This is the accepted manuscript made available via CHORUS. The article has been published as:

Model for multishot all-thermal all-optical switching in ferromagnets

J. Gorchon, Y. Yang, and J. Bokor

Phys. Rev. B 94, 020409 - Published 19 July 2016
DOI: 10.1103/PhysRevB.94.020409

Model for multi-shot all-thermal all-optical switching in ferromagnets

J. Gorchon, ${ }^{1,2, *}$ Y. Yang, ${ }^{3}$ and J. Bokor ${ }^{1,2}$
${ }^{1}$ Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
${ }^{2}$ Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
${ }^{3}$ Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA

(Dated: June 6, 2016)

Abstract

All optical magnetic switching (AOS) is a recently observed rich and puzzling phenomenon that offers promising technological applications. However, fundamental understanding of the underlying mechanisms remains elusive. Here we present a model for multi-shot helicity-dependent AOS in ferromagnetic materials based on a purely heat-driven mechanism in the presence of Magnetic Circular Dichroism (MCD). We predict that AOS should be possible with as little as 0.5% of MCD, after a minimum number of laser shots heat the sample close to the Curie temperature. Finally, we qualitatively reproduce the all-optically switched domain patterns observed experimentally by numerically simulating the result of multiple laser shots on an FePtC granular ferromagnetic film.

The magnetic dynamics of a system triggered by an ultrashort optical pulse has been an exciting and yet unresolved problem in the magnetism community for the past 20 years. One of the most surprising results in the field was the discovery of the All-Optical Switching (AOS), the possibility of optically switching the magnetization of a magnetic material ${ }^{1}$. This was first observed in ferrimagnetic GdFeCo alloys ${ }^{1}$, later in a variety of ferrimagnet alloys and synthetic ferrimagnets ${ }^{2}$ and eventually in metallic ferromagnets ${ }^{3}$. It has been recently shown ${ }^{4}$ that two different types of switching need to be considered: First, a single-shot helicity-independent AOS found in ferrimagnets such as GdFeCo^{5}, and second, a multishot helicity-dependent AOS found in TbCo and ferromagnets ${ }^{4}$. Although some models have been proposed that explain the switching in 2-sublattice systems such as ferrimagnets ${ }^{5-8}$, modeling for AOS in ferromagnets was lacking until very recently. To our knowledge, the only mechanism suggested so far for AOS in ferromagnets is a combination of heating and the Inverse Faraday Effect (IFE) ${ }^{9,10}$. The IFE corresponds to the generation of an effective magnetic field on the sample induced by the helicity of the light. However, IFE is still very difficult to characterize experimentally and in the cited works the amplitude of such fields is treated as a free parameter.

In this letter, we present an alternative model that describes multi-shot helicity-dependent AOS in ferromagnetic materials based on a purely heat driven mechanism. We first present the switching mechanism which is based on a combination of MCD and stochastic switching close to the Curie temperature T_{C}. This is followed by an in-depth description of the problem and of the way physical parameters are chosen. AOS is shown to be possible within a range of temperatures (i.e. laser fluences), for a large range of MCD values, but only after a certain number of laser shots. Finally, we reproduce previous AOS results by simulating the sweeping of the laser beam.

In our model, the mechanism driving the switching is a very simple and intuitive one: Whenever a laser heats a magnetic layer close to T_{C}, the stability of the mag-

FIG. 1. : The AOS model supposes an a) N_{x} by N_{y} grid of cells, which present b) a temperature dependent magnetic anisotropy energy barriers $E_{a b}$, resulting in c) two stable possible states a (up) and b (down). As a d) circularly polarized laser pulse arrives onto the grid, e) cells in a and b states will absorb different amounts of energy due to MCD inducing a temperature distribution in the grid of hot and cold cells. This will lead to f) different energy landscapes for the hot and cold cells, resulting mostly in stochastic switching of the hotter cells.
netic state will be dramatically lowered as the anisotropy drops. For a circularly polarized beam, regions of the magnet with opposite magnetization will absorb different amounts of light due to MCD, resulting in hotter $T_{h o t}$ and cooler regions $T_{\text {cold }}$. The difference in temperatures will lead to a difference in magnetic stability. If $T_{h o t} \approx T_{c}$ and the MCD is large enough, cool regions will remain stable whereas hot regions will be prone to stochastic switching. Repeating the process (laser heating \& cooling) multiple times will statistically lead the magnet to full switching.

In order to numerically test this idea, we represent the magnetic material by an array of N_{x} by N_{y} cells, grains or macrospins (as in Fig. 1.a), presenting a strong out of
plane magnetic anisotropy of energy density K. For the sake of simplicity we ignore exchange and dipolar couplings between cells. These hypotheses will be discussed later in the text. This means that the magnetic state of the cell can be represented by a symmetric double well potential, as shown in Fig.1.c, where the magnetization can be only in the states up or down. The characteristic hopping time for the magnetization from state $a(u p)$ to state b (down) is given by the Néel-Brown formula ${ }^{11}$:

$$
\begin{equation*}
\tau_{a b}(T)=\tau_{0} e^{\frac{E_{a b}(T)}{k_{B} T}} \tag{1}
\end{equation*}
$$

where τ_{0} is an attempt time typically estimated to be on the order of $0.1 \mathrm{~ns}^{12}, k_{B}$ is the Boltzmann constant, T is the temperature of the cell and $E_{a b}$ is the energy barrier that prevents the magnetization from switching. The barrier will have the temperature dependence $E_{a b}(T)=$ $K(T) V$ (depicted in Fig. 1.b) where V is the volume of the cell. A high anisotropy at room temperature T_{0} leads to long term stability of the magnetization. However, when heating the cells with a laser pulse (assuming a step-like heating profile of amplitude ΔT proportional to the laser fluence and duration $t_{h o t}$) the probabilities that determine the final state (a or b) of the magnetization when starting in state a are given by ${ }^{13}$:

$$
\begin{equation*}
P_{a b}=\frac{1}{2}\left(1-e^{\left(-\frac{t_{h o t}}{\tau_{a b}\left(T_{0}+\Delta T\right)}\right)}\right) \tag{2a}
\end{equation*}
$$

$$
\begin{equation*}
P_{B}=\left(P_{i b}-\frac{P_{a b}}{P_{a b}+P_{b a}}\right)\left(1-P_{a b}-P_{b a}\right)^{N-1}+\frac{P_{a b}}{P_{a b}+P_{b a}} \tag{3}
\end{equation*}
$$

where the subscript i refers to the initial state. As N increases, the probability is given by the last term in Eq. 3 and when $P_{a b} \gg P_{b a}$ we find $P_{B} \approx 1$. Consequently as long as enough heating cycles (i.e. laser pulses) are used and as long as there is a significant difference in the energy barriers for a and b cells, deterministic switching is expected. The barrier height difference originates in the difference in absorption due to MCD which leads to a different temperature rise for cells in state a and b. Because of this temperature difference and the strong ${ }^{15}$ $d K / d T$ close to $T_{C}, E_{a b}$ will be very different for the two initial magnetization states.

Numerical simulations were conducted by considering an $\mathrm{FePt}-\mathrm{C}-\mathrm{L} 1_{0}$ granular film, for which AOS has been reported ${ }^{3}$. The typical size of grains is around 5 nm wide and 7 nm thick ${ }^{16}$, where grains are separated by a 1 nm thick C matrix ${ }^{17}$. This matrix ensures thermal isolation, as well as magnetic exchange isolation. We can therefore safely neglect the exchange interaction and assume that a non-homogeneous temperature distributions can exist in the sample.

The temperature dependence of the magnetization M_{S} and K was extracted from Ref. ${ }^{18}$, and corresponds to an

$$
\begin{equation*}
P_{a a}=1-P_{a b} \tag{2b}
\end{equation*}
$$

The probabilities are defined the same way when starting in state b, but the hopping time will be given by $\tau_{b a}$. The probability function spans from 0 to ${ }^{1} / 2$ as the energy barrier decreases from infinite to 0 . Intuitively, it means that when the cell is heated close to T_{C} and the barriers disappear, the magnetization has no preferential direction.

If the laser pulse is right σ^{+}(left σ^{-}) circularly polarized $^{14}, b(a)$ states will absorb more heat due to MCD. This difference will result in hot and cold cells where, assuming a temperature independent phonon heat capacity the temperatures are given by $T_{\text {hot } / \text { cold }}=T_{0}+(1 \pm$ $\left.\frac{M C D}{2}\right) \Delta T$ (Fig. 1.e). Because of this difference in temperatures, hot and cold cells will have different switching probabilities (Fig. 1.f) leading to a higher number of reversals of the hot cells (Fig. 1.d). If we now heat the cells and allow them to cool back to $T_{0} N$ times, the cumulative probability for the magnetization to end in state b is given by (details in suppl. mat. ${ }^{15}$),
$\mathrm{Fe}_{50} \mathrm{Pt}_{50}$ film. First M_{S} was fitted with phenomenological equation ${ }^{19} M_{s 0}\left(\left(T_{c}-T\right) /\left(T_{c}-T_{0}\right)\right)^{\gamma}$ where $M_{s 0}=$ $1.15 \cdot 10^{6} \mathrm{~A} / \mathrm{m}$ is the magnetization at $T_{0}=300 \mathrm{~K}$, $T_{c}=775 \mathrm{~K}$ and $\gamma=0.34$ is the phenomenological fitting exponent used for Fe^{19}. Then K was fitted with ${ }^{18,20}$ $K_{0}\left(M_{S} / M_{S 0}\right)^{2}$ where $K_{0}=4.5 \cdot 10^{6} \mathrm{~J} / \mathrm{m}^{3}$. The fits are shown in the supplementary materials ${ }^{15}$.

The MCD was calculated, for a wavelength $\lambda=810$ nm , by using the non-magnetic complex index of refraction $n=3+4 i$ and the complex non-diagonal term $\sigma_{x y}=-(1.4+1.7 i) \cdot 10^{14} \mathrm{~s}^{-1}($ c.g.s $)$ of the optical conductivity tensor. These values were extracted from elipsometry, Kerr rotation and Kerr elipticity measurements in Refs. ${ }^{21,22}$ through the relations reported in Refs. ${ }^{21,23}$. Through Maxwell equations, the complex index of refraction for left and right circular polarized light $n_{ \pm}$are found to be ${ }^{23} n_{ \pm}=\sqrt{n^{2} \pm 4 \pi \sigma_{x y} / \omega}$, where $\omega=2 \pi c / \lambda$ and c is the speed of light. Fresnel equations were then used to obtain the reflectances and absorptions A_{+}and A_{-}for both helicities in the case of an infinitely thick film and normal incidence. Finally, the MCD was calculated as $2\left(A_{+}-A_{-}\right) /\left(A_{+}+A_{-}\right)$. An MCD of 5.8% is obtained for $\mathrm{Fe}_{50} \mathrm{Pt}_{50}$.

FIG. 2. : All-optical switching probability as a function of the laser temperature increase ΔT for different number of shots N. Three different temperature regimes are observed. At low temperature no switching is possible due to strong anisotropy barriers. Close to T_{C} a certain amount of AOS occurs as the number of shots increases. With enough pulses full switching becomes possible. At higher temperatures the sample gets randomly demagnetized into a multidomain structure.

We first compute Eq. 3 as a function of the temperature, where the starting state a is heated more than b due to MCD. We begin with the calculated $\mathrm{MCD}=5.8$ $\%$, a cell volume of $5 \times 5 \times 7=175 \mathrm{~nm}^{316}$ and $t_{\text {hot }}=1 \mathrm{~ns}$. As shown in Fig. 2 for a single pulse ($N=1$, black line) the probability of switching is 0 below a certain temperature threshold and 0.5 above. No full switching is thus possible with a single shot. As we increase the number of shots, a narrow range of temperatures around T_{C} results in a probability of switching that increases up to 1 eventually ensuring full switching. In this case the absorbed critical fluences for AOS will be around $F=\Delta T h C \approx 1.2$ $\mathrm{mJ} / \mathrm{cm}^{2}$, where $\Delta T=T_{C}-T_{0}, h=7 \mathrm{~nm}$ is the thickness and $C=3.5 \cdot 10^{6} \mathrm{~J} /\left(\mathrm{m}^{3} \mathrm{~K}\right)$ is the heat capacity of FePt^{24}.

Since this model assumes a sudden step-like temperature increase in the sample, cooling dynamics are not taken into account. Cooling in the presence of strong dipolar fields would make a full switching process less probable. However, this argument is consistent with the observation ${ }^{3}$ that only thin films, with a small magnetization volume and thus smaller dipolar fields, exhibit nearly full AOS. Thicker films always show some degree of demagnetization (multidomains), and full switching is not observed.

In this calculation, the ratio $t_{h o t} / \tau_{0}$ that acts as a prefactor in the exponential of Eq. 2.a was set equal to 10 . This parameter varies for different heat dissipation in the sample, but mostly offsets the temperature range at which AOS is observed (see suppl. mat. ${ }^{15}$ for details).

As shown in Fig. 3, the temperature window for AOS becomes larger as the MCD increases. However, even for a small MCD value of 0.5%, some AOS is still possible in a narrow range of temperatures.

Next, the lateral spatial heating profile was assumed to be Gaussian, according to the laser intensity profile. The

FIG. 3. : AOS Probability as a function of temperature and MCD for $N=10$ pulses.
$1 / e^{2}$ radius was set to 115 cells and the temperature rise to $\Delta T=600 \mathrm{~K}$ (Fig. 4.a) and $\Delta T=500 \mathrm{~K}$ (Fig. 4.b). As shown in Fig. 4.a, with white and black corresponding to opposite magnetizations, one shot on an initially saturated grid results in a circular demagnetized pattern. As the number of shots increases an outer ring, within the temperature window for AOS, fully switches. The fact that the first laser shots only result in a demagnetized area agrees with the observations on Co/Pt from Ref. ${ }^{4}$. The final state, a ring domain with an inner demagnetized area resembles strongly the AOS results in FePtC reported by Lambert el al. ${ }^{3}$.

We next scan the Gaussian beam (temperature profile) at a speed of 1 cell $/ t_{\text {rep }}$ where $t_{\text {rep }}$ is the laser repetition period, and as shown in Fig. 4.b (Multimedia view), we are able to write a magnetic domain by swiping the outer edge across the grid. Initially the grid was set so that the left half of the grid was up (white) and the right one down (black). Left circular (σ^{-}) and right circular $\left(\sigma^{+}\right)$polarized light causes up and down magnetizations respectively, whereas linearly polarized (π) light only demagnetizes the sample and results in multidomain states. This is an expected behaviour when considering the Gaussian profile of the laser intensity and the existence of a helicity-dependent AOS threshold ${ }^{1}$. In fact, this laser sweeping technique was used to reveal the AOS in ferromagnets such as FePtC by Lambert el al. ${ }^{3}$ and lead to qualitatively similar magnetic domain patterns.

The switching time via this mechanism is obviously not ultrafast, in contrast to that found in ferrimagnets ${ }^{6}$. Since the film needs to be heated and cooled multiple times before observation of a full switching, the number of pulses needed for switching, cooling rates and the laser repetition rate will define the switching time. However, such minimum switching time should also be fundamentally limited by the timescales of the thermal excitations (given by τ_{0}).

The suggested AOS mechanism should thus operate in materials with large MCD, small dipolar fields, limited in-plane heat diffusion and a strong temperature depen-

FIG. 4. : Simulations of the magnetization state after assuming a Gaussian temperature increase induced by the laser intensity profile (profile details in text). a) Simulation of successive shots with left circularly polarized (σ^{-}) light on an initially saturated black ("down") grid. After 10 shots a fully switched white ring develops. b) Simulations scanning the beam with left circular (σ^{-}), right circular $\left(\sigma^{+}\right)$and linearly polarized (π) laser shots at a 10 shots/cell sweeping speed. Initially, the grid consisted of a left-half $u p$ (white) magnetization and right-half down (black) magnetization. Each helicity favors one magnetization direction, which is determined by the edge of the Gaussian profile, whereas the linearly polarized laser beam only demagnetizes the sample (Multimedia view).
dence of the anisotropy close to T_{C}. We note that this doesn't restrict the mechanism to ferromagnets, thin ferrimagnetic films (such as $\mathrm{TbCo}, \mathrm{GdFeCo}$) or even antiferromagntic materials are also strong candidates for this switching mechanism due to their small dipolar fields and significant MCD.

Finally we would like to discuss the validity of the model for ultrathin ferromagnetic films such as $\mathrm{Pt} / \mathrm{Co}$ multilayers. These films do have significant MCD and exhibit low dipolar fields, however, they lack the granular structure that allows for magnetic and thermal iso-
lation. Nevertheless, exchange interaction is not necessarily detrimental for the AOS. In such materials, we provide the following qualitative description: The first laser shot demagnetizes the sample. The magnetization spontaneously breaks into domains of various sizes. Under negligible dipolar fields, domain relaxation is dominated by the wall energy and pinning. The smallest domains will thus dissapear because shrinking forces induced by the wall energy increase as the bubble diameter decreases ${ }^{25}$, whereas larger ones (100-1000 nm wide) will remain pinned. These larger domains will then remain cool on the next laser shot, while the rest of the film will restart the same process over. Repetition of this mechanism will eventually finish when various large domains merge together, resulting in full AOS.

In summary, we have proposed a multi-shot all-thermal mechanism for helicity dependent AOS in magnetic materials, which is based on temperature distributions induced by the MCD when heating the films close to $T_{C}{ }^{26}$. This mechanism could possibly coexist with other mechanisms such as the $\mathrm{IFE}^{9,10}$. We calculated the cumulative probability for AOS after a certain number of pulses, and numerically estimated it for the case of an FePtC granular film. The AOS window as a function of MCD, temperature, and the number of pulses was presented showing that even with as little as 0.5% of MCD, multishot switching should still be possible. Finally we simulated the resulting domain patterns after N laser shots, qualitatively reproducing various reported experimental results ${ }^{3,4}$.

This work was primarily supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 within the Nonequilibrium Magnetic Materials Program (MSMAG). Partial support was also provided by the National Science Foundation Center for Energy Efficient Electronics Science for assistance in the calculations by Y. Y.

* jgorchon@lbl.gov
${ }^{1}$ C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, Phys. Rev. Lett. 99, 047601 (2007).
${ }^{2}$ S. Mangin, M. Gottwald, C.-h. Lambert, D. Steil, V. Uhlî̃, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, Nat. Mater. 13, 286 (2014).
${ }^{3}$ C.-H. Lambert, S. Mangin, B. S. D. C. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, Science (80-.). 345, 1337 (2014).
${ }^{4}$ M. S. E. Hadri, P. Pirro, C. H. Lambert, S. Petit-Watelot, Y. Quessab, M. Hehn, F. Montaigne, G. Malinowski, and S. Mangin, arXiv (2016), arXiv:1602.08525.
${ }^{5}$ T. Ostler, J. Barker, R. Evans, R. Chantrell, U. Atxitia,
O. Chubykalo-Fesenko, S. El Moussaoui, L. Le Guyader, E. Mengotti, L. Heyderman, F. Nolting, A. Tsukamoto, A. Itoh, D. Afanasiev, B. Ivanov, A. Kalashnikova, K. Vahaplar, J. Mentink, A. Kirilyuk, T. Rasing, and A. Kimel, Nat. Commun. 3, 666 (2012).
${ }^{6}$ I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H. A. Dürr, T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, and A. V. Kimel, Nature 472, 205 (2011).
7 J. Barker, U. Atxitia, T. A. Ostler, O. Hovorka, O. Chubykalo-Fesenko, and R. W. Chantrell, Sci. Rep. 3, 3262 (2013).
${ }^{8} \mathrm{U}$. Atxitia, T. A. Ostler, R. W. Chantrell, and O. Chubykalo-Fesenko, Appl. Phys. Lett. 107, 192402 (2015).
${ }^{9}$ P. Nieves and O. Chubykalo-Fesenko,

Phys. Rev. Applied 5, 014006 (2016).
${ }^{10}$ T. D. Cornelissen, R. Córdoba, and B. Koopmans, Appl. Phys. Lett. 108, 142405 (2016).
${ }^{11}$ W. F. Brown, Phys. Rev. 130, 1677 (1963).
${ }^{12}$ O. J. Lee, L. Q. Liu, C. F. Pai, Y. Li, H. W. Tseng, P. G. Gowtham, J. P. Park, D. C. Ralph, and R. A. Buhrman, Phys. Rev. B 89, 024418 (2014).
${ }^{13}$ K. Jacobs, Cambridge University Press, 134 (2010).
${ }^{14}$ Left, right circular and linear polarization are simulated by seting a positive, negative and null MCD, respectively.
${ }^{15}$ Supplementary Materials at ...
${ }^{16}$ L. Zhang, Y. K. Takahashi, A. Perumal, and K. Hono, J. Magn. Magn. Mater. 322, 2658 (2010).
${ }^{17}$ T. Rausch, E. Gage, and J. Dykes, Springer Proc. Phys. 159, 200 (2015).
${ }^{18}$ J.-U. Thiele, K. R. Coffey, M. F. Toney, J. A. Hedstrom, and A. J. Kellock, J. Appl. Phys. 91, 6595 (2002).
${ }^{19}$ D. J. Dunlop and Ö. Özdemir, Cambridge Univ. Pr (1997).
${ }^{20}$ J. B. Staunton, S. Ostanin, S. S. A. Razee, B. L. Gyorffy, L. Szunyogh, B. Ginatempo, and E. Bruno,

Phys. Rev. Lett. 93, 257204 (2004).
${ }^{21}$ K. Sato, A. Mizusawa, K. Ishida, T. Seki, T. Shima, and K. Takanashi, Trans. Magn. Soc. Japan 4, 297 (2004).
${ }^{22}$ G. Armelles, D. Weller, B. Rellinghaus, R. Farrow, M. F. Toney, P. Caro, A. Cebollada, and M. Alonso, IEEE Trans. Magn. 33, 3220 (1997).
${ }^{23}$ Y.B.Xu and S. M. Thompson, Taylor \& Francis , 10 (2007).
${ }^{24}$ J. Kimling, J. Kimling, R. B. Wilson, B. Hebler, M. Albrecht, and D. G. Cahill, Phys. Rev. B 90, 224408 (2014).
${ }^{25}$ A. P. Malozemoff, J. C. Slonczewski, and R. Wolfe, Magnetic Domain Walls in Bubble Materials, pp. 19-21.
${ }^{26}$ Just before submitting this paper, we discovered the independent work of Takahashi Y.K. et al. (Accumulative magnetic switching of ultra-high-density recording media by circularly polarized light, arXiv:1604.03488, 2016) where they experimentally observe and study multi-shot AOS in FePt films. The authors fit the data assuming different switching probabilities, and even consider that the origin of such assymetry could arise from MCD. Their observations strongly agree with our predictions.

