
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Spectrally resolved detection in transient-reflectivity
measurements of coherent optical phonons in diamond

Kazutaka G. Nakamura, Kazuma Ohya, Hiroshi Takahashi, Tetsuya Tsuruta, Hiroya Sasaki,
Shin-ichi Uozumi, Katsura Norimatsu, Masahiro Kitajima, Yutaka Shikano, and Yosuke

Kayanuma
Phys. Rev. B 94, 024303 — Published 11 July 2016

DOI: 10.1103/PhysRevB.94.024303

http://dx.doi.org/10.1103/PhysRevB.94.024303


Spectrally resolved detection in transient reflectivity measurements for coherent

optical phonons in diamond

Kazutaka G. Nakamura,1, 2, 3, ∗ Kazuma Ohya,1, 2, 3 Hiroshi Takahashi,4 Tetsuya

Tsuruta,1, 2, 3 Hiroya Sasaki,1, 2, 3 Shin-ichi Uozumi,1, 2, 3 Katsura Norimatsu,1, 2, 3

Masahiro Kitajima,1, 3 Yutaka Shikano,1, 5, 6, † and Yosuke Kayanuma1,3, 7, ‡

1Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
2Department of Innovative and Engineered Materials,

Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
3CREST, Japan Science and Technology Agency, 4-1-8 Kawaguchi, Saitama 332-0012, Japan

4Department of Physics, Faculty of Science and Technology,
Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

5Research Center of Integrative Molecular Systems (CIMoS),
Institute for Molecular Science, National Institutes of Natural Sciences,

38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan
6Institute for Quantum Studies, Chapman University,
1 University Dr., Orange, California 92866, USA

7Graduate School of Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka, 599-8531 Japan
(Dated: May 31, 2016)

Coherent optical phonons in bulk solid system play a crucial role in understanding and designing
light-matter interactions and can be detected by the transient reflectivity measurement. In this
paper, we demonstrate spectrally resolved detection of coherent optical phonons in diamond from
ultrashort infrared pump-probe measurements using optical band-pass filters. We show that this
enhances sensitivity approximately 35 times in measuring the coherent oscillations in the transient
reflectivity compared with the commonly used spectrally integrated measurement. To explain this
observation, we discuss its mechanism.

PACS numbers: 78.47.J-, 74.78.Bz

I. INTRODUCTION

Ultrashort optical pulses generate the coherent oscilla-
tion of the lattice, which modulates the macroscopic elec-
tric susceptibility. These lattice oscillations are referred
to as coherent phonons and can be detected with another
ultrashort pulse via intensity modulations in reflectivity
or transmissivity [1, 2]. Using coherent phonons and a
pump-probe type optical measurement, we can directly
observe the oscillation of the phonons and measure their
dynamics for a wide variety of materials such as semimet-
als [3–6], semiconductors [7–12], superconductors [13–15]
and topological insulators [16–19]. In addition, the co-
herent phonons in carbon materials, e.g., graphite [20],
graphene [21, 22], and carbon nanotubes [23–27], have
attracted much attention in studies of electron-phonon
coupling.
To excite and measure the coherent phonons, the pulse

duration of the pump and probe pulse needs to be shorter
than the vibrational period of the phonons. This require-
ment corresponds to a spectral width of the optical pulse
that is much bigger than the phonon energy. The co-
herent phonon dynamics can be observed as a change
in transient reflectivity. While this change depends on
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the probe light frequency, the reflected light can be mea-
sured without needing spectrally resolved methods. This
is commonly used and is referred to here as the spectrally
integrated detection. In contrast, the spectrally resolved
detection shows that the associated change in transient
reflectivity at shorter and longer wavelengths oscillates
180◦ out-of-phase mode [28–30]. This implies that the
sensitivity of the spectrally resolved detection is much
higher than that of the spectrally integrated detection
because the shorter- and longer- wavelength components
cancel each out.

In this paper, we investigate enhancement of the detec-
tion sensitivity for the coherent optical phonons using the
spectrally resolved detection and found a strong enhance-
ment of approximately 35 times in diamond. Diamond
has a wide band gap (a direct gap of 7.3 eV and an indi-
rect gap of 5.5 eV) and a high optical-phonon frequency
(40 THz). Raman spectroscopy has been widely used to
extract properties of diamond because the phonon spec-
trum is sensitively dependent on the crystal structure of
carbon materials such as diamond, graphite, graphene,
and carbon nanotubes. Recently, as an application of
quantum memory, the dynamics of longitudinal optical
(LO) phonons in diamond has been studied [31–35]. On
the other hand, the coherent-phonon measurement us-
ing ultrashort visible pulses (photon energy 3.14 eV) and
spectrally integrated detection have recorded 40-THz co-
herent optical phonons in diamond and evaluated these
lifetimes based on the difference in impurity rates [36]. In
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the present experiment, we used an ultrashort infrared
pulse with the central wavelength of 1.52 eV and ne-
glected linear and multi-photon absorption effects.

II. SPECTRALLY RESOLVED DETECTION IN

ULTRASHORT-PULSE PUMP-PROBE

EXPERIMENT

Scan delay CM
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FIG. 1. (Color online) Schematic of our experimental setup
for spectrally resolved detection on the transient reflectivity
measurement. PD denotes the photo diode measure pulse
intensity, BS a beam splitter, CM a chirp mirror, BF a band-
pass filter for spectral cutting.

The coherent optical phonons are investigated us-
ing a pump-probe-type transient reflection measurement
(Fig. 1). The output pulse from the Ti:sapphire oscillator
(FEMTOLASERs: Rainbow), the spectrum of which was
is given in Fig. 2 measured using an USB spectrometer
(OceanOptics: USB2000+), was divided into two pulses
by a 75/25 beam splitter, and used as pump and probe
pulses. The pump pulse went through a scan delay unit
(APE: Scan Delay 50) to control the time delay between
the pump and probe pulses. The scan delay was run
with the sine function of 20 Hz. Also, the probe pulse
was picked up by a 95/5 beam splitter to measure the
reference beam intensity at a photodiode (PD1). There-
after, both pump and probe pulses were focused on the
sample by using an off-axis parabolic mirror with a focal
length of 50 mm. The reflected pulse from the sample was
detected with a photodiode (PD2). In addition, optical
bandpass filters are put before PD2 for the spectrally re-
solved detection, which are FB740, FB800, FB850, and
FB900 (Thorlabs Inc.) having transmission at a central
wavelength of 740, 800, 850, and 900 nm, respectively,
with a band width of 10 nm. By applying the opposite
bias voltages to PD1 and PD2, we set the balanced de-
tection before the experiment. Its differential signal, to
be amplified with a low-noise current amplifier (Stanford
Research Systems: SR570), was measured by a digital
oscilloscope (Iwatsu: DS5534). To reduce the statistical
error, the 32, 000 signals were averaged and taken as the
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FIG. 2. Spectrum of the sub-10 fs laser pulse. After the ex-
perimental procedures, this spectrum was measured at the
output port of the Ti:sapphire oscillator with a fiber-type
spectrometer.

measured value. By converting the temporal motion of
the scan delay unit to the pump-probe pulse duration, the
temporal evolution of the reflectivity change ∆R(t)/R0

was obtained. The time interval of the sampling data
points was estimated to be 0.7 fs. Note that the spec-
tral chirping by the optics was compensated using a pair
of chirp mirrors in order to minimize the pulse width
at the sample position. The ultrafast laser conditions
in the following experiment were the spectral centroid
818 nm evaluated from Fig. 2, the pulse width 8.9 fs
from the frequency resolved auto correlation measure-
ment (FEMTOLASERS: Femtometer), and the powers
20 mW and 14 mW of the pump and probe pulses, re-
spectively. The power and polarization of both the pump
and probe pulses were controlled using a half-wave plate
and a polarizer.
The sample was a commercially available type-Ib dia-

mond crystal of a [100] crystal plane (SUMITOMO Co.)
with a rectangular parallelepiped shape of face size of
5 mm × 5 mm, and a thickness of 2 mm. The polar-
ization of the pump pulse was set parallel to the [110]
axis. The polarizations of the pump and probe pulses
are orthogonal to each other.

III. COHERENT OPTICAL PHONONS

DYNAMICS IN DIAMOND

We next analyze the coherent LO phonon dynamics by
measuring the change in transient reflectivity. Figure 3
shows the transient reflectivity dynamics of the diamond
obtained for a whole spectral range without any filters.
With overlapping the pump and probe pulses there is a
strong peak at zero delay because of diamond’s nonlinear
response. After the strong peaks there is a modulation
caused by the coherent optical phonons in diamond. The
transient reflectivity expanded over the interval from 600
to 800 fs clearly indicates that the vibrational period is
25.0±0.4 fs (frequency of 40.0±0.6 THz). The lifetime of
this coherent oscillation was estimated to be 6.0± 1.1 ps
by fitting the data with the damping oscillation. This
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FIG. 3. Transient reflectivity dynamics from diamond ob-
tained without any filters. (a) The time evolution of a change
in reflectivity, (b) the horizontally expanded signal of the data
(a) in a range between 600 fs and 800 fs, and (c) the Fourier
spectrum of the data (a) in a range between 100 fs and 2400fs.

agrees well with a previous result (5.59± 1.12 ps) [36].
Figure 4 shows the spectrally resolved transient reflec-

tivity change ∆R(Ω)/R0(Ω) with bandpass filters FB720,
FB800, FB850, and FB900. R0(Ω) is the reflectivity mea-
sured with a filter without the pump pulse. The ampli-
tude of the coherent oscillations in the transient reflectiv-
ity obtained with the bandpass filter is larger than that
without the band-pass filter, although the light intensity
obtained with the band pass filter is reduced. According
to the estimation of the current intensity at PD2, the
ratio of the reflected probe pulse intensity with BF900,
BF850, BF800, and BF740 compared with that without
filtering is estimated to be 0.02, 0.04, 0.05, and 0.02,
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FIG. 4. (Color online) Transient reflectivity change
∆R(Ω)/R0(Ω) of the type Ib diamond obtained without any
filters (black) and with filters FB900 (red), FB850 (orange),
FB800 (green), and FB740 (blue). The data are plotted with
an offset.

respectively. We demonstrate that the oscillation am-
plitude in ∆R(Ω)/R0(Ω) with FB900 is 35 times bigger
than that without the filter ∆R/R0.

The phase of the oscillation on the longer-wavelength
side (850 nm and 900 nm) is almost opposite to that
on the shorter-wavelength side (740 nm and 800 nm).
This phase change in the transient transmission spec-
trum of carbon nanotubes was already reported [22]. The
phase of the coherent phonon oscillation in the differen-
tial transmission for the radial breathing mode of single-
walled carbon nanotubes depends on the detection wave-
length. The oscillations at wavelengths of 810 nm and
780 nm are anti-phase to each other, and hence below
and above the resonance of the E22 band gap. In con-
trast, in the present study, we observed a phase difference
in the transient reflectivity although all the probe wave-
lengths are below the band gap.

To elaborate a mechanism for our observed anti-phase
effect, when a delay τp between the pump and probe
pulses is much longer than the optical pulse width σ,
the generation and the detection processes are treated as
independent. To clarify our observation in the spectrally
resolved measurement, the detection process of the co-
herent phonons is only discussed. The incidence of the
pump pulse on the diamond at time t = 0 induces co-
herent optical phonons via impulsive stimulated Raman
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scattering [2, 28, 37] because the optical energy (1.52 eV)
is well below the band gap (7.3 eV) [38] of the diamond.
The induced phonons modulate the polarization P (t) due
to the probe pulse E(t − τp) irradiated at t = τp as
P (t) = P0 + ∆P (t). Here, ∆P (t) is proportioainal to
the phonon coordinate, Q(t) = Q0 cosωt. It is shown [39]
that the spectrally resolved reflection modulation ∆R(Ω)
is given by

∆R(Ω) = 2Ω0Im {E∗(Ω)∆P (Ω)} , (1)

in which E(Ω) and ∆P (Ω) are the Fourier components of
E(t− τp) and ∆P (t), and Ω0 is the central frequency of
the probe pulse. Equation (1) suggests that in ∆R(Ω),
the optical frequency Ω and the phonon frequency ω are
synthesized into components of frequencies Ω ± ω. A
quantum mechanical theory yields the formula for ∆R(Ω)
as

∆R(Ω) = 2Ω0α
√

ω/2~Q0[{χ(Ω + ω)− χ(Ω}E0(Ω + ω)

− {χ(Ω)− χ(Ω− ω)}E0(Ω− ω)]E0(Ω)

× sinωτp, (2)

where α is the dimensionless electron-phonon coupling
constant, χ(Ω) is the electric susceptibility of the crystal,
and E0(Ω) ≡ e−iΩτpE(Ω) is a real quantity in the Fourier
transform limit. See technical details in Appendix A. In
the present experiment, the peak position of the spec-
trum is 800 nm (∼375 THz), which is slightly smaller
than the spectral centroid (818 nm), and the frequency
of the optical phonons is 40 THz. Then, Eq. (2) implies
that the largest signals should be measured at Ω + ω =
415 THz and Ω−ω = 335 THz, corresponding to λ =723
nm and λ = 895 nm, that is consistent with the present
data. It is worth noting that Eq. (2) is a universal
formula for the spectrally resolved detection of coherent
phonons in the transparent region. Note that the prereq-
uisite for the 180◦ out-of-phase effect is that the electric
susceptibility χ(Ω) is a real quantity in the transparent
region. In the opaque region, the relative phase of the
oscillation depends on the relative magnitude of the real
and imaginary parts of χ(Ω).
This formula clearly indicates that the change of the

reflectivity at frequency Ω±ω oscillates 180◦ out-of-phase
each other as a function of pump-probe delay τp. It is
noted that Ref. [39] gives a theoretical treatment of the
pump-probe signal in the transmission process for opti-
cally thin systems. Essentially, the same formula can be
applied to the reflection process by regarding E(t) as the
electric field of the reflected probe pulse without pump.
In the commonly-used transient reflectivity measure-

ments without filters, the oscillations at higher and lower
frequencies cancel out because they oscillate 180◦ out-of-
phase. While one may think that no coherent phonon
oscillation is observed without any filters, the oscillation
amplitude is proportional to the difference between the
electric susceptibilities, χ(Ω) − χ(Ω ± ω), and the elec-
tric susceptibility is an increasing monotonic function in
the transparent region encountered in Eq. (2). In our

case, the lower frequency components can be observed in
the detection without any filter. The oscillation ampli-
tude in ∆R(Ω)/R(Ω) with the specific filter is bigger than
that in ∆R/R0 without a filter. Our experimental data
shows that the sensitivity of FB900 band-pass filter is 35
times higher than one without any filter. We remark that
the observed oscillations with FB900 and FB850 are not
perfectly 180◦ out-of-phase. This may be caused by the
spectral chirping in the optical pulse while the Fourier-
transform limited pulse was assumed for simplicity in our
theoretical treatment.

IV. CONCLUSION AND OUTLOOK

We observed the changes in the transient reflectivity
via coherent optical phonons in diamond using ultrashort
infrared pulses and showed that the spectrally resolved
detection can enhance the sensitivity of the coherent
phonon measurement approximately 35 times compared
with the commonly used spectrally integrated measure-
ment. This is because the reflected-light intensity for
higher- and lower-frequencies from the spectral centroid
is oscillating 180◦ out-of-phase and canceled each other
out.

By our enhanced method, we can measure the tran-
sient vibrational-state dynamics in a diamond more pre-
cisely, for example, the coherence time of the coher-
ent phonon. As alluded before [31–35], a vibrational
state of a diamond is a candidate of room-temperature
based quantum memory. By utilizing coherent opti-
cal phonons in diamond, coherent read-write process in
quantum memory might be demonstrated by a pump-
pump-probe method with a wave-packet interference of
optical phonons [40, 41].
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Appendix A: Detection mechanism of coherent

phonons with spectral integration and resolution

The whole process of generation and detection of the
coherent phonons may be formulated as a series of higher-
order optical processes. In this Appendix, we concen-
trate on the detection process, assuming that there ex-
ists a coherent lattice oscillation generated by a pump
pulse irradiated in the past. The coherent phonon is re-
garded as a tool to apply an oscillating perturbation on
the electrons in the crystal, and the probe pulse detects
the change in the electronic states through the modula-
tion of the frequency dispersed signal. It is noted that
another quantum-mechanical treatment on the genera-
tion and detection mechanism of the coherent phonon
was recently analyzed [42].
Let us consider a two-band system for the insulating

crystal, say diamond, which describes the dynamics in
the probe process. It is assumed that the energy to the
excited states is modulated by the coherent oscillation of
the LO phonon at the Γ-point, which has been generated
by the pump pulse. The model Hamiltonian is given by

H = Hg|g〉〈g|+
∑

k

Hk|k〉〈k|,

Hg = ~ωb†b,

Hk = ǫk + ~ωb†b− α~ω
(

b+ b†
)

, (A1)

where the state vector |g〉 means the electronic ground
state of the crystal, and |k〉 the state that an electron

with wave vector ~k is excited from |g〉 to the conduction
band with the excitation energy ǫk. The Hamiltonian Hg

and Hk are the phonon Hamiltonians in the subspaces |g〉
and |k〉. The creation and the annihilation operators of
the LO phonon at the Γ-point with energy ~ω are denoted
by b† and b, respectively. A similar model has been used
for the generating phononic states in quantum dots [43].
It is assumed that the excited states are coupled with
the LO phonon mode through the deformation potential
interaction with the dimensionless coupling constant α.

In approximation, we have neglected the ~k-dependence
of the coupling constant, assuming a rigid-band shift be-
cause of the deformation potential interaction. In the
bulk crystal, the Huang–Rhys factor α2 is considered to
be small; α2 ≪ 1.
Within the rotating wave approximation, the interac-

tion Hamiltonian with the probe pulse is given by

HI =
∑

k

µkE(t− τp)|k〉〈g|+H.c., (A2)

in which µk is the transition dipole moment from |g〉 to
|k〉, and E(ttaup) is the temporal profile of the electric
field of the probe pulse with the delay time τp. The
spectral profile of the probe pulse is given by

E(Ω) =

∫ ∞

−∞

E(t− τp)e
iΩtdt = eiΩτpE0(Ω). (A3)

with

E0(Ω) =

∫ ∞

−∞

E(t)eiΩtdt. (A4)

The interaction Hamiltonian (A2) can be used also for
the pump process by setting τp = 0. The only difference
is that the amplitude of E(t) is much larger compared
with that in the probe pulse.
If one neglects the reflection from the back surface of

the crystal, the pump-induced change of the reflection
is obtained as a heterodyne modulation on the reflected
probe pulse. Aside from irrelevant factors, the spectrally
resolved signal of the reflection [39] is given by

∆R(Ω) = 2Ω0Im {E∗(Ω)∆P (Ω)} , (A5)

where Ω is the detection frequency and ∆P (Ω) is the
Fourier component of the modulated part of the polar-
ization due to the coherent phonon,

∆P (Ω) =

∫ ∞

−∞

∆P (t)eiΩtdt. (A6)

Equation (A5) can be derived from the argument that
the small change in the reflected amplitude of the probe
pulse originates from the loss or gain done by the work
of the induced polarization in the presence of coherent
lattice oscillation. It can be shown that the spectrally in-
tegrated signal, which is obtained in the common pump-
probe experiment for the coherent phonons, is given by
the integration of the spectrally resolved signal as

∆R = 2Ω0

∫ ∞

−∞

Im {E∗(t)∆P (t)} dt

= 2Ω0

∫ ∞

−∞

Im {E∗(Ω)∆P (Ω)} dΩ. (A7)

The actually observed change in the reflection is normal-
ized by the reflection amplitude R(Ω) without the pump
pulse. As R(Ω) ∝ |E(Ω)|2, we find

∆R(Ω)/R(Ω) = 2Ω0Im {∆P (Ω)/E(Ω)} . (A8)

For non-resonant excitation by the pump pulse, the co-
herent oscillation of the optical phonons is driven by the
impulsive momentum generated by the virtual transition
to the excited electronic states. We take the origin of
time at the moment that the displacement of the phonon
coordinate becomes maximum. Furthermore, we assume
that the initial configuration of the phonon is given by
the coherent state defined as

b|β〉 = β|β〉, (A9)

for a real eigenvalue β. While this is an approximation,
it makes the whole calculation transparent. Hence, the
pump pulse prepares the initial state in which the elec-
tron is in the ground state while the phonon is in the
excited state. For this initial state wave function

|ψ(0)〉 = |g〉 ⊗ |β〉, (A10)
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the Schrödinger equation

i~
d

dt
|ψ(t)〉 = (H +HI) |ψ(t)〉 (A11)

is solved to the lowest order in HI as

|ψ(t)〉 = e−iHgt/~|g〉 ⊗ |β〉+
i

~

∫ t

0

dτE(τ − τp)
∑

k

µke
−iHk(t−τ)/~e−iHgτ/~|k〉 ⊗ |β〉. (A12)

The density matrix for the electron-phonon system is given by ρ(t) = |ψ(t)〉〈ψ(t)|. For the polarization operator
P op ≡

∑

k µ
∗
k|g〉〈k|, the complex polarization at t is given by

P (t) = Tr {ρ(t)P op} . (A13)

The third-order nonlinear polarization ∆P (t) comes out from the cross term of the first and the second term of
Eq. (A12). The time-evolution and the expectation value of the phonon variable can be calculated by elementary
arithmetic using the coherent state representation. We obtain

∆P (t) =
i

~

∫ t

0

dτE(τ − τp)
∑

k

|µk|
2e−iǫk(t−τ)/~−γ(t−τ)

× exp
[

α2{e−iω(t−τ) − 1 + iω(t− τ)}+ 2iαβ(sinωt− sinωτ)
]

(t ≥ 0),

= 0 (t < 0), (A14)

with a small positive number γ corresponding to the life time in the excited state. We are not concerned with the
relaxation mechanism of the coherent phonon in the present work. The frequency-resolved polarization is given by
Eq. (A6). For τp large enough, ∆P (Ω) is written as

∆P (Ω) =
i

~

∫ ∞

−∞

dτE(τ − τp)e
iΩτ

∫ ∞

0

dsF (s)

× exp
[

iΩs+ α2(e−iωs − 1 + iωs) + 2iαβ (sinω(τ + s)− sinωτ)
]

, (A15)

where we set t− τ = s and the optical response function

F (t) =
∑

k

|µk|
2e−iǫkt/~−γt, γ = 0+ (t ≥ 0)

= 0 (t < 0). (A16)

The Fourier transform of F (t) is the electric susceptibility of the material,

χ(Ω) =
i

~

∫ ∞

−∞

F (t)eiΩtdt. (A17)

Applying the formula

eix sin θ =

∞
∑

m=−∞

Jm(x)eimθ (A18)

with Jm(x) being the mth Bessel function, we find the final result in a closed expression,

∆P (Ω) = e−α2

∞
∑

l=0

∞
∑

m=−∞

∞
∑

n=−∞

α2l

l!
Jm(2αβ)Jn(2αβ)

× χ(Ω + (m− l)ω + α2ω)ei[Ω+(m−n)ω]τpE0(Ω +mω − nω). (A19)

In bulk crystals, we may set α2 < 1 and |αβ| < 1. In this case, we retain only terms l = 0, m = 0,±1 and n = 0,±1.
As a function of τp, the oscillating part are given by terms (m,n) = (±1, 0) and (0,±1). As limx→0+ J0(x) = 1,
limx→0 J1(x) = x/2 and J−1(x) = −J1(x), we find

∆P (Ω) = eiΩτpαβ[{χ(Ω + ω)− χ(Ω)} eiωτpE0(Ω + ω)

+ {χ(Ω)− χ(Ω− ω)} e−iωτpE0(Ω− ω)]. (A20)
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Because the electric susceptibility is a real quantity in the transparent region,

∆R(Ω) = 2Ω0αβ[{χ(Ω + ω)− χ(Ω)} Im{eiωτpE0(Ω + ω)E∗
0 (Ω)}

+ {χ(Ω)− χ(Ω− ω)} Im{e−iωτpE0(Ω− ω)E∗
0 (Ω)}]. (A21)

If the probe pulse is in the Fourier transform limit, E0(Ω) is also a real quantity and the above formula reduces to a
much simpler expression,

∆R(Ω) = 2Ω0αβ[{χ(Ω + ω)− χ(Ω)}E0(Ω + ω)

− {χ(Ω)− χ(Ω− ω)}E(Ω− ω)]E0(Ω) sinωτp. (A22)

If one introduces the coordinate of the phonon as

Q ≡
√

~/2ω(b+ b†),

the amplitude of oscillation Q0 is given by

Q0 = 〈β|Q|β〉 =
√

2~/ωβ.

This recovers Eq. (2).

For a frequency at the peak position of the incident
pulse Ω0, the peak frequency in the reflected signal be-
comes Ω0 − ω in the first term in Eq. (A22), and Ω1 + ω
in the second term. The phase of the oscillation is re-
versed in both the low-frequency and the hig-frequency

parts. Furthermore, the oscillation amplitude at high-
frequency peak is slightly larger than the lower one if the
pulse is in the Fourier transform limit, because the sec-
ond derivative of the susceptibility is usually positive in
the transparent region;

∂2χ

∂Ω2
> 0 (A23)

so that

|χ(Ω + ω)− χ(Ω)| > |χ(Ω)− χ(Ω− ω)|. (A24)

Therefore, the change in transient reflectivity is not
completely canceled out and can be measured in the
commonly-used spectrally integrated measurement.
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