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The ability to induce a sizable gap in the excitation spectrum of a normal layer placed in contact
with a conventional superconductor has become increasingly important in recent years in the context
of engineering a topological superconductor. The quasiclassical theory of the proximity effect shows
that Andreev reflection at the superconductor/normal interface induces a nonzero pairing amplitude
in the metal but does not endow it with a gap. Conversely, when the normal layer is atomically thin,
the tunneling of Cooper pairs induces an excitation gap that can be as large as the bulk gap of the
superconductor. We study how these two seemingly different views of the proximity effect evolve
into one another as the thickness of the normal layer is changed. We show that a fully quantum-
mechanical treatment of the problem predicts that the induced gap is always finite but falls off with
the thickness of the normal layer, d. If d is less than a certain crossover scale, which is much larger
than the Fermi wavelength, the induced gap is comparable to the bulk gap. As a result, a sizable
excitation gap can be induced in normal layers that are much thicker than the Fermi wavelength.

Introduction. There are two seemingly distinct
paradigms for understanding the superconducting prox-
imity effect. In a more traditional approach based on
the quasiclassical theory1,2 (which we dub “mesoscopic”),
Andreev reflection gives rise to a nonzero pairing ampli-
tude but does not induce a superconducting gap in a
clean normal layer3 [see Fig. 1(a)]. This seems to stand
in stark contrast to the approach adopted in more re-
cent studies of the proximity effect in materials that are
a single atom thick. In this approach (which we dub
“nanoscale”), the tunneling of Cooper pairs opens a gap
in the excitation spectrum of the layer, and this gap
can be as large as the bulk gap of the superconductor
(∆)4–8 [see Fig. 1(b)]. The latter approach has become
increasingly important in recent years, owing to the in-
tense push to realize Majorana fermions in condensed
matter systems.8–10 As topological superconductivity re-
quires the presence of a sizable proximity-induced gap
to protect the zero-energy Majorana modes, this aspect
of the proximity effect is crucial to the success of any
proposal to engineer the topological phase.11–19

In this paper, we attempt to bridge the gap between
these two views of proximity-induced superconductiv-
ity by studying the evolution of the induced supercon-
ducting gap as the thickness of the normal layer (d) is
changed (see Fig. 2). In order to treat both mesoscopic
and nanoscale systems, we formulate our approach in a
fully quantum-mechanical way. We first show that the
gapless state of the mesoscopic approach is an artifact
of the quasiclassical approximation. Within the same
model as in Ref.,3 we show that there are two competing
energy scales, ∆ and 1/md2, that determine the size of
the proximity-induced gap (m is the effective mass in the
normal layer, and we set ~ = 1). The quasiclassical ap-
proach misses the latter scale, and we show that a finite
gap is induced for any finite d. By allowing for arbitrary
thickness, we are able to show that for a sufficiently thin
junction with d . dc, the induced gap constitutes a siz-
able fraction of the bulk superconducting gap. For an
ideal junction (no Fermi surface mismatch and no inter-
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FIG. 1. (Color online) (a) A quasiclassical result for the
density of states N(E) in a normal layer coupled to a su-
perconductor. In this approximation, one obtains a gapless
density of states that vanishes linearly at the Fermi energy.
(b) A tunneling-Hamiltonian result for the density of states in
a two-dimensional (2D) normal layer coupled to a supercon-
ductor. A BCS-like gap is induced, with the size of the gap
determined by the transparency of the SN interface (shown
here for a highly transparent interface).

facial barrier),

dc =
√
ξSλF , (1)

where ξS is the superconducting coherence length and
λF is the Fermi wavelength. If the layer is metallic, then
we always have ξS � λF , and it is possible to induce a
sizable gap in a normal layer that is many atomic layers
thick. If the layer is semiconducting but still ξS � λF ,
a sizable gap can be induced in a layer that is not in the
2D limit. For example, a sizable gap can be induced in
multilayer graphene (i.e., one does not need a monolayer
to induce the gap) or in topological insulator thin films.
Finally, we address the effects of Fermi surface mismatch
and an interfacial barrier, both of which weaken the prox-
imity effect.

Before continuing with our analysis, we must address
some overlap between this work and the existing litera-
ture. First, we note that Ref.20 obtained a gapped state
within the quasiclassical theory. However, this result is
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in contradiction with that of Ref.,3 which predicts only a
gapless state, and we show below that the induced gap is
indeed missed by the quasiclassical approximation. Sec-
ond, we note that Refs.21–23 studied the proximity effect
in a quasi-2D quantum well, where only the lowest trans-
verse subband is occupied and where the quantum well
and superconductor are only weakly coupled. Our model
allows us to treat both arbitrary thickness and arbitrary
coupling between normal layer and superconductor, and
our results coincide with those of Refs.21–23 in the appro-
priate limits.

Model. We consider an SN junction as shown in
Fig. 2, where the normal layer has a finite thickness d.
We allow the mass m(x), the Fermi energy EF (x), and
the pairing potential ∆(x) to vary in a stepwise man-
ner across the SN interface. Specifically, we take m(x) =
mNθ(x)+mSθ(−x), EF (x) = EFNθ(x)+EFSθ(−x), and
∆(x) = ∆θ(−x). We also allow for an interfacial barrier
of the form U(x) = Uδ(x). Our model is described by
the standard BdG equation:

[H0τ̂3 + ∆(x)τ̂1]ψ(k‖, x) = Eψ(k‖, x), (2)

where k‖ is the (conserved) momentum in the plane of

the SN interface, H0 = −∂x
[
∂x/2m(x)

]
+ k2‖/2m(x) −

EF (x) + U(x), and τ̂i are the Pauli matrices. Because
we are interested in studying the induced gap in the nor-
mal layer, which should not exceed the bulk gap of the
superconductor, we consider only energies E < ∆.

On the superconducting side, we must ensure that the
solution to Eq. (2) decays into the bulk. On the normal
side, we account for the outer boundary by requiring the
wave function to vanish at x = d. The wave function in
the two regions can then be expressed as

ψS = c1e
−ip+x

(
u0
v0

)
+ c2e

ip−x

(
v0
u0

)
, (3a)

ψN = c3 sin
[
k+(d− x)

]( 1
0

)
+ c4 sin

[
k−(d− x)

]( 0
1

)
,

(3b)

where u20 = (1 + iΩ/E)/2 and v20 = (1− iΩ/E)/2 are the
usual BCS coherence factors and Ω2 = ∆2 − E2. The
momenta defined in Eq. (3) are given by

p± = kFS

√
ϕ2
S ± iΩ/EFS , (4a)

k± = kFN

√
ϕ2
N ± E/EFN , (4b)

where kF = 2mEF is the Fermi momentum and ϕ2 =
1− k2‖/k

2
F parameterizes the quasiparticle trajectory.

The boundary conditions to be imposed at the SN in-
terface can be obtained by direct integration of Eq. (2)
over a narrow region near x = 0; they are

ψN (k‖, 0) = ψS(k‖, 0), (5a)

1

mN
∂xψN (k‖, 0)− 1

mS
∂xψS(k‖, 0) = 2Uψ(k‖, 0). (5b)
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z 
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FIG. 2. (Color online) (a) Geometry under consideration in
this paper, where a normal layer of finite thickness d is placed
in contact with a semi-infinite superconductor (both materi-
als are infinite in the yz-plane). A sharp potential barrier is
included at the SN interface, which is located at x = 0.

The boundary conditions form a set of four coupled equa-
tions that must be solved simultaneously. The condition
for the solvability of this system of equations determines
the excitation spectrum of the SN junction; i.e., a given
energy E belongs to the spectrum only if there exists a
choice of k‖ for which the solvability condition is satis-
fied. By determining which energies are absent from the
spectrum, we can determine the size of the gap that is
induced in the normal layer.
Breakdown of the quasiclassical approximation. As

first shown in Ref.3 [and as displayed in Fig. 1(a)], the
quasiclassical theory gives a normal layer density of states
that vanishes linearly at the Fermi energy. To reproduce
the quasiclassical results of Ref.,3 we neglect the effects
of a sharp interface by setting U = 0 and by assum-
ing that there is no Fermi surface mismatch between the
superconductor and normal layer. The quasiclassical ap-
proximation corresponds to expanding the momenta of
Eq. (4) in the limit

ϕ2 � ∆/EF , (6)

which means grazing trajectories with k|| ≈ kF are ex-
cluded. This gives

p± = kF |ϕ| ± iΩ/vF |ϕ|, (7a)

k± = kF |ϕ| ± E/vF |ϕ|, (7b)

where vF = kF /m is the Fermi velocity. Given the
expansions in Eq. (7), the condition for the solvability of
Eq. (5) is

Ω cos

(
2Ed

vF |ϕ|

)
= E sin

(
2Ed

vF |ϕ|

)
. (8)

It is then straightforward to solve explicitly for ϕ,

|ϕn| =
2Ed/vF

tan−1(Ω/E) + nπ
, (9)

where n labels the de Gennes–Saint-James energy levels.
We consider the cases of thick (d� dc) and thin (d�

dc) junctions separately, with dc as defined in Eq. (1).



3

In both cases, Eq. (9) gives a solution |ϕn| ∼ Ed/vF for
n > 0, while the n = 0 level is

|ϕ0| ∼
{

Ed/vF , E . ∆,

(∆d/vF )
√

∆/(∆− E), E ≈ ∆,
(10)

In order to satisfy condition (6) for the |ϕ| ∼ Ed/vF
solutions, we require that E �

√
∆/md2. In the limit of

a thick junction, where
√

∆/md2 � ∆, the quasiclassical
approximation breaks down at low energies E � ∆. In
the limit of a thin junction, where

√
∆/md2 � ∆, we

see that all solutions |ϕ| ∼ Ed/vF are invalid for energies
E < ∆. The only valid solution in this limit is the n = 0
solution for E ≈ ∆; condition (6) restricts the range of

validity of this solution to a narrow interval near the bulk
gap: ∆ − E � ∆2md2 � ∆. Thus, for both thin and
thick junctions, the quasiclassical approximation breaks
down below a certain energy. As will be shown in the rest
of the paper, the spectrum is gapped below this energy
scale.
Quantum-mechanical treatment. The starting point

for our fully quantum-mechanical treatment of the prox-
imity effect is the exact solvability condition of Eq. (5),
which can be expressed as

f(k‖) = 0, (11)

with the dimensionless function f(k‖) given by24

∆f(k‖) = Ωk̄+k̄− cos(k+d) cos(k−d) + Ω
[
w2 − iws(p̄+ − p̄−) + s2p̄+p̄−

]
sin(k+d) sin(k−d)

+
[
Ωwk̄− − E(p̄+u

2
0 + p̄−v

2
0)k̄−

]
sin(k+d) cos(k−d) +

[
Ωwk̄+ + E(p̄−u

2
0 + p̄+v

2
0)k̄+

]
cos(k+d) sin(k−d).

(12)

In Eq. (12), we introduce the dimensionless barrier
strength w = 2U/vFN and the Fermi velocity mismatch
parameter s = vFS/vFN . We also define the dimension-
less momenta p̄± = p±/kFS and k̄± = k±/kFN . The
proximity-induced gap Eg is defined as the minimum en-
ergy for which a solution to Eq. (11) exists. While it
is straightforward to determine Eg numerically, we also
examine several different limits analytically.

No mismatch, no barrier. We first revisit the case
discussed previously in the context of the quasiclassical
approximation, when there is neither Fermi surface mis-
match (EFN = EFS ,mN = mS) nor an interfacial bar-
rier (w = 0). To show that a gap is induced for any
value of d, we put E = 0 directly in Eq. (12). With f0 ≡
(kF d)2f , θ ≡ kF dϕ, and θ0 ≡

√
2∆md2 = 2

√
π(d/dc),

f0(θ) = θ2 cos2 θ +
√
θ4 + θ40 sin2 θ

+
θ√
2

√√
θ4 + θ40 − θ2 sin 2θ.

(13)

If no solution to f0(θ) = 0 exists (aside from the trivial
solution θ = 0, which corresponds to the wave function
being identically zero in the normal layer), then E = 0
is absent from the excitation spectrum and the system
is gapped. Since f0(θ) is an oscillatory function with
f0(0) = 0 and f ′0(0) > 0, a solution to f0(θ) = 0 ex-
ists only if there is a local minimum of f0 that is neg-
ative. For a thin junction (θ0 � 1), f0(θ) ≈ θ2 is a
monotonically increasing function, and the spectrum is
gapped. For a thick junction (θ0 � 1), the function

f0(θ) ≈ θ2 cos2 θ+ θ20 sin2 θ+ (θθ0/
√

2) sin 2θ has minima

at θmin
n ≈ nπ

(
1− 1/

√
2θ0
)

where f0(θmin
n ) ≈ (nπ)2/2 >

0, and thus the spectrum is gapped again. The func-
tion f0(θ) for several values of θ0, including intermediate
values θ0 ∼ 1, is plotted in Fig. 3, showing that the spec-
trum is gapped for any choice of θ0. The magnitude of

the gap (Eg) is determined as the minimum energy at
which Eq. (11) has a solution.

It is natural to assume that Eg � 1/md2 for a thick
junction. In this limit, the form of k± in Eq. (7b) still
remains valid, while p± must be expanded in the limit op-
posite that of the quasiclassical approximation: p2±/k

2
F ≈

±i∆/EF . With these approximations, we obtain a min-
imum value f0(θmin

1 ) = π2/2 − (θ60/4π
2)(E/∆)2, from

which the gap is read off as

Eg =
√

2π2 ∆

θ30
=

π2

2md2
1√

∆md2
. (14)

While Eq. (14) predicts that the gap is finite as long as
d finite, this result becomes irrelevant if the gap is very
small. One obvious scale that Eg needs to be compared
with is the temperature; the other one is the minigap,
Emg, which the quasiclassical theory predicts to open in
a disordered normal layer. In the ballistic limit, Emg ∼
1/τ ;25–27 in the diffusive limit, Emg ∼ v2F τ/d2,26–30 where
τ is the scattering time. With even a small amount of dis-
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FIG. 3. (Color online) Plot of f0(θ) at E = 0 [Eq. (13)]
for several values of θ0 = 2

√
π(d/dc). Because no solution to

f0(θ) = 0 exists, the normal layer is gapped for each θ0.
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FIG. 4. (Color online) Numerical solution for the proximity-
induced gap Eg as a function of thickness in the absence of
Fermi surface mismatch, plotted for various values of barrier
strength w. Fermi energy was chosen so that EF /∆ = 103.

order, the minigap is likely to be larger than the asymp-
totic limit given by Eq. (14).

For a thin junction, the forms of p± and k± given in
Eq. (7) remain valid. Expanding to leading order, we
obtain ∆f0(θ) ≈ Ωθ2. Since f0(θ) is a monotonically
increasing function in this limit, a solution to Eq. (11)
exists only in the limit Ω → 0. Therefore, the full bulk
gap, Eg ≈ ∆, is induced in a thin junction.

The crossover between the two regimes occurs at d ∼
dc, with dc defined in Eq. (1).
No mismatch, strong barrier. We now consider the

effect of an interfacial barrier on the induced gap. Antic-
ipating that the barrier will decrease the gap, we focus
only on the limit of a thin normal layer (∆md2 � 1). The
limit of a strong barrier can be treated analytically; the
“strong” barrier regime is defined by w � 1/kF d, so that
the w2 term in Eq. (12) gives the leading contribution to
f(k‖) for ϕ ∼ 1/kF d. In this regime, the gap is deter-
mined by the competition between two large parameters:
wkF d and 1/md2∆.24 In the limit wkF d � 1/∆md2,
the full bulk gap of the superconductor is again induced
in the normal layer. In the opposite limit, only a small
fraction of the bulk gap is induced,

Eg =
π3

w2(kF d)2
1

md2
� ∆. (15)

While it is still possible to induce a sizable gap in the
presence of a strong barrier, the normal layer must be
much thinner than dc as given in Eq. (1):

d . dc

(
λF
ξS

1

w2

)1/4

� dc, (16)

In Fig. 4, we plot a numerical solution of Eg(d) for several
values of w in the limit of no Fermi surface mismatch.

Strong mismatch, no barrier. We now consider the
limit of strong Fermi surface mismatch. Having in mind
a quasi-2D semiconductor quantum well coupled to a su-
perconductor, we consider the case when kFN � kFS

and EFN � EFS .
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FIG. 5. (Color online) Numerical solution for proximity-
induced gap Eg as a function of thickness with strong
Fermi surface mismatch, plotted for various values of bar-
rier strength w. To enable a comparison with Fig. 4, we
keep EFN/∆ = 103 and s = 1; we also choose EFS/EFN =
mS/mN = 10.

Focusing on thin junctions where ∆mNd
2 � 1, we find

that the induced gap is comparable to ∆ provided that
the Fermi velocity mismatch, which acts as an effective
potential barrier at the interface, is sufficiently weak,24

∆mNd
2 � s(kFNd)� 1/∆mNd

2. (17)

Accounting for the fact that s & 1 in typical semiconduc-
tor/superconductor junctions, we find that a large (∼ ∆)
proximity gap is induced provided that

d . dc
(
λFN/ξSs

4
)1/6 � dc, (18)

where dc is given by Eq. (1) with λF replaced by λFN .
Strong mismatch, strong barrier Finally, we consider

the case when both strong Fermi surface mismatch and
a strong barrier (w � 1/kFNd) are present. Similarly
to the case of no Fermi surface mismatch, the size of
the induced gap is again determined by the competi-
tion between two large parameters.24 When 1/∆mNd

2 �
(w2 + s2)(kFNd)/s, the full bulk gap is induced in the
normal layer; in the opposite limit, the induced gap is
small,

Eg =
π2

mNd2
s

(w2 + s2)(kFNd)
� ∆. (19)

We note that our result [Eq. (19)] coincides with that of
Ref.21 in the 2D limit, when kFNd ∼ 1. The 1/d3 scaling
of our result is also in agreement with both Refs.22 and.23

A large (∼ ∆) gap is induced if

d . dc

[
λFN

ξS

1

(w2 + s2)
2

]1/6
� dc. (20)

One interesting difference compared to the limit of
no mismatch is that the combination of length scales[
dc(λFN/ξS)1/6

]
does not change in the presence of a

barrier. As a result, the effect of a moderate barrier is
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No barrier Strong barrier

No mismatch 1

(
λF

ξSw2

)1/4

Strong mismatch

(
λFN

ξSs4

)1/6 [
λFN

ξS(w2 + s2)2

]1/6

TABLE I. Crossover thickness of the normal layer in units
of dc defined by Eq. (1). If d is less than the corresponding
thickness, an induced gap is comparable to the bulk gap in
the superconductor.

actually weaker when there is strong mismatch; this can
be seen clearly in Fig. 5, which plots a numerical solution
of Eg(d) for various values of w in the strong mismatch
limit.

Conclusion. We have shown that a hard supercon-
ducting gap is proximity-induced in a normal layer of
any finite thickness and have studied the dependence of
this gap on the thickness of the normal layer. It is pos-
sible to induce a sizable fraction of the full bulk gap of
the superconductor in layers that are much thicker than
the Fermi wavelength, a result that is relatively robust to
moderate interfacial barrier strengths and strong Fermi
surface mismatch. The analytic results for the crossover
thickness, below which the induced gap is comparable to
the bulk gap of the superconductor, are summarized in

Table I.
The ability to induce a superconducting gap via the

proximity effect has been well demonstrated experi-
mentally. Gaps observed in tunneling experiments on
mesoscopic junctions31–33 can be attributed to the dif-
fusive nature of the normal layer and correspond to
the disorder-induced minigap. Conversely, in nanoscale
junctions involving either InAs or InSb nanowires, gaps
observed in transport experiments probing topological
superconductivity34–37 can be attributed to the finite-
size effects discussed in this paper. In many materials
the observed gap appears “soft”; i.e., there remains a
finite density of states at the Fermi energy. However,
there have been recent observations of a hard supercon-
ducting gap,17–19 an important step toward developing
Majorana-based quantum devices. As a sizable gap is
needed to stabilize topological superconductivity, the re-
sults of this paper significantly lessen the experimental
restrictions on the thickness of the proximity-coupled
layer in order to induce such a gap.
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