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We present a model for non-adiabatic classical molecular dynamics simulations that captures with
high accuracy the wave-vector q−dependence of the phonon lifetimes, in agreement with quantum
mechanics calculations. It is based on a local view of the e-ph interaction where individual atom
dynamics couples to electrons via a damping term that is obtained as the low velocity limit of the
stopping power of a moving ion in a host. The model is parameter free, as its components are
derived from ab initio-type calculations, is readily extended to the case of alloys, and is adequate for
large scale molecular dynamics computer simulations. We also show how this model removes some
oversimplifications of the traditional ionic damped dynamics commonly used to describe situations
beyond the Born-Oppenheimer approximation.
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I. INTRODUCTION

Computational materials science is one of the fastest
growing areas in physics and chemistry. Scientists have
long used computers to model materials and their per-
formance; but today, with ever-growing supercomputers,
which employ millions of microprocessors to tackle simu-
lations once considered intractable, the accuracy of some
simulations are able to reliably predict properties of new
materials without testing. However, material properties
often depend on phenomena that take place over several
scales, from nanometers to meters, from billionth of a
second to years. No computer in the near future will
be able to solve such challenges within a single theoret-
ical framework, for example, quantum mechanics at the
atomic scale.

To bypass this limitation, scientists have for years been
developing the concept of multi-scale modeling. This ap-
proach combines different models in order to cover the
full range of length and time scales of interest for a partic-
ular problem. The most common approach to multi-scale
modeling is called information passing. In this method
simulations of matter at one scale are based on the results
of simulations at a lower (more finely detailed) scale. The
challenge to perform a coherent simulation of a material
lies on building robust connections between such different
scales.

One of the most difficult connections is between the
electronic and the atomic scales, specifically, between
quantum mechanics, QM, for electrons and classical me-
chanics for the ions, because classical mechanics is not a
coarser view of QM. One of the best examples of success
in this area is the development of the so called ‘classical
many body potentials’1,2 to describe ion-ion interactions,
done 30 years ago. It describes the potential energy of
an ensemble of atoms as a simple non linear function of
the sum of pair interactions. This assumption captures
the essence of metallic cohesion, which in a tight binding

language says that bonding is a function of band width,
which itself is a function of wave-function overlaps, and
it does that at an insignificant computational cost com-
pared to any QM model for the electrons. This model
gives materials scientists a tremendous power to predict
atomic scale behavior in many metals and alloys and rep-
resents a seminal contribution to computational materi-
als science, and probably the most successful connection
between scales in the multi-scale paradigm.

In this work we present a classical mechanics model
that captures the essence of another QM phenomenon
namely the electron-phonon, e-ph, interaction, and does
so also at an insignificant computational cost. The model
presented here captures with high accuracy the wave-
vector q dependence of the phonon lifetimes in agreement
with sophisticated QM calculations. It is based on a local
and instantaneous view of the e-ph interaction where in-
dividual atom dynamics couples to electrons via a damp-
ing term that is obtained as the low velocity limit of the
stopping power of a moving ion in a material. More-
over, the model is parameter free, as its components are
derived from ab initio-type calculations.

In a recent paper3 we calculated the e-ph interaction
as a particular case of an electronic stopping process,
providing a simple solution to the empiricism present to-
day in molecular dynamics simulations of non-adiabatic
processes4,5.

The inclusion of electronic effects into classical MD
simulations is usually achieved using Langevin dynam-
ics, where a friction term, −βv, added to the Newton
equations of motion, removes energy from moving atoms,
while a random force term simulates the stochastic ther-
malizing collisions with electrons. The approach pro-
posed years ago by Caro et al.6, treats the β term as
a function of the local electronic density of the host,
and the electronic system as a large heat bath at a con-
stant temperature. Today, that simple approach has been
largely improved by treating the energetics of the elec-
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Figure 1: Damping term β in the Langevin equations as
a function of local electronic density calculated using
TDDFT for Ni and Fe projectiles moving across a

vacancy site in an fcc Ni crystal. Also plotted is the
fitted quadratic function for β(ρ) that was used in MD

simulations.

tronic system as a continuum described by a specific heat
and a thermal conductivity, whose thermal state is solved
via the heat equation on a mesh, simultaneously with the
ionic equations of motion. This approach, known as the
Two Temperature hybrid MD Model, TTM-MD, repre-
sents the state of the art for non-adiabatic MD simula-
tions of radiation damage5, although it is important to
mention that in most cases, the β term is assumed con-
stant. When it is assumed to be a function of the local
electronic density, it has been proven to give a much bet-
ter agreement with quantum mechanical calculations7.

In Ref.3 we describe β as a specific function of the lo-
cal host electronic density, as seen by the moving atom.
This simplifying assumption naturally accounts for the
differences in β values seen by energetic projectiles vis-
iting regions of high electronic density of the host, and
slow, thermal, atoms moving around their equilibrium
positions, where the density contributed by the other,
host, atoms is at its minimum. We refer the reader to
that paper for the introductory discussion to the subject.

II. METHOD

In this paper we first use time dependent density func-
tional theory, TD-DFT, to evaluate β(ρ) for both a Ni
atom moving around its equilibrium position in a Ni lat-
tice, i.e. βNi(ρ), and an Fe atom substituting a Ni one in
the same Ni lattice, i.e. βFe(ρ). This last case provides
the information needed to describe the e-ph interaction in
NiFe alloys. With these functions we then evaluate the
phonon lifetime that results from the e-ph interaction;
we compare these results with QM calculations based on
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Figure 2: Electronic density in Ni crystal with a single
vacancy along 〈100〉 (red) and 〈110〉 (blue) directions.

The solid line is obtained with ASA method and dashed
calculated using VASP. The symbol Vac shows the

location of a vacancy in Ni crystal.

perturbation theory.
Our model is a modified version of the Langevin equa-

tions of motion describing an ensemble of classical de-
grees of freedom (Boltzmann statistics) in contact with
a heat reservoir, in our case, the electrons, namely,

FI = −∇IU({RJ}J)− βI(ρ
∗(RI))v

∗
I + ηI (1)

ρ∗(RI) =
∑

J 6=I

ρJ(RIJ ) (2)

v
∗
I =

1

ρ∗(RI)

∑

J 6=I

ρJ(RIJ )(vI − vJ ) (3)

with each component of the random force ηI defined by,

〈η
(i)
I (t)〉 = 0 (4)

〈η
(i)
I (t)η

(j)
I (t′)〉 = δijδ(t− t′)2βI(ρ(RI))kBTe(RI) (5)

where FI is the force acting on atom I, U({R}J) is the
potential energy of the system that depends on the co-
ordinate of all the atoms and is given by an empirical
potential or by a ab initio ground state total energy
calculation; βI(ρ(RI)) is the viscous damping force or
ion-electron coupling strength function, which depends
on the chemical nature of the atom I, and its argument
ρ(RI) is the electronic density of the host at the position
where atom I is positioned, defined in Eq. 2, v∗

I is the
relative velocity between atom I and the host electronic
density, as defined by Eq. II, and ηI is a random force
defined by its mean value, Eq. 4, and its variance, Eq. ,
where kB is the Boltzmann constant, Te(RI) is the elec-
tronic temperature at position RI , and MI is the mass
of ion I.
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Figure 3: The amplitude decay during the e-ph MD
simulation of the phonon longitudinal modes in fcc Ni
crystal along 〈100〉 direction with wave-vectors 0.05,
0.25 and 0.50 (in units of 2π/a). The simulation

contains 32000 atoms in a cubic supercell. Horizontal
dotted line, shows the result when dissipative term in
Eq. 1 is turned off (and energy is conserved as in a

normal NVE simulation.)

Note the way we have written the density ρ∗(R) at
position R in Eq. 2; it is defined as the sum of spheri-
cal atomic densities ρJ(RIJ) of neighboring atoms, which
carry the information about the chemical nature of atoms
at positions RJ that contributes to the density at posi-
tion RI . ρ(r) itself does not depend explicitly upon the
chemical nature of the atoms contributing to it. This
atomic sphere approximation, ASA, is similar to that at
the basis of the embedded atom model, EAM1,2, provid-
ing a fast algorithm to calculate it on-the-flight. Also
note that, according to Eq. the velocity v∗

I is the veloc-
ity of atom I relative to the velocity of the electronic
density. This point has been so far overlooked in the
standard implementation of the TTM-MD in the popular
MD code LAMMPS8 or DL-POLY9, and has significant
consequences on the wave vector dependence of phonon
lifetimes, as we show below, and on the presence of an
artificial damping for a solid under rigid motion.

The function βI(ρ) is found in a two-step process.
First, βI(R) is obtained along a TD-DFT simulations
of a low (thermal) velocity atom moving across a va-
cant site in the crystal. From the total electronic energy
in the simulation an instantaneous electronic stopping
power, Se(R) is obtained, whose slope is βI(R). We used
the code Qbox with modifications to perform explicit
time-dependent electron dynamics (TD-DFT)10 and the
procedure is similar to that described in3. Second, the
function ρ∗(R) is obtained using the ASA. The atomic
spherically-symmetric densities were obtained from the
Opium package11 for isolated Ni and Fe atoms. VASP
calculations12,13 for the actual electronic density in bulk
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Figure 4: Inverse phonon lifetimes in a fcc Ni crystal
along 〈100〉, 〈110〉, 〈111〉 directions. The polarization
vectors investigated are shown in the legend. Results
are shown for the model described in the text, for a

perturbative QM calculation, and for the standard two
temperature model.

fcc Ni show that ASA is in a reasonably good agreement
with DFT results (fig. 2), validating the ASA approach
for metals. (GGA was used all along the DFT calcu-
lations.) In Fig. 2 we see that the largest discrepancy
occurs precisely at the location of the vacancy where the
actual density is smaller than the ASA value, reflecting
the effects of metallic bonding. Finally, relating βI(R)
to ρ(R) and eliminating R, the function β(ρ) in Eq. 1
is obtained. Figure 1 shows the results for βNi(ρ) corre-
sponding to a Ni atom in a fcc Ni lattice, and for βFe(ρ)
corresponding to an Fe atom in the same Ni lattice. The
calculations are not magnetic for simplicity, and also be-
cause in the envisioned applications the magnetism can
be seen as a small perturbation.

Note in this figure, in particular for the case of the Ni
atom in fcc Ni where the simulation ran for a longer tra-
jectory, that the actual value of Se is not exactly a func-
tion of the density at the actual position of the moving
atom, namely: Se for the atom approaching the vacancy
is not the same as Se for the atom departing from it,
at symmetrical positions, where the host density is the
same. This difference reflects the fact that the stopping
is in fact a function of the electronic density of the host
as well as that of the moving particle, which lags behind
its nucleus or, in general, the stopping is a function of
the history. This local density approximation is, never-
theless, an excellent approach for low velocity atoms, as
Fig 1 suggests, but is less accurate for projectiles in the
MeV range. This is analogous in spirit to the EAM, in
this case the friction itself is taken as a function of the
environment density. We discuss this subject in a forth-
coming publication.

We implemented this model as a new ‘fix’ in the MD
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Figure 5: Inverse phonon lifetimes for a NiFe random
solid solution in fcc phase as a function of wavevector q,
for three polarizations at various number concentrations
(c Fe 0.00, 0.01, 0.10). These are obtained with our MD

model from the decay of an initial phonon-like
excitation characterized by wavevector q along principal

directions in the Brillouin zone, and polarization
(longitudinal and two transversal). Values reported on
the upper panel correspond to the e-ph contribution
alone, measure from the energy transferred to the

electronic system; those of the lower panel correspond
to the actual decay of the mode that contains the e-ph
interaction plus the decay produced by the disorder.

code LAMMPS8 and treated the electronic system as it
is usually done in the TTM-MD, namely by solving the
heat diffusion equation on a grid. For our purpose in
this work of determining phonon lifetimes, only energy
removal from the ionic system to the electrons is stud-
ied, with the random force in Eq. 1 turned off. Phonon-
phonon scattering is contained in the adiabatic potential
U and explicit magnon dynamics is still omitted.

III. RESULTS AND DISCUSSION

To study phonon lifetimes we prepared each initial
state with displacements corresponding to particular po-
larizations and wave-vectors q along high symmetry di-
rections in the Brillouin zone, and monitor their ampli-
tude of each mode as it decreases with time, as shown in
Fig. 3.

The initial amplitude is small enough (0.0018 Å) to
make anharmonic effects (i.e. phonon-phonon interac-

tions) negligible. From a fitting to the exponential decay
of its amplitude we obtain the lifetimes, as reported in
Fig. 4.

To check the accuracy of these predictions, we evaluate
the phonon lifetimes from density-functional perturba-
tion theory14–16 (DFPT) in a pseudopotential plane-wave
approach, as implemented in Quantum Espresso (QE)
package18, using ultrasoft19 pseudopotential from the QE
database. The results are shown in Fig. (4) as well. The
electronic structure and phonon dispersion for nonmag-
netic Ni were calculated within the Generalized Gradient
Approximation (GGA), with the exchange-correlation
functional parameterized according to Perdew, Burke,
and Ernzerhof17. A plane wave kinetic energy cut off of
40 Ry (and charge density cutoff of 240 Ry) give accurate
values of phonon dispersion. The integration over the
Brillouin zone (BZ) used a smearing of 0.02 Ry. The cal-
culation of phonon lifetime requires an integration of the
double delta over the Fermi surface20 with a high accu-
racy. BZ summations were carried out over a 30×30×30
grid for the k-grid electronic integration, smearing equal
to 0.005 Ry and 6 × 6 × 6 for the phononic q-grid inte-
gration, according to the Monkhorst-Pack scheme. We
performed the phononic BZ integration to calculate the
electron-phonon coupling constant, λ20. The value ob-
tained, λ = 0.24, is very close to 0.26, obtained pre-
viously3,21 using a rigid muffin-tin potential approach
(RMTA)22. This λ value is calculated using value of cal-
culated Hopfield parameter21 and expression

λ = δ/(m〈ω2〉), (6)

where δ is Hopfield parameter calculated in RMTA, and
〈ω2〉 is averaged value of calculated phonon frequencies.
This value are also in reasonable agreement with the λ =
0.31 obtained by Allen from resistivity experiment23.

Finally, Fig 4 also gives the lifetime predictions for the
standard TTM-MD approach, which assumes a constant
β and uses the absolute ion velocity in the term βv. It
can be seen that no q-dependence is obtained, and more-
over, damping is present even at q = 0, i.e. for rigid
translation (evidencing that the total linear momentum
is not conserved). Three main conclusions emerge from
this figure: (i) the classical mechanics e-ph interaction
model that we present here predicts phonon lifetimes in
remarkably good agreement with quantum mechanical
calculations; (ii) the main limitation of the model seems
to be the inability to predict different values for longitu-
dinal and transverse polarization; (iii) the typical model
used so far to account for non-adiabatic atomic motion,
the TTM-MD with constant β and absolute velocities, is
unable to give any q-dependence, however it is captured
with our method.

The absence of polarization effect in the life-times
stems from the simplicity of the model and the scalar
character of the dissipation (friction force is always anti-
parallel to the velocity). A more general model (includ-
ing tensorial β or dependence on acceleration) could in
principle also recover polarization effects.
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The model presented so far is readily extended for al-
loys; we study the case of NiFe. According to Eqs. 1 the
function βI depends on the chemical identity of atom I,
and its argument is the host density at the location of
atom I, which is the sum of atomic densities of atoms
at sites J , with their own chemical identity that defines
such density, Eq. 2. Therefore describing alloys requires
the calculation of the electronic stopping power of all the
species in consideration in a host that is representative
of the alloy. In the case presented here we assume it to
be pure Ni, valid for small concentrations in NiFe.

Fig. 1 shows βFe(ρ) for an Fe atom moving around a
vacancy in fcc Ni. Fig. (5) shows the lifetimes resulting
from both the e-ph interaction and the phonon scattering
produced by the disorder. Clearly the disorder contribu-
tion is at least one order of magnitude larger than the e-
ph part. To extract the phonon lifetime from the total at-
tenuation we monitor the energy transferred to the elec-
tronic system, instead of the decay of the phonon itself.
The results are shown in Fig. 5 which show how alloying
increases the coupling mostly at the zone edges. We also
observe a splitting between longitudinal and transverse
branches, absent in the pure Ni case.

In all the phonon lifetime MD calculations an 20 ×
20× 20 fcc simulation box consisting of 32000 atoms was
used. Ni-Fe alloys were constructed by substituting the
Ni atoms with Fe randomly to obtain the required con-
centration. All the structures were initially relaxed to
obtain the equilibrium lattice parameter. Afterwards dif-
ferent phonon modes used in the study were created by
displacing the atoms. The Ni interatomic potential by
Mishin et al.24 was used in the phonon lifetime studies
for pure Ni crystal and the potential by Bonny et al.25

was used in the case of Ni-Fe alloy.

IV. CONCLUSIONS

We propose a non adiabatic model for classical MD
that accurately reproduces e-ph interaction in both

strength and q-dependence. The model is based on treat-
ing the e-ph interaction as a low velocity case of electronic
stopping power, and therefore uses a quantum mechani-
cal technique, namely TD-DFT, to evaluate its strength,
which becomes then parameter free. Using a local ap-
proximation to relate the e-ph coupling to the host elec-
tronic density, and complemented with a atomic sphere
approximation to obtain the local electronic density at
low computational cost, the model is readily extended
to alloys. The predictions are validated by comparison
to quantum mechanical calculations, showing an excel-
lent agreement. This model represents quantitatively
accurate approach to describe non adiabatic aspects of
ion-electron dynamics within a classical mechanics frame-
work.

Acknowledgments

Work performed at the Energy Dissipation to Defect
Evolution Center, an Energy Frontier Research Cen-
ter funded by the U.S. Department of Energy (Award
Number 2014ORNL1026) at Los Alamos and Oak Ridge
National Laboratories. This research used resources
provided by the LANL Institutional Computing Pro-
gram. LANL, an affirmative action/equal opportunity
employer, is operated by Los Alamos National Security,
LLC, for the National Nuclear Security Administration
of the U.S. DOE under contract DE-AC52-06NA25396.
Work by AAC performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

1 M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).
2 M. W. Finnis and J. E. Sinclair, Philos. Mag. A 50, 45

(1984).
3 A. Caro, A. A. Correa, A. Tamm, G. D. Samolyuk and G.

M. Stocks, Phys. Rev. B 92, 144309 (2015).
4 M. C. Ridgway, T. Bierschenk, R. Giulian, et al., Phys.

Rev. Lett. 110, 245502 (2013).
5 D. M. Duffy and A. M. Rutherford, J. Phys. Condens.

Matter 19, 016207 (2007).
6 A. Caro and M. Victoria, Phys. Rev. A 40, 2287 (1989).
7 C. P. Race, D. R. Mason, M. W. Finnis, W. M. C. Foulkes,

A. P. Horsfield, and A. P. Sutton, Rep. Prog. Phys. 73,
116501 (2010).

8 S. J. Plimpton, Comput. Phys. 117, 1 (1995).
9 S.L. Daraszewicz and D.M. Duffy, Nuclear Instruments

and Methods in Physics Research Section B: Beam Inter-

actions with Materials and Atoms 303, 112-115 (2013)
10 A. Schleife, E. W. Draeger, Y. Kanai, and A. A. Correa,

J. Chem. Phys. 137, 22A546 (2012).
11 Opium - pseudopotential generation project,

http://opium.sourceforge.net
12 G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
13 G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
14 N. E. Zein, Fiz. Tverd. Tela 26, 3024 (1984)
15 S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58,

1861 (1987).
16 S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Gianozzi,

Rev. Mod. Phys. 73, 515 (2001).
17 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev.

Lett. 77, 3865 (1996).
18 P. Giannozzi, S. Baroni, N. Bonin et al., J of Physics: Con-

densed Matter 21 395 (2009).



6

19 Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).
20 P. B. Allen, Phys. Rev. B 6 2577 (1972).
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