S̃i = Rx(ixπ)Si or ˜̃SU(2) with
˜̃
Si = Rx(ixπ)Ry(iyπ)Si respectively. So Eq.2 can be

mapped to a FM Heisenberg model in −hx

∑

i S̃
x
i and

−hx

∑

i(−1)iy ˜̃Sx
i ( see Eq.11 ) respectively. So at β = 0,

any hx will pick up the X-FM phase as the exact ground
state. At β = π/2, taking the result from [21], any hx will
lead to a spin-flop transition resulting into a U(1) sym-
metry breaking canted phase with one Goldstone mode
φ. Then there is another transition to the X-FM at a
finite hc = 2. These results at the two Abelian points fit
into the general result Eq.8 and shown in Fig.1
At β = 0, hx = 0, transferring back to the original

basis, the Hamiltonian Eq.2 has the SU(2) symmetry
generated by

∑

i S
x
i ,
∑

i(−1)ixSy
i ,
∑

i(−1)ixSz
i . At any

hx > 0, only
∑

i S
x
i remains as a conserved quantity.

Obviously, the X-FM state keeps all symmetries of the
Hamiltonian. Acting the conserved quantity eiφ

∑
i S

x
i

which carries no momentum on the excitation ( or eigen-
state ) at the minimum (π, 0), in Eq.9 changes nothing.
So at β = 0, hx > 0, the system has only one minima
located at (π, 0) as shown in the left axis in the Fig.1.
Similarly, at β = π/2, hx = 0, transferring

back to the original basis, the Hamiltonian Eq.2
has the SU(2) symmetry generated by

∑

i(−1)iySx
i ,

∑

i(−1)ixSy
i ,

∑

i(−1)ix+iySz
i . At any hx > 0, only

∑

i(−1)iySx
i which carries momentum (0, π) remains as
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a conserved quantity. Acting the conserved quantity

ei
∑

i
(−1)iySx

i which carries the momentum (0, π) on the
excitation ( or eigen-state ) at the minimum (π, 0) in
Eq.9, will generate another minimum (π, π). So at
β = π, hx > 0, the system has two minima [21] located at
(π, 0) and (π, π) as shown in the right axis in the Fig.1.
As stressed in the introduction, the U(1) symmetry

∑

i S
x
i or

∑

i(−1)iySx
i at the Abelian points β = 0 or β =

π/2 at a non-zero transverse field hx is different than the
spin-orbital coupled U(1) symmetry

∑

i(−1)ixSy
i along

the line (α = π/2, β) at hx = 0 in the RFHM Eq.1.

B. YX-x canted state below hcx.

1. Classical YX-x canted phase at h < hcx

When β = π/2, in the ˜̃SU(2) basis ˜̃
Si =

Rx(ixπ)Ry(iyπ)Si, the Hamiltonian Eq.(2) takes the
form:

H = −J
∑

〈ij〉

˜̃
Si · ˜̃Sj −Hx

∑

i

(−1)iy ˜̃Sx
i (11)

When 0 < Hx < Hxc, the classical state takes the form:

˜̃
Si = S

(

(−1)iy cos θ, sin θ cosφ, sin θ sinφ
)

(12)

where φ is nothing but the Goldstone mode due to the
U(1) symmetry breaking.
Reverting back to the original basis, we obtain:

Si=S
(

cos θ, (−1)ixsin θ cosφ, (−1)ix+iysin θ sinφ
)

(13)

Note that although we obtained Eq.(12) and Eq.(13)
at β = π/2, the same ansatz hold for 0 < β < π/2 whose
classical ground energy is:

Ec=−2NJS2(1+hx cos θ−sin2β cos2θ−cos2β sin2θ sin2φ)
(14)

It is easy to see that any deviation from β = π/2 ex-
plicitly breaks the U(1) symmetry at β = π/2 listed in
Sec.II-A-1, so picks up φ = 0, opens the gap to the Gold-
stone mode [24] and leads to the YX-x canted state:

Si = S
(

cos θ, (−1)ixsin θ, 0
)

(15)

which indeed has the (π, 0) order as indicated from the
magnon condensations from the X-FM studied in the sub-
section A.
Substituting φ = 0 in Eq.(14) leads to the classical

ground-state energy

Ec = −2NJS2(1 + hx cos θ − sin2 β cos2 θ) (16)

whose minimization leads to the canted angle:

cos θ =
hx

2 sin2 β
< 1, when hx < hcx (17)

which always has a solution as long as hx < hcx.
Only when h = hcx, θ = 0, it becomes the X-FM phase.

The fact that we achieved the same critical field hcx from
the X-FM state Eq.8 above it and the YX-x state Eq.17
below it indicate that there is only one phase transition
with the critical field h = hcx shown in Fig.1. Note that
from above h > hcx, we achieved it by the LSW at the
order of 1/S. while, from below h > hcx, we achieved it
just by the classical ground state energy minimization at
S = ∞.
In sharp contrast, in the hy case [21], there are two

critical fields hc1 < hc2, there is an intermediate IC-SKX
phase between the two critical fields.
2. Spin wave analysis in the YX-x Canted state
Again performing the global spin rotation

(Sx
i , S

y
i , S

z
i ) → (Sz

i , S
y
i ,−Sx

i ), then applying the
spin rotation Rx(θ) for the A-sublattice and Rx(−θ) for
the B-sublattice lead to:

H =− J
∑

i∈A

[SiRz(π)Si+x + SiRx(θ)Ry(2β)Rx(−θ)Si+y ]

− J
∑

i∈B

[SiRz(π)Si+x + SiRx(−θ)Ry(2β)Rx(θ)Si+y ]

−Hx

∑

i∈A

[sin θSy
i + cos θSz

i ]

−Hx

∑

i∈B

[− sin θSy
i + cos θSz

i ] (18)

Introducing the Holstein-Primakoff (HP) bosons S+ =√
2S − a†aa, S− = a†

√
2S − a†a, Sz = S − a†a for sub-

lattice A and S+ =
√
2S − b†bb, S− = b†

√
2S − b†b,

Sz = S − b†b for sublattice B, the Hamiltonian Eq.(18)
can be written in a systematic 1/S expansion in terms of
the HP bosons. Up to the linear spin wave (LSW) order
at 1/S, we get:

H2 = Ec + 2JS
∑

k

[(Ak+Bk)a
†
kak+(Ak−Bk)b

†
kbk

+Ck(a
†
kbk + b†kak) +Dk(aka−k + bkb−k + h.c.)] (19)

where Ec is the classical ground state energy Eq.(16) and

Ak = 2− (cos2 β − sin2 β sin2 θ) cos ky

Bk = sin 2β sin θ sin ky

Ck = cos kx

Dk = sin2 β cos2 θ cos ky (20)

The Hamiltonian Eq.19 can be diagonalized by a Bo-
goliubov transformation

H2 = E′
c + 4JS

∑

k

(ω−
k α

†
kαk + ω+

k β
†
kβk) (21)

where E′
c = Ec − 2JS

∑

k(ω
−
k + ω+

k ) is the ground state
energy up to the order of 1/S and the energy spectra are:

ω±
k =

√

A2
k+B2

k+C2
k−D2

k±2
√

A2
k(B

2
k+C2

k)−B2
kD

2
k (22)
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from which one can determine the minimum positions.

We found there are three regimes inside the YX-x
Canted state: C-C0 regime, C-IC regime, and C-Cπ

regime which, at hx = 0, reduce to the three regimes
identified in [14]. Among the three regimes, only C-C0

regime sits just below the transition line hcx, so the tran-
sition from the YX-x state to the X-FM is driven by the
condensations of the C-C0 magnons only. Then we find
that just below the phase boundary, the C-C0 magnons
take also the relativistic form around k0 = (0, 0):

ωq =
√

∆2
0 + v2xq

2
x + v2yq

2
y, k = q + k0 (23)

where

∆0 =

√

(1 − cos 2β)(1− cos 2β − h2
x

2 sin2 β
),

v2x = 2 sin2 β − (
hx

2 sinβ
)2,

v2y =
[

2 sin2 β − (
hx

2 sinβ
)2
]

×
[

cos 2β−sin2 2β+
h2
x

4 sin2 β
+
h2
x cos

2 β

sin2 β

]

+
( hx

2 sinβ

)4[

1+
sin2 2β(1− h2

x

4 sin4 β
)

2−cos2β−( hx

2 sin β )
2

]

(24)

At h = hcx, the critical velocities are v2x,c = v2y,c =

sin2 β which are the same as those achieved from X-FM
from above the hcx in Eq.10. Near hcx, ∆ ∼ (hcx−h)1/2.
Now we can check the consistence of the orbital orders on
both sides of hcx. The YX-x state has the orbital order
(π, 0), the C-C0 has the orbital order (0, 0) = (π, 0) in
the Reduced Brillouin Zone (RBZ). So its condensation
on the top of YX-x could lead to the two orbital orders
either (π, 0) + (0, 0) = (π, 0) or (π, 0) + (π, 0) = (0, 0) in
the Extended Brillouin Zone (EBZ). The (0, 0) order is
nothing but that of the X-FM in Fig.1

The competition between C-C0 and C-Cπ gives the
boundary between C-C0 and C-Cπ where they become
degenerate ( see appendix B ):

h0π = 2 sinβ
√

− cos 2β < hcx (25)

where β∗ ∼ 0.330482π < β < π/2.

The competition between C-C0 and C-IC is given by

the condition:
∂2ω−

k

∂k2
y
|k=(0,0) = 0. That between C-Cπ

and C-IC is given by the condition:
∂2ω−

k

∂k2
y
|k=(0,π) = 0.

We find that the three boundaries (dashed lines) in Fig.1
meet at the same point (β∗ = 0.330482π, h∗

x = 1.19921).
The fine structure near this point is shown in Fig.2

C-C 0 C-C
π

C-IC

ky
0 =

π
/2

ky
0 =π/3

ky
0 =

2
π

/3

0.33050.3304

1.1990

1.1992

1.1994

1.1988

β/π

hx

(β
0 
,h

0x
)

(β*
 
,h

x
*)

FIG. 2. (Color online) The evolution of the C-IC magnons
and the boundaries of the three kinds of magnons in Fig.1
zoomed (×104) around (β0 = 0.330458π, h0x = 1.19899) and
(β∗ = 0.330482π, h∗

x = 1.19921). There is a generalized mir-
ror symmetry around k0

y = ±π/2. The minimum at (0,±k0
y)

and its mirror image at (0,±(π − k0
y)) symmetrically located

on the two sides of k0
y = ±π/2 must end in the regime

β0 < β < β∗ where they become degenerate minima. The
three segments of the contour line k0

y = ±π/2 are explained
in the text and also appendix B. As shown in [13, 14], the
C-IC dispersion can be mapped out by the transverse spin
structure factors.

C. Evolution of the C − IC magnons inside the

C − IC regime in Fig.1: Generalized Mirror

Symmetry about the contour k0
y = ±π/2.

In the longitudinal field hy which keeps the spin-orbital
coupled U(1) symmetry [21], there is a Mirror transfor-
mation relating (β, hy) to (π/2 − β, hy). So β = π/4
enjoys the Mirror symmetry. However, because hx and
hz explicitly breaks the U(1) symmetry, so the mirror
transformation does not work anymore in hx and hz case.
Even so, it would be important to first understand the
minimum contour at k0y = ±π/2. In the hx case, it seems
there is a ”generalized” Mirror transformation relating
the minimum at (0,±k0y) to its associated mirror image

at (0,±(π− k0y)) as shown in Fig.2, while the k0y = ±π/2
is the self-dual line which starts at (β = π/4, hx = 0).
Unfortunately, in contrast to the hy case, it is difficult to
find the exact form of such a ”generalized” Mirror trans-
formation in terms of (β, hx). Its form in term of the
contour k0y would be enough to analyze the structure of
the C-IC regime in Fig.2 at least to the order of 1/S.
However, as to be shown in the next section, there is no
”generalized” Mirror symmetry in the hz case.
As shown in the Appendix B, the minimum contour

k0y = ±π/2 can be determined by the equation

hπ/2(β) = 2 sinβ
√

− cos 2β (26)

where 0.25π < β < β0 ≈ 0.330458π.
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If comparing Eq.26 with the C-C0/C-Cπ boundary
Eq.25, we will find out they have the same form but
different domains. In fact, one can extend Eq.26 to
the whole domain 0.25π < β < 0.50π where we have
two special β: β0 ≈ 0.330458π, β∗ ≈ 0.330482π. For
0.25π < β < β0, Eq.26 describe the minimum contour
k0y = π/2 shown in Fig.8, for β∗ < β < 0.50π, it de-
scribes the C-C0/C-Cπ boundary. What happens when
β0 < β < β∗ is shown in Fig.9 and summarized below.
As shown in the Fig.2, the constant contour line at

k0y = π/2 can be divided into 3 segments: (1) π/4 <

β < β0 ∼ 0.330458π, k0y = ±π/2 is indeed a minimum

as shown in Fig.8, (2) β0 < β < β∗ ∼ 0.330482π, k0y =

±π/2 becomes a local maximum, k0y = 0, π are also local

maximum. There are 4 degenerate minima (0,±k0y) and

(0,±(π − k0y)) symmetrically located on the two sides

of k0y = ±π/2 as shown in Fig.9. At β0, the second

derivatives of the spectrum at k0y = ±π/2 vanish. (3)
β∗ < β < π/2, C−C0 and C−Cπ become two degenerate
minima, with k0y = ±π/2 being still the maximum as
shown in Fig.2. At β∗, the second derivatives of the
spectrum at k0y = 0, π vanish.

So all the two mirror related minima (0,±k0y) and

(0,±(π−k0y)) must end in the regime β0 < β < β∗ shown
in Fig.2 where they become 4 degenerate minima.

D. The transition from the YX-x canted state to

the X-FM at T = 0 and finite T .

1. The Zero temperature transitions: symmetry break-
ing and order parameters
The transition from the Y X − x canted state to the

X-FM is characterized by the order parameter My(T =
0) = 〈Sy〉 which is staggered along x axis. As said at the
beginning of Sec.II, the Hamiltonian Eq.2 has Px symme-
try: Sx → Sx, ky → −ky, S

y → −Sy, Sz → −Sz and the
translational symmetry. The X-FM respects both sym-
metry, so My(T = 0) = 0, but the YX-x states breaks
both, but keeps its combination Px × (x → x + 1) as
shown in the appendix A, so My(T = 0) 6= 0. Due to the
spin-orbital locking, destroying the My(T = 0) = 〈Sy〉
order will also restore the translational symmetry along
x direction. As shown in Eq.9 and 23, there are rela-
tivistic gapped C −C0 magnons on both sides indicating
the dynamic exponent z = 1. So we conclude that the
transition is in the 3d Ising universality class. The RG
flow is controlled by a fixed point on the phase boundary
shown in Fig.3,
At hx = 0, the Y −x collinear state is the exact eigen-

state [14], so My(T = 0) = S. The ground state itself
contains no information on the C−C0, C−Cπ and C−IC
magnons. As shown in Sec.II-B, any hx 6= 0 transfers the
Y-x state into the Y X − x canted state and also intro-
duces quantum fluctuations. The canted angle of the
classical YX-x state is given in Eq.17. The ground state
itself contains information on the C − C0, C − Cπ and

C − IC magnons. They all compete and move to the
phase transition boundary.

From the classical YX-x state Eq.15 with the canted
angle Eq.17 and Eq.19, we find that they reduce the order
parameter below its classical value:

My(T = 0) = Mc[1−
1

2N

∑

k

(
1

ω+
k

+
1

ω−
k

)] (27)

where Mc = S
√

1− (h/hcx)2 is the classical order pa-
rameter.

When approaching the phase boundary hcx = 2 sin2 β,
the quantum fluctuations get stronger and stronger, fi-
nally, the C − C0 wins the competition, the order pa-
rameter should vanish as My(T = 0) ∼ (hcx − h)β3d

with the 3d Ising exponent βIsing ∼ 0.31. Eq.27 leads to

My(T = 0) ∼ ∆ ∼ (hcx−h)1/2 with the mean field expo-
nent βMF = 1/2. The quantum fluctuations at the linear
spin wave ( LSW ) order do not change the phase bound-
ary hcx and the mean field exponent. At the LSW order,
near the critical line hcx, the C − C0 magnon gap ∆ on
both sides own the critical scaling ∆ ∼ |h−hcx|1/2 which
also gives the mean field exponent νMF = 1/2. Note that
νIsing = 0.64 for the 3d Ising model. To achieve these
exact 3d Ising exponents, one need to incorporate the in-
teractions between the magnons. In practice, just from
the symmetry analysis, we conclude that the Ginsburg-
Landau action to describe the transition is in the 3d Ising
universality class. The T = 0 Renormalization group (
RG ) flow is shown in Fig.3.

At the Abelian β = π/2 point, starting from h > hcx,
as shown in [21], due to the enlarged U(1) symmetry, the
transition is driven by the simultaneous condensation of
the magnons at the two degenerate minima (π, 0) and
(π, π), from below h < hcx, it is also a simultaneous
condensations of C − C0 and C − Cπ magnons, so the
transition is in the 3d XY universality class.

2. The low temperature behaviors

Except at the Abelian point β = 0, h = 0, there is a
gap ∆−(β) in the excitation spectrum in the YX-x canted
phase, so the order survives up to a finite critical tem-
perature Tcx ∼ ∆−(β, hx) above which the system gets
to the X-FM state. Of course, at the phase boundary
in Fig.1, ∆−(β, hx) = 0, so Tcx = 0. Note that the
spin wave expansion works in the whole phase diagram
in Fig.1 at T = 0, but its use at a finite T is only lim-
ited to T ≪ Tcx, it fails when getting too close to Tcx.
At low temperatures T < Tcx, inside the C-IC regime in
Fig.1, by expanding ω−

k in Eq.22 around the C-IC min-
ima (0,±k0y), we find the excitation spectrum takes the
relativistic form

ωq =
√

∆2
ic + v2xq

2
x + v2yq

2
y, k = (0,±k0y) + q (28)

whose detailed behaviors along the k0y = ±π/2 are shown
in Fig.8 and Fig.9. They dominate the contributions to
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Canted YX-x

x-FM

hx

0 0.1 0.2 0.3 0.4 0.5

β/π
β

1
β

2

0.5

1.0

1.5

2.0

2.5

FIG. 3. (Color online) The RG flow for RFHM in the trans-
verse field hx. There is a fixed point on the phase boundary
controlling the zero temperature transition from the YX-x
state to the X-FM state which is in the 3d Ising universality
class. At the Abelian point β = π/2, the transition is in the
3d XY class. Any deviation from the two Abelian points are
relevant and drive the system into the 3d Ising fixed point. All
the crosses stand for RG fixed point. The whole YX-x state is
controlled by the fixed point at (β = π/4, h = 0) which enjoys
the enlarged mirror symmetry [14, 21]. Inside the YX-x state,
all the quantum fluctuation generated C-C0, C-Cπ and C-IC
are irrelevant under the RG sense, but they are the competing
to become the driving seed to the X-FM. The Fig.1,2 show
that it is the C-C0 which wins the competition and becomes
the driving seed.

the magnetization and the specific heat when T ≪ ∆ic:

Cm(T ) ∼ ∆3
ic

2πvxvyT
e−∆ic/T

My(T ) ∼ My(T = 0)− T 2

2πvxvy
e−∆ic/T (29)

whereMy(T = 0) is the zero temperature staggered mag-
netization given in Eq.27.
Following the procedures in [14], one can also evaluate

the uniform and staggered susceptibilities along the y di-
rection, and various dynamic spin correlation functions.
Especially, we expect that the C-IC magnons will lead
to two split peaks located at (0,±k0y) in the transverse

spin structure factors S+−(~k). All these physical quan-
tities can be measured by specific heat [30, 31], In situ
measurement [32] and light or atom Bragg spectroscopy
[33, 34] respectively.
3. The finite temperature phase transitions
Because inside the YX-x phase in Fig.1, the RG flows

to the fixed point (β = π/4, h = 0), so the finite tem-
perature transition from the Y X−x canted phase to the
X-FM is in the same universality class as that at zero
field case. Its nature was briefly discussed in [14] where
we argued that due to the extra symmetry breaking of
~̃Si = Rx(π)Ry(iyπ)~Si at β = π/4, its universality class (

Fig.3 in [14] ) remains to be determined. Here, we argue
that the universality class is simply 2d Ising one with the
order parameter My = 〈Sy〉 6= 0 in the low temperature
Y-x state and My = 0 in the high temperature param-
agnet ( Fig.3 in [14] ). The extra symmetry breaking at
β = π/4 should not affect its 2d Ising universality class.
Of course, at the Abelian β = π/2 point, it is in the 2d
XY universality class. The finite temperature transitions
at the Abelian point β = π/2, the mirror symmetric point
β = π/2 and at a given 0 < hx < 2 in Fig.3 is shown in
Fig.4.

T

3d XY hx

T

3d Ising h

T
KT

3d Ising β=π/2
x

(a) (b) (c)

0 0 0

KT 2d Ising

YX−x

X−FM X−FM
X−FM

2d Ising

Goldstone 

β=π/2 β=π/4 h =1x

YX−x

FIG. 4. (Color online) Finite temperature phase transitions.
(a) at the Abelian point β = π/2. The arrows stand for the
RG flow. Due to the U(1) symmetry breaking, there is a
Goldstone mode and 2d Kosterlitz-Thouless (KT) transition
at the low T phase. (b) Tc reaches maximum at the mirror
symmetric Non-Abelian point (β = π/4, hx = 0) ( see Fig.3
in [14] ). (c) At a fixed 0 < hx < 2. Shown is hx = 1.

III. TRANSVERSE FIELD hz

The RFHM in a transverse field along Sz direction is
described by

H=−J
∑

i

[SiRx(π)Si+x+SiRy(2β)Si+y ]−Hz

∑

i

Sz
i (30)

where hz is applied along z direction which normal to the
Rashba (α, β) SOC in the XY plane.
By applying the U(1)soc symmetry operator U1(φ) =

eiφ
∑

i
(−1)xSy

i [14] to Eq.30 and setting φ = π/2, one can
show that the −hz

∑

iS
z
i can be mapped to the RFHM in

a staggered hx field along the x direction −hx

∑

i(−1)xSx
i .

As expected, the staggered hx could make dramatic dif-
ference than the uniform case discussed in the last sec-
tion. Similar to the analysis below Eq.2, one can see the
Hamiltonian Eq.30 has the translational symmetry and
the Pz symmetry. It also keeps T Px and T Py symmetry.
The main results to be achieved in this section is sum-

marized as follows: We show that any infinitesimal hz

will change the Y-x state into a canted YZ-x state shown
in Fig.5. Unfortunately, the generalized mirror trans-
formation used in the hx case does not work in the hz

case anymore, this fact makes the landscapes of the C-IC
magnons much more complicated in the hz case than the
hx case. Even so, we are still able to map out the compet-
ing boundaries and detailed structures of the C-C0, C-Cπ
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and C-IC magnons inside the YZ-x canted phase in Fig.6.
As hz increases, the C-C0 magnons still win the competi-
tion and emerge as the seeds to drive the transition from
the YZ-x state to the Z-FM state at a critical field hcz(β)
which is shown to be also in the universality class of 3d
Ising model in Fig.5. Due to the enlarged U(1) symme-
try mentioned at the introduction, the transition at the
two Abelian points β = 0 and β = π/2 point is driven by
the condensation of C-C0 and the simultaneous conden-
sations of the C-C0 and C-Cπ magnons respectively and
is in the universality class of 3d XY model. In principle,
all the thermodynamic quantities such as the magnetiza-
tion, specific heat, uniform and staggered susceptibilities
in the YZ-x canted phase, the Z-FM and their quantum
critical scalings can be calculated. We also work out the
finite temperature phase diagram in Fig.7.

A. Z-FM state and excitations in the strong field

In a strong transverse field Hz ≫ J , the system is
in Z-FM phase with spin classically fully polarized to
Sz direction with quantum fluctuations shown in Fig.5.
Introducing the HP bosons S+ =

√
2S − a†aa, S− =

a†
√
2S − a†a, Sz = S − a†a, the Hamiltonian Eq.(30)

can be written in a systematic 1/S expansion in terms of
the HP bosons. Up to the linear spin wave (LSW) order
at 1/S, we get:

H2 =E0 + 2JS
∑

k

[(hz−2 sin2β−cos2β cos ky)a
†
kak

+ (sin2β cos ky−coskx)](aka−k + a†ka
†
−k)/2] (31)

where the classical ground state energy E0 =
2JNS2 sin2 β −HzNS and the dimensionless field hz =
Hz/(2JS). Now the Hamiltonian can be diagonalized by
a Bogoliubov transformation

H2 =E′
0 + 4JS

∑

k

ωkα
†
kαk (32)

where E′
0 = E0 − 2JS

∑

k ωk is the ground-state energy
at the order of 1/S and the spin-wave dispersion takes
the form

ωk=
√

(hz−2 sin2β−cos2β cos ky)2−(sin2β cos ky−coskx)2

(33)

where, for 0 < β < π/2, one can identify there is a unique
minimum located at k0 = (kx, ky) = (π, 0) with the gap:

∆π = ωk=k0 =
√

hz(hz − 3 + cos 2β) (34)

and the critical field strength is given by the gap vanish-
ing condition:

hcz(β) = 3− cos 2β = 2 + 2 sin2 β (35)

which is shown in Fig.5

C-IC
C-C0

C-Cπ

Z-FM

YZ-x Canted

Y-x state

(0,π)

(0,0)

(π,0)

(π,0)

(π,0)

(π,0)

(π,0)

Sz

Sy

0 0.1 0.2 0.3 0.4 0.5

β/π
β

1
β

2

hz

1.0

2.0

3.0

4.0

FIG. 5. (Color online) Phase diagram for RFHM with trans-
verse field hz. Boundaries between C-C0,C-Cπ ,C-IC are indi-
cated by white dashed lines. At hz = 0, the ground state is the
Y-x state which is a exact without any quantum fluctuations.
Any hz > 0 will transfer it into the YZ-x canted state which
suffers quantum fluctuations. At the critical field hcz(β), the
YZ-x canted state undergoes a quantum phase transition to
the Z-FM state. It is in the 3d Ising university class and
always driven by the condensation of C-C0 magnons. The
C-IC magnons always lose to C-C0 magnons before hitting
the phase boundary. At the two Abelian points β = 0, π/2,
it is in 3d XY class. At the Abelian point β = π/2, C-C0

and C-Cπ magnons condense simultaneously and lead to a 3d
XY class transition to the X-FM. Due to the lack of general-
ized Mirror symmetry as in the hx case, the C-IC regime has
a more complicated landscapes than that in Fig.1. The de-
tailed competition in the C-IC regime are shown in Fig.6 and
Fig.12. The 5 dots are explained in appendix C. As shown in
[13, 14], the dispersions of C-C0,C-Cπ ,C-IC magnons can be
mapped out by the transverse spin structure factors.

The Excitation around the minimum (π, 0) takes the
relativistic form

ωq =
√

∆2
π + v2xq

2
x + v2yq

2
y, k = k0 + q (36)

where

v2x = 1 + sin2 β,

v2y = (h− 1) cos2 β + 2 sin4 β, (37)

and the critical velocities are v2x,c = v2y,c = 1 + sin2 β.
In contrast to the hx case, here, the vx,c and vy,c do
not vanish even at β = 0. The gap vanishing at k0 =
(kx, ky) = (π, 0) indicate a quantum phase transition into
a spin-orbital correlated state with orbital order (π, 0).
It was known that at hz = 0, the ground state Y −x state
also has the (π, 0) orbital order. That indicates that there
is only one phase transition and the state below hcz could
be just the Y Z − x state with a canted angle. As to be
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shown in the next subsection, we show that it is indeed
the Y Z − x state with the orbital order (π, 0). Near the
QPT, ∆π ∼ (hz − hcz)

1/2.
Similar to Section II-A-1, before starting the next sec-

tion, we discuss a little bit further the enlarged symmetry
and its consequences at the two Abelian points β = 0, π/2
in Fig.5.
1. The U(1) symmetry at the two Abelian points β =

0, π/2 at a finite hz.
At the two Abelian points β = 0, π/2 and hz = 0,

the system has a SU(2) symmetry in the rotated ba-

sis S̃U(2) with S̃i = Rx(ixπ)Si or ˜̃SU(2) with ˜̃
Si =

Rx(ixπ)Ry(iyπ)Si respectively. So Eq.30 can be mapped

to a FM Heisenberg model in −hz

∑

i(−1)ix S̃x
i ( see

Eq.38 ) and −hx

∑

i(−1)ix+iy ˜̃Sx
i ( see Eq.45 ) respec-

tively. So at β = 0, π/2, taking the result from [21],
any hz will lead to a spin-flop transition resulting into
a U(1) symmetry breaking canted phase with one Gold-
stone mode φ. Then there is another transition to the
Z-FM at a finite hc = 2, 4 respectively. These results at
the two Abelian points fit into the general result Eq.35
and shown in Fig.5.
For (β = 0, hz = 0), transferring back from the S̃U(2)

basis to the original basis, the Hamiltonian Eq.(30)
has the SU(2) symmetry which is generated by

∑

i S
x
i ,

∑

i(−1)ixSy
i , and

∑

i(−1)ixSz
i . When hz > 0, only

∑

i(−1)ixSz
i remains as a conserved quantity. Obviously,

the Z-FM state keeps all symmetry from the Hamilto-

nian. By acting the conserved quantity eiφ
∑

i(−1)ixSz
i

carrying momentum (π, 0) on the excitation in Eq.36 at
the minimum (π, 0) will generate another minimum at
(0, 0). So we conclude that at (β = 0hz > 0), the system
has two minima located at (0, 0) and (π, 0) as shown in
Fig.5.
For (β = π/2, hz = 0), transferring back from

the ˜̃SU(2) basis to the original basis, the Hamiltonian
Eq.(30) has the SU(2) symmetry which is generated by
∑

i(−1)iySx
i ,

∑

i(−1)ixSy
i , and

∑

i(−1)ix+iySz
i . When

hz > 0, only
∑

i(−1)ix+iySz
i remain as a conserved

quantity. Acting the conserved quantity eiφ
∑

i
(−1)ix+iySz

i

which carries momentum (π, π) on the excitation in Eq.36
at the minimum (π, 0), generates another minimum at
(0, π). So we conclude that at (β = π, hz > 0), the sys-
tem has two minima located at (π, 0) and (0, π) as shown
in Fig.5.
Similar to Sec.II-A-1, the U(1) symmetry

∑

i(−1)ixSz
i

or
∑

i(−1)ix+iySz
i at the Abelian point β = 0 or β = π/2

at a non-zero transverse field hz is different than the spin-
orbital coupled U(1)soc symmetry

∑

i(−1)ixSy
i along the

line (α = π/2, β) at hz = 0 in the RFHM Eq.1.

B. The Co-planar YZ-x Canted state below hcz:

1. Classical YZ-x canted phase at h < hcz

Here, we will first achieve the classical YZ-x canted
state from the two Abelian points.

(a) Approaching to the right from the Abelian point
β = 0.
At β = 0, in the S̃U(2) basis S̃i = Rx(ixπ)Si, the

Hamiltonian Eq.30 takes the form:

H = −J
∑

〈ij〉

S̃i · S̃j −Hz

∑

i

(−1)ix S̃z
i (38)

When 0 < Hz < Hzc the classical state in the S̃U(2)
basis is:

S̃i = S
(

sin θ cosφ, sin θ sinφ, (−1)ix cos θ
)

(39)

Reverting back to original basis leads to the classical
state in original basis:

Si = S
(

sin θ cosφ, (−1)ix sin θ sinφ, cos θ
)

(40)

where φ is nothing but the Goldstone mode due to the
U(1) symmetry breaking.
Although we obtained Eq.(39) and Eq.(40) at β = 0,

the same ansatz hold for 0 < β < π/2 whose classical
ground energy is:

Ec = −2NJS2[1− (1 + sin2 β) cos2 θ + hz cos θ

− sin2 β sin2 θ cos2 φ] (41)

It is easy to see that any β > 0 explicitly breaks the U(1)
symmetry at β = 0, so picks up φ = π/2, opens the gap
[24] to the Goldstone mode φ and leads to the classical
YZ-x canted state:

Si = S
(

0, (−1)ix sin θ, cos θ
)

(42)

with the corresponding classical ground state energy

Ec =− 2NJS2[1− (1 + sin2 β) cos2 θ + hz cos θ] (43)

Minimization of Eq.(43) leads to the canted angle:

cos θ =
hz

2(1 + sin2 β)
< 1, when hz < hcz (44)

which always has a solution as long as hz < hcz.
(b) Approaching to the left from the Abelian point

β = π/2.
In fact, one can reach the same results in Eq.42 and

43 from the right at β = π/2. In the ˜̃SU(2) basis ˜̃
Si =

Rx(ixπ)Ry(iyπ)Si, the Hamiltonian in Eq.(30) at β =
π/2 takes the form:

H = −J
∑

〈ij〉

˜̃
Si · ˜̃Sj −Hz

∑

i

(−1)ix+iy ˜̃Sz
i (45)

When 0 < Hz < Hcz, the classical ground state is:

˜̃
Si = S

(

sin θ cosφ, sin θ sinφ, (−1)ix+iy cos θ
)

(46)

Reverting back to the original basis leading to the clas-
sical ground state in the original basis

Si = S
(

(−1)iy sin θ cosφ, (−1)ix sin θ sinφ, cos θ
)

(47)
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with the classical ground state energy

Ec = −2NJS2[1− (1 + sin2 β) cos2 θ + hz cos θ

− cos2 β sin2 θ cos2 φ] (48)

Obviously, any β < π/2 picks up φ = π/2. Then Eq.47
and Eq.48 reduce to Eq.42 and Eq.43 respectively.
2. Spin wave analysis in the YZ-x Canted state
Starting from the classical YZ-x state Eq.42 and using

similar procedures to obtain Eq.22, we obtain the spin-
wave dispersion:

ω±
k =

√

A2
k+B2

k+C′2
k −C′′2

k −D2
k±2

√

(A2
k−D2

k)B
2
k+(AkC′

k−C′′
kDk)2 (49)

where the expressions of Ak, Bk, Dk are listed in Eq.20
and

C′
k = sin2 θ cos kx

C′′
k = cos2 θ cos kx (50)

where one can see C′
k+C′′

k = Ck = cos kx listed in Eq.20.
Of course, the θ in Eq.44 in the Hz field is different from
that in Eq.17 in the Hx field.
From Eq.49, one can determine the minimum positions

inside the YZ-x state. The general structure of Fig.5 is
similar to the hx case Fig.1. However, due to the lack of
generalized mirror symmetry as in the hx case, the de-
tailed landscape of the C-IC regime in Fig.5 is much more
complicated than that in the hx case. In this subsection,
we only outline the general structure. In the next sub-
section and appendix C, we describe details of the shape
of the C-IC regime in Fig.5.
In Fig.5, we still found there are three regimes in-

side the YZ-x Canted state: C-C0 regime, C-IC regime,
and C-Cπ regime which, at hx = 0, reduce to the three
regimes identified in [14]. Among the three magnons,
only C-C0 wins the game and drives the transition, so
the transition from the YZ-x state to the Z-FM is driven
by the condensations of the C-C0 magnons only. The
C-IC magnons still loses to the C-C0 in the competition.
Now we can check the consistence of the orbital orders

on both sides of hcz. The YZ-x state has the orbital order
(π, 0), the C − C0 has the orbital order (0, 0) = (π, 0) in
the RBZ. So its condensation on the top of YZ-x could
lead to the two orbital orders either (π, 0)+(0, 0) = (π, 0)
or (π, 0) + (π, 0) = (0, 0) in the EBZ. The (0, 0) order is
nothing but that of the Z-FM in Fig.5

C. Evolution of the C-IC magnons inside the C-IC

regime in Fig.5.

As shown in appendix C, the line h′
3 in Fig.6 is deter-

mined by setting the first derivative of dispersion vanish-
ing at (0, ky0 = π/2). The line h2 and h3 are determined
by the condition that C − C0 and C − Cπ become de-
generate. There is one crossing point (β0, h0) between h′

3

and h2 in Fig.6.

0 0.1 0.2 0.3 0.4 0.5

β/π
β

1
β

2

hz

1.0

2.0

3.0

4.0

Z-FM

YZ-x Canted

(βπ ,hπ)  

(β0 ,h0)  

ky
0=π/2

(β* ,h*)  hc(β)

h2

h‘3

h3

FIG. 6. (Color online) Due to the lack of generalized mir-
ror symmetry as in the hx case in Fig.2, one need 3 separate
backbone lines h′

3 and h2, h3 to describe the competitions of
the three kinds of magnons and their boundaries. Thick solid
line is the phase boundary hcz. The h′

3 (red) is the con-
stant contour at k0

y = ±π/2. Along the solid line parts of h2

(brown) and h3 (blue), C-C0 and C-Cπ become degenerate
ω(kx = 0, ky = 0) = ω(kx = 0, ky = π). The dashed parts of
h2 and h3 are extraneous solutions. The h′

3 line is split into
three segments π/4 < β < βπ, (0, k

y
0 = ±π/2) is the mini-

mum position. βπ < β < β0, C-Cπ becomes the minimum
position. When β0 < β < π/2, h′

3 rises above h2, moves into
the C-C0 regime. Details are given in the appendix C. As
shown in [13, 14], the I-IC dispersion can be mapped out by
the transverse spin structure factors.

In the hx case discussed in Sec.II, both conditions are
the same, so lead to just one single line with the 3 dif-
ferent segments in Fig.2 presented in Sec.II-C. However,
in the hz case, there are two different conditions which
leads to three different lines h′

3 and h2, h3, which make
the detailed shape of the C-IC regime more complicated
than that in hx case.
Along the h′

3, the minimum at ky0 = π/2, stays as the
( local ) minima until βflat ∼ 0.33π where the second
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derivative of the dispersion at (0, ky0 = π/2) vanishes,
then it becomes a maximum after β > βflat. ( In fact,
before getting to βflat ∼ 0.33π, there is another point (
let’s call it βπ in Fig.6 ) where the (0, ky0 = π/2) is just
a local minimum, while the C − Cπ becomes the global
minimum ). Then C − Cπ becomes the minimum, while
C − C0 becomes the maximum, then until C − Cπ and
C − C0 becomes degenerate at β0 ∼ 0.33729π in Fig.6.
After β > β0, it moves into the C − C0 regime where
C − C0 becomes the minimum. h′

3 rises above h2 line.
So β0 ∼ 0.33729π is determined by setting h2 = h′

3 as
shown in Fig.6.
So in practice, the h′

3 can be split into two segments
π/4 < β < βπ, (0, k

y
0 = π/2) is the minimum position.

βπ < β < β0, C − Cπ becomes the minimum position.
( So βflat is really not that important anymore ). Then
when β0 < β < π/2, h′

3 rises above h2, moves into the C−
C0 regime. Then we have to use the h2 line to delineate
the C − C0 and C − Cπ boundary.
So the C − IC boundary along (0, ky0 = π/2) happens

at (βπ, hπ) where it turns into C −Cπ . In principle, one
can determine the whole C − IC boundary in the whole
Y Z−x phase. Indeed, we determine the C−IC boundary
along the line h2 and h3 in Fig.11. Connecting all the
special points along the three lines h2, h3, h

′
3 in Fig.6 and

Fig.11 in the appendix C. and also β1, β2 at hx = 0 lead
to Fig.5 and also the evolution around (β0, h0) in Fig.12.
As shown in [13], the I-IC dispersion can be mapped out
by the transverse spin structure factors.

D. The transition from the Y Z − x canted state to

the Z-FM at T = 0 and finite T .

1. The T = 0 transitions: symmetry breaking and
order parameter
The transition from the Y Z − x canted state to the Z-

FM at T = 0 is still characterized by the order parameter
My(T = 0) = 〈Sy〉. As said at the beginning of Sec.III,
the Hamiltonian Eq.2 has has the translational symmetry
and the Pz symmetry: kx → −kx, S

x → −Sx, ky →
−ky, S

y → −Sy, Sz → Sz. The Z-FM respects both
symmetry, so My(T = 0) = 0, but the YZ-x states breaks
both, but still keeps the combination Pz × (x → x + 1),
so My(T = 0) 6= 0. Due to the spin-orbital locking,
destroying the My(T = 0) = 〈Sy〉 order will also restore
the translational symmetry along x direction. Similar to
the hx case, there are relativistic gapped C−C0 magnons
on both sides indicating the dynamic exponent z = 1. So
we conclude that the transition is also in the 3d Ising
universality class. The LSWE only leads to the mean
field exponent βMF = 1/2, νMF = 1/2.
At the two Abelian points β = 0 ( or β = π/2 ), start-

ing from h > hcz, as shown in [21], due to the enlarged
U(1) symmetry, the transition is driven by the simultane-
ous condensations of the two degenerate minima at (0, 0)
and (π, 0) ( or (0, π) and (π, 0) ) shown in Fig.5 and is
in the universality class of 3d XY model. From below

h < hcx, at β = 0, it is just the condensation of C − C0

magnons, at β = π/2, it is a simultaneous condensations
of C −C0 and C −Cπ magnons, so the transition is also
in the 3d XY universality class. After considering the
above differences, the T = 0 RG flow diagram is similar
to Fig.3.
2. The finite temperature phase transitions
All the physical quantities at T ≪ Tcz can be similarly

evaluated as in hx case.
Because inside the YZ-x phase in Fig.5, the RG flows

to the fixed point (β = π/4, hz = 0), so the finite temper-
ature transition at Tcz from the Y Z − x canted phase to
the Z-FM is in the same universality class as that at zero
field case shown in Fig.3 in [14]. As argued in Sec.II-D-3,
it is in 2d Ising universality class. Of course, at the two
Abelian points β = 0, π/2, it is in the 2d XY universal-
ity class. The finite temperature transitions at the two
Abelian points β = 0, π/2 are similar to Fig.4a, at the
mirror symmetric point β = π/2 is similar to Fig.4b. So
we only show them at a given 0 < hx < 4 in Fig.7.

KT

KT

0 β=π/2

KT

0 β=π/23d Ising

TT

(b)(a)

Z−FM

0< h < 2x 2< h < 4x

YZ−xYZ−x

2d Ising
2d Ising

Z−FM

FIG. 7. (Color online) Finite temperature phase transitions.
(a) At a fixed 0 < hx < 2. (b) At a fixed 2 < hx < 4.

IV. COMPARISONS WITH EARLIER WORKS

The C-IC magnons in the zero field RFHM along the
line (α = π/2, β) stand for short-ranged incommensu-
rate orders. But they are extrinsic, not embedded in
the ground state due to the absence of quantum fluctu-
ations in its exact ground state Y − x state. They need
to be excited by thermal fluctuations or dragged out by
various external probes which introduce quantum fluc-
tuations into the ground state. In order to transfer the
short-ranged incommensurate orders into long-range or-
dered ones, one need to drag out these C-IC first and then
drive them into condensations. However, as shown in [21]
and this work, these C-IC response quite differently to
the hy and hx, hz field. In the hy case which keeps the
spin-orbital coupled U(1)soc symmetry of the RFHM at
a zero field, any small hy < hc1 will drag out the C-IC
magnons, but the Y − x state stay as the exact ground
state, so the C-IC magnons remain extrinsic, detached
form the exact ground state and need to be thermally
excited. As hy → h−

c1, the C-IC magnons’ gap collapse
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to the ground state and become the driving seeds to lead
to various IC-SKX phase through a line of fixed points
at hy = h−

c1. As stressed in [21] and appendix A, from
below h < hc1, the IC-SKX is due to the condensations
of non-relativistic C-IC at a single minim (0, k0y), so the
transition at hc1 has the dynamic exponent z = 2, from
above h > hc2, the IC-SKX is due to the simultaneous
condensations of non-relativistic C-IC at two degenerate
minima at (0, k0y) and (π, k0y), so the transition at hc2

also has the dynamic exponent z = 2. On the experi-
mental side, the IC-SKX phase match rather naturally
and precisely the incommensurate, counter-rotating (in
A/B sublattice), non-coplanar magnetic orders detected
on iridates α, β, γ-Li2IrO3 [7]. Both hx and hz explicitly
breaks the spin-orbital coupled U(1) symmetry.

However, any small hx and hz will transfer Y −x state
into the YX-x or YZ-x phase respectively which support
only gapped magnons. Unfortunately, as shown in Fig.1
and Fig.5, as hx and hz increase, the relativistic C-IC
with at least two minima at (0,±k0y) always lose to C −
C0, so can not emerge to drive any phase transitions.
There is only one transition to the X-FM or Z-FM which
is driven by the condensation of C −C0 and is in the 3d
Ising universality class with the dynamic exponent z = 1.
So there is no chance to get any incommensurate phases.

In the (β, hy) phase diagram, the IC-SKX phase is sur-
rounded by 4 other phases: the two commensurate co-
planar canted phases at the left and right in the SOC
parameters, two collinear phases Y-x and Y-FM in the
low and high field respectively. The two canted phases
and the IC-SKX phases break the U(1) symmetry sponta-
neously, so support a gapless excitation. The two canted
phases in the hy case are dramatically different than the
YX-x and YZ-x canted phases in the hx and hy cases.
The former breaks the U(1) symmetry spontaneously,
does not support any C-IC magnons, but supports the
gapless Goldstone mode at the (π, 0). There is no direct
transition from the Y-x state to the canted state, there
is always an IC-SkX phase sandwiched between the two.
There is a direct transition from the canted phase to the
Y-FM phase through a roton condensation at (0, 0) and
to the IC-SkX phase through a bosonic Lifshitz transi-
tion.

However, both hx and hz explicitly breaks the spin-
orbital coupled U(1) symmetry. Any small hx and hz will
transfer Y-x state into the YX-x or YZ-x canted phases
respectively which are essentially the same phase as the
Y-x phase. So naturally, they also support gapped C −
C0, C − Cπ and C-IC magnons. In fact, one can also
group hy and hx as an in-plane field, while hz in Eq.30
as the perpendicular field. In the in-plane case, there
is a Mirror symmetry or a generalized mirror symmetry
respectively to characterize the competition among the
magnons. While in the perpendicular field, there is no
such mirror symmetry. Of course, the finite temperature
transitions in hy and hx, hz cases shown in Fig.4 and 7
are also quite different.

In a recent preprint [13], we studied Rotated Anti-

ferromagnetic Heisenberg model ( RAFHM) which is the
fermionic analog of the RFHM [14]. We found that the
C −C0, C − IC magnons in the RAFHM are also intrin-
sic ones generated by quantum fluctuations, take rela-
tivistic dispersion and already embedded in the ground
state. Their parameters such as the minimum positions
(0,±k0y), gap, velocities vx, vy can be precisely measured
by the peak positions, the width and Lorentizan shape
of the transverse structure factor at T = 0 respectively.
In this sense, the relativistic C −C0, C − IC magnons in
the Y-y state in the RAFHM at zero field resemble those
in the YX-x and YZ-x canted state studied in this paper.
In this work, we only focus along (α = π/2, β) in a

transverse field hx or hz. Obviously, it is important to
study how these magnons response when α 6= π/2 ( but
at zero field ) which also explicitly breaks the spin-orbital
coupled U(1) symmetry at α = π/2. This investigation
is complementary to (α = π/2, β) in a non-zero field hx

or hz studied in this paper. It has been achieved in a
very recent preprint [45] where we showed that turning
on α 6= π/2 leads to new competitions very different from
the two Zeeman field cases studied here, which in turn,
lead to different phases and phase transitions.

V. DISCUSSIONS AND CONCLUSIONS

It is easy to see why the transition from YX-x to X-FM
in Fig.1 and YZ-x to Z-FM in Fig.5 have to go through
C−C0 instead of C−Cπ . This is because YX-x or YZ-x
have the orbital order (π, 0), the C − C0 has the orbital
order (0, 0) = (π, 0) in the RBZ. So its condensation on
the top of YX-x or YZ-x order could lead to two orbital
orders either (π, 0) + (0, 0) = (π, 0) or (π, 0) + (π, 0) =
(0, 0) in the EBZ. The (0, 0) order is nothing but that of
the X-FM in Fig.1 or Z-FM in 5. However, the C − Cπ

has the orbital order (0, π) = (π, π) in the RBZ. So its
condensation on the top of YX-x or YZ-x order could
lead to two orbital orders either (π, 0) + (0, π) = (π, π)
or (π, 0) + (π, π) = (0, π) in the EBZ, none of the two
contains the (0, 0) order. So C − Cπ alone can not drive
the transition to X-FM or Z-FM.
We established our results at the LSW order. Follow-

ing [13], one can perform the 1/S corrections due to the
magnon interactions to the results at the LSW order.
We expect the correction is very tiny even at s = 1/2
as found in [13] except very close to the quantum phase
transitions in Fig.1 and 5. So we expect the competition
boundaries among different magnons in Fig.2 and 6 suffer
very little shift. As shown in [13], the dispersions of the
magnons, therefore, their boundaries in Fig.2,6 can be
mapped out by structure factors which can be detected
by Bragg spectroscopy [33, 34] in the cold atom experi-
ments or magnetic in-elastic X-ray scattering in materials
with strong SOC [25–27]. Of course, different spin-orbital
correlated magnetic orderings in Fig.1 and 5, the finite
temperature phase transitions between them in Fig.4,7
can be detected by similar experimental techniques.
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It is instructive to compare the C-IC magnons with
quantum fluctuations generated multiple vortices in p/q
filling Boson Hubbard models [35–38], those in high Tc

superconductors [39, 40] and exciton superfluids in Bi-
layer or trilayer quantum Hall systems [8, 9]. The vortices
are gapped topological excitations inside a superfluid,
there are at least q degenerate minima in their disper-
sions which transform to each other under the projective
representation of the Magnetic space group ( MSG). So
the gap closing ( or condensations ) of the q minima lead
to various kinds of lattice symmetry breaking insulating
states. So these quantum fluctuations generated vortices
are short-range translational symmetry breaking insulat-
ing orders embedded inside the translational invariant
superfluid states. Even inside the superfluid state, they
are the crucial ingredients of the superfluid ground state
and are generated by the intrinsic quantum fluctuations.
Their condensations tuned by interactions spark quan-
tum phase transitions into various neighboring insulat-
ing states breaking various translational symmetries of
lattices. Of course, vortices are bosons and satisfy boson
statistics. Here, these C−C0, C−Cπ and C−IC gapped
magnons inside the YX-x or YZ-x state play similar roles
as the vortices inside a translational invariant superfluid
state. They are the crucial ingredients of the YX-x or
YZ-x state and are generated by the intrinsic quantum
fluctuations. Their condensations tuned by various Zee-
man fields spark quantum phase transitions into various
neighboring spin-orbital correlated commensurate or in-
commensurate phases. The salient feature of the C-IC
magnons is that they may condense at any incommensu-
rate wavevector leading to incommensurate spin-orbital
correlated magnetic phases. This indeed what happens
in the hy Zeeman field studied in [21]. However, in the
hx, hz fields studied in this paper, they are eliminated
before their possible condensations.

The multiple local ( meta-stable ) or global minima
structure of the C-IC magnons shown in Fig.8,9,10 indi-
cate some short-ranged quantum fluctuations with multi-
ple length scales. The complex structure is intrinsic and
embedded in the quantum ground state, which may re-
semble the complex multiple local minimum landscapes
in quantum spin glass [41–44]. However, the former is
SOC induced, the latter is due to quenched disorders. So
the SOC may induce some similar complex phenomena
as the disorders do.

One of the original goals to study the SOC effects in
quantum spin systems is to look for possible spin liquid
phases. It is generally assumed [53] that in the presence
of SOC, the spin rotation symmetry is completely broken,
so LSMOH theorem [50–52] may not apply. However, Os-
hikawa’s arguments [51] require only U(1) symmetry with
the Sz conservation instead of the full SU(2) symmetry.
The quantum spin Hall effect in the Kane-Mele model
[49] in a honeycomb lattice is a Abelian SOC case with
the Sz conservation. Of course, in the Kane-Mele model,
the additional possible Rashba or Dresselhaus SOC spoils
the U(1) symmetry, but the Time reversal symmetry T

remains. The line (α = π/2, β) at zero field is the first
non-abelian SOC case which still owns a spin-orbital cou-
pled U(1) symmetry. At filling factor n = 1, there is also
only one spin s = 1/2 per unit cell in the original ba-
sis. In the U(1) basis [14], it becomes an explicit U(1)
symmetry with the expense of breaking the translational
symmetry of the Hamiltonian to two sites per unit cell.
So when trying to apply the Oshikawa’s argument in the
U(1) basis, one run into two spin 1/2 per unit cell, so it
still does not apply. Then the possible new mechanisms
[53] only assuming T may apply to search for possible
spin liquid states in the presence of SOC in some lat-
tices. The longitudinal [21] Zeeman field hy still keeps
the U(1) symmetry, but breaks the T symmetry. Here,
the two transverse fields break both the U(1)soc symme-
try and the time reversal explicitly, so it is not surprising
that we only find the symmetry breaking ground states
shown in Fig.1,5 instead of any spin liquid ground state
in a square lattice. Note that in a previous study of frus-
trated Ising model in a transverse field [22, 23], due to its
violation of both LSMOH condition and the time reversal
symmetry, no spin liquids were found either.

In this work, we only focus on quantum phases with
only bosonic excitations and without topological orders.
It can be considered as incorporating possible dramatic
effects of SOC on well studied 2d Ising, anisotropic (or
isotropic) quantum XY model in a transverse field[5].
As said in the introduction, in fermionic systems [8–13],
the quantum phase supports both fermionic excitation
and collective bosonic excitations. The two sectors may
compete to lead to various other quantum phases un-
der various external probes. In a recent preprint [46],
we studied the attractive Hubbard model with Rashba
or Dresselhaus spin-orbit coupling in a 2d square lattice
subject to a perpendicular hz field which is the weak cou-
pling and negative interaction cousin of Eq.30. We find
it is the touching ( or gap closing ) of fermionic quasi-
particle excitations which signify a topological transition
from a topological SF to a trivial one or to a band in-
sulator. Obviously, a fermionic quasi-particle can not
condense, but they could change the topological wind-
ing numbers, therefore spark topological transitions. It
remains much more challenging to study topological con-
finement and de-confinement transitions driven by con-
densations of fractionized particles satisfying Abelian or
non-Abelian statistics [4, 6]. Unfortunately, in contrast
to bosonic or fermionic excitations which are only short-
range entangled, one may not be able to treat these
fractionized particles as independent particles due to the
long-range entanglements meditated by Abelain or non-
Abelian Chern-Simon interactions [4, 6, 39, 47, 48].
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Appendix A: Energy spectrum symmetry analysis

of Y X −x state in hx case and Y Z− x state in hz case.

The zero field RFHM studied in [14] has the transla-
tional symmetry and the T , Px,Py and Pz symmetry.
Along the line (α = π/2, β), it also has the spin-orbital
coupled U(1) symmetry [H,

∑

i(−1)ixSy
i ] = 0. Under the

local rotation ~̃Si = Rx(π)Ry(iyπ)~Si, β → π/2 − β. At
the middle point β = π/4, the Hamiltonian is invariant
under such a transformation. The Y-x state breaks all
these symmetries except the U(1) symmetry and the Py

symmetry: Sy → Sy, kx → −kx, S
x → −Sx, Sz → −Sz.

However, it still keeps Px × (x → x+ 1) and Pz × (x →
x + 1) symmetry, so the excitation spectrum must have
the ky → −ky symmetry also, as indeed respected by the
LSW spectrum shown in [14]. At β = π/4, the Y-x state

also keeps the ~̃Si = Rx(π)Ry(iyπ)~Si followed by the T
which is called the Mirror symmetry M in [21].

The RFHM in the longitudinal hy field enjoys the
translational symmetry and the Py symmetry, breaks
Px,Py, of course, breaks Px×(x → x+1) and Pz×(x →
x + 1) symmetry, but still keeps T Px and T Py. Along
the line (α = π/2, β), it keeps the spin-orbital coupled
U(1) symmetry. At β = π/4, it also keeps the M sym-
metry: The Y − x state at h < hc1 keeps Py symmetry,
but breaks the translational symmetry by one lattice site
(x → x+1), so the excitation spectrum may not have the
ky → −ky symmetry anymore. Indeed, the hy field just
picks one the two degenerate minima ±k0y and condense
it at h = hc1 as shown in Fig.1 in [21].

As said at the beginning of Sec.II, the RFHM in
the hx transverse field Eq.2 enjoys the Px symmetry:
Sx → Sx, ky → −ky, S

y → −Sy, Sz → −Sz and the
translational symmetry. The YX-x state breaks both the
Px symmetry and the translational symmetry by one lat-
tice site (x → x + 1), but keeps the combination of the
two Px × (x → x + 1). So the excitation spectrum must
have the ky → −ky symmetry. This is indeed respected
by the LSW spectrum shown in Fig.2, 8 and 9.

Very similarly, as said at the beginning of Sec.III, the
RFHM in the hz transverse field Eq.30 enjoys the transla-
tional symmetry and the Pz symmetry: kx → −kx, S

x →
−Sx, ky → −ky, S

y → −Sy, Sz → Sz which is also equiv-
alent to a joint π rotation of both the spin and the orbital
around the ẑ axis. The YZ-x state breaks both the Pz

symmetry and the translational symmetry by one lattice
site (x → x + 1), but keeps the combination of the two
Pz × (x → x+1). So the excitation spectrum must have
the ky → −ky symmetry also. This is indeed respected
by the LSW spectrum shown in Fig.10 and 11.

Both hx and hz break the U(1) symmetry. There is
also no Mirror transformation anymore. This lead to
dramatic different responses of the magnons under hx, hz

studied in this paper than those in the hy investigated in
[21].

Appendix B: The evolution of C-IC in hx case
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FIG. 8. (Color online) (Top) Phase diagram in the hx case.
The dashed line indicates the contour k0

y = ±π/2 inside
the C-IC regime. Colored dots stand for the 5 parame-
ters (β, h(β)): (0.25π, 0), (0.27π, 0.531115), (0.29π, 0.788082),
(0.31π, 1.00363), (0.33π, 1.19486) used for the figure below
falling in the range π/2 < β < β0 ≈ 0.330458π. (Bottom)
Spin wave spectrum corresponding to the 4 dots in the top
figure. There is no other contours crossing the k0

y = π/2 con-
tour in this range. For example, the contour k0

y = π/2+10−5

will hit the extension of the contour k0
y = π/2 in the range

β0 ≤ β ≤ β∗ (see Fig.9). As hx increases, the gap at k0
y =

±π/2 increases. Note that even at β = 0.33π, h = 1.19486,
the spectrum is dispersive instead of being a flat line.

As motivated in Sec.II-C, we like to investigate possible
“generalized” mirror symmetry around ky = π/2. So we
apply a shift k = (0, π/2)+ q to the dispersion Eq.22 and
20 and get

Aq = 2 + (cos2 β − sin2 β sin2 θ) sin qy

Bq = sin 2β sin θ cos qy

Cq = cos qx

Dq = − sin2 β cos2 θ sin qy (B1)

It is easy to see that the only term which is not mirror
symmetric with respect to qy = 0 is contained in Aq. (Dq

has no problem because it is squared in Eq.22.) Making
the spectrum mirror symmetric with respect to qy = 0
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FIG. 9. (Color online) The Spin-wave spectrum for several
(β, h(β)) in the range β0 ≤ β ≤ β∗ in the top part of Fig.8.
Arrow is the guide to see the minima locations. Due to the
generalized mirror symmetry, there are 4 degenerate minima
which are symmetric with respect to ky = ±π/2 respectively.
Due to the ky → −ky symmetry, the 4 minima are also sym-
metric with respect to ky = 0. As increasing β from β0 to β∗,
the minima positions continuously shift from π/2 to either 0
or π. For the red curve (β = 0.330464π), the 4 degenerate
minima are at k0

y = ±π/3,±2π/3. It also indicates the 4
contours will hit the extension of the contour k0

y = ±π/2 at
β = 0.330464π shown in Fig.2.

dictates:

cos2 β − sin2 β sin2 θ = 0 (B2)

Plugging in the Eq.17 leads to Eq.25 and Eq.26.
Eq.26 is obtained demanding that the energy spectrum

is symmetric with respect to k0y = π/2, so it guarantees it
must be an extreme ( either minimum or maximum ) at
k0y = π/2 and also the degeneracy condition ωk=(0,0) =
ωk=(0,π). This explains why Eq.26 also contains the C-
C0/C-Cπ boundary Eq.25.

Appendix C: The evolution of C − IC in hz case

Following the procedures in the hx case, we will first
determine the boundary between C −C0 and C −Cπ by
setting ω−

k (0, 0) = ω−
k (0, π). Using Eq.49, we find it has

4 positive roots h1, h2, h3, h4 and 4 negative roots. After
comparing with numerical results, we find only the two
roots h2 and h3 are physical:

h2 =
√

2(3− cos 2β)(1 − cos 2β)

h3 = (3 − cos 2β)

√

−2 cos 2β

1 + cos 2β
(C1)

Setting h2 = h3 leads to β = β∗ = 0.295296π as shown
in Fig.6. When 0.25π < β < β∗, h = h3, when β∗ < β <
π/2, h = h2.
Next we determine the constant contour at k0y = π/2,

thus we need solve 0 =
∂ω−

k

∂ky

∣

∣

∣

k=(0,π/2)
which leads to a

quartic equation in h2:

c8h
8 + c6h

6 + c4h
4 + c2h

2 + c0 = 0 (C2)

(I) (II) (III)

π

ω(kx=0,ky)

1.2

1.3

1.4

1.5

1.6

β=0.30π

β=0.31π

β=0.32π

ky

π/2

ω(kx=0,ky)

-π/2-π 0 ππ/2-π/2-π 0

ky1.1

1.2

1.3

1.4

1.5

β=0.33π

β=0.35π

β=0.34π

C-Cπ
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FIG. 10. (Color online) (Top) When β increases from
π/4 to π/2 along h′

3, the contour extreme at k0
y = ±π/2

goes through (I) concave, -(II) inflection point-(III) convex

( namely ∂2ωk

∂k2
y

∣

∣

∣

k=(0,π/2)
> 0,= 0, < 0 ) with the inflection

point sitting at βflat ≈ (0.328± 0.001)π. (bottom) The spin-
wave dispersion along h′

3 for different β: (a) 0.30π, 0.31π,
0.32π falling in the range π/4 < β < βflat, k

0
y = ±π/2 is at

least a local minimum. (b) 0.33π, 0.34π, 0.35π falling in the
range βflat < β < π/2. k0

y = ±π/2 becomes at least a local
maximum.

where the coefficients c8, c6, c4, c2, c0 are functions of β.
This equation also has 4 positive roots h′

1, h
′
2, h

′
3, h

′
4 and

4 negative roots. we find only h′
3 is a physical solution.

Its analytic expression is complicated, so we only show
its numerical solution in the Fig.6. Setting h2 = h′

3 leads
to β = β0 = 0.333729π; The three lines h2, h3, h

′
3 and

their crossings are drawn in Fig.6.

Since we set 0 = ∂ωk

∂ky

∣

∣

∣

k=(0,π/2)
, the dispersion around

ky = ±π/2 changes as shown in Fig.10:
We can summarize the evolution along h′

3 line in the
following: Along h′

3, when 0.25π < β < βflat, (0, π/2) is a
local minimum; when βflat < β < π/2, (0, π/2) is a local
maximum.
Along h′

3, when 0.25π < β < βt2, (0, 0) is a local max-
imum; when βt2 < β < π/2, (0, 0) is a local minimum.
Along h′

3, when 0.25π < β < βt1, (0, π) is a local max-
imum; when βt1 < β < π/2, (0, π) is a local minimum.
The relation between these β are βt1 < βflat < βt2

If 0.25π < β < βt1, (0, π/2) is a global minimum;
If βt1 < β < βflat, we need compare (0, π/2) with (0, π);

if βt1 < β < βtf , (0, π/2) is a global minimum;
if βtf < β < βflat, (0, π) is a global minimum;

If βflat < β < βt2, (0, π) is a global minimum;
If βt2 < β < π/2, we need compare (0, π) with (0, 0);

if βt2 < β < β0, (0, π) is a global minimum;
if β0 < β < π/2, (0, 0) is a global minimum;

As summarized in Sec.III-C, if 0.25π < β < βtf ,
(0, π/2) is a global minimum; if βtf < β < β0, (0, π)
is a global minimum; if β0 < β < π/2, (0, 0) is a global
minimum. The final result is shown in Fig.6
The minimum structure along h2 and h3 are shown in

Fig.11 and B respectively.
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FIG. 11. (Color online) (a) Along h2, the minimum location
of the dispersion is k = (0, 0) then become k = (0, 0 < k0

y <
π), then become either k = (0, 0) or k = (0, π) which are
degenerate along h2. (b) Along h3, the minimum location of
the dispersion is k = (0, 0 < k0

y < π) then become k = (0, 0).

Combining all the special points along the three lines
h2, h3, h

′
3 in Fig.6 and Fig.11 and also β1, β2 at hx = 0

lead to Fig.5 and the evolution around (β0, h0) in Fig.12.
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2.8

3.6

3.8

FIG. 12. (Color online) Fine structure of C-C0, C-IC, C-
Cπ boundaries around (β0, h0). It is reached by connecting
those special points along the three lines h2 ( solid and dashed
brown ), h3 ( solid and dashed blue ),h′

3 ( solid red ) in Fig.6
and Fig.11. The Thick solid black line is the phase boundary
hcz.
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